Supporting Information

Guanidinato Complexes of Iridium: Ligand-Donor Strength,
 O_{2} Reactivity, and (Alkene)peroxoiridium(III) Intermediates

Matthew R. Kelley and Jan-Uwe Rohde*

Department of Chemistry, The University of Iowa, Iowa City, IA 52242
Contents Page
Figure S1. Electronic absorption spectra of 2a-2g in toluene S2
Figure S2. Solid-state IR spectra of the dicarbonyl complexes 2a-2g S3
Table S1. IR absorption bands of the dicarbonyl complexes $2 \mathbf{2 a}-2 \mathrm{~g}\left(2200-1000 \mathrm{~cm}^{-1}\right)$ S4
Table S2. Additional crystal and data collection parameters for 1d and $\mathbf{2 b}$ S5
Table S3. Selected interatomic distances for $\mathbf{1 d}$ and $\mathbf{2 b}$ S5
Table S4. Selected angles for 1d and 2b S6
Table S5. Selected dihedral angles for $\mathbf{1 d}$ and $\mathbf{2 b}$ S6
Determination of the Self-Diffusion Coefficient of 2a S7
Figure S3. Plot of $\ln \left(I / I_{0}\right)$ as a function of G^{2} for 2a S8
Figure S4. Electronic absorption spectra of 1a and 3a in toluene and the solution after decay of 3a under Ar S8
Figure S5. Solid-state IR spectra of 3a and its decay products S9
Figure S6. Solid-state IR spectra of $\mathbf{3 b}$ and its decay products S9
Figure S7. Solid-state IR spectra of 3c and its decay products S10
Figure S8. Solid-state IR spectra of 3d and its decay products S10
Figure S9. Solid-state IR spectra of $\mathbf{3 e}$ and its decay products S11
Figure S10. Solid-state IR spectra of $\mathbf{3 f}$ and its decay products S11
Table S6. IR absorption bands of the (alkene)peroxo complexes 3a-3f (1700-1200 cm ${ }^{-1}$) S12
Figure S11. Time course (${ }^{1} \mathrm{H} N M R$) of the reaction of $\mathbf{1 f}$ in benzene- d_{6} with O_{2},producing $\mathbf{3 f}$, and regeneration of $\mathbf{1 f}$S12

Figure S1. Electronic absorption spectra of $0.5 \mathrm{mM} 2 \mathbf{2 a}-2 \mathrm{~g}$ in toluene (path length, 0.5 cm). Color key: 2a, solid black line; $\mathbf{2 b}$, dashed black line; 2c, solid red line; 2d, dashed red line; $\mathbf{2 e}$, solid blue line; $\mathbf{2 f}$, solid green line; $\mathbf{2 g}$, solid brown line.

Figure S2. Solid-state IR spectra (KBr) of the dicarbonyl complexes 2a-2g. Top: 2a (- , black), $\mathbf{2 c}(-$, red), and 2e (-, blue). Bottom: 2b (-, black), 2d (-, red), $\mathbf{2 f}(-$, green), and $\mathbf{2 g}(-$, brown).

Table S1. IR absorption bands of the dicarbonyl complexes $\mathbf{2 a}-\mathbf{2 g}\left(2200-1000 \mathrm{~cm}^{-1}\right){ }^{a}$

Complex	$v_{\mathrm{CO}}\left(\mathrm{cm}^{-1}\right)$	$v\left(\mathrm{~cm}^{-1}\right)$			
2a	$2051(\mathrm{~m}), 2042(\mathrm{~s}), 1972(\mathrm{~m}), 1956(\mathrm{~s})$	$1592,1580,1572$	1489,1483	$1450,1421,1409$	1225
2b	$2051(\mathrm{~s}), 2033(\mathrm{w}), 1963(\mathrm{~s}), 1941(\mathrm{~m})$	$1589,1575,1538$	1490,1481	$1448,1399,1379$	$1300,1281,1221$
2c	$2058(\mathrm{sh}), 2044(\mathrm{~s}), 1970(\mathrm{~s}), 1956(\mathrm{~m})$	1578,1565	1506	$1457,1422,1413$	1222
2d	$2053(\mathrm{~s}), 1958(\mathrm{~s}), 1940(\mathrm{w})$	1540	1506	1412	1297
2e	$2041(\mathrm{~s}), 2021(\mathrm{w}), 1974(\mathrm{~m}), 1962(\mathrm{~s})$,	$1580(\mathrm{sh}), 1571$	1504	$1455,1430,1401$	$1285,1249,1236,1222$,
	$1930(\mathrm{w})$				$1178,1107,1032$
2f	$2047(\mathrm{~s}), 2041(\mathrm{~s}), 1977(\mathrm{~s})$	1594,1570	1465	$1420,1409,1374$	$1254,1214,1180,1094$,
2g	$2046(\mathrm{~s}), 2041(\mathrm{~s}), 1966(\mathrm{~s})$	1591,1564	1467,1442	$1419,1412,1360$	$1322,1262,1208,1099$,
					1021

[^0]Table S2. Additional crystal and data collection parameters for $\left[\operatorname{Ir}\left\{\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4}\right) \mathrm{NC}\left(\mathrm{NEt}_{2}\right) \mathrm{N}\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)\right\}(\right.$ cod $\left.)\right]$, 1d, and $\left[\operatorname{Ir}\left\{\operatorname{PhNC}\left(\mathrm{NEt}_{2}\right) \mathrm{NPh}\right\}(\mathrm{CO})_{2}\right], \mathbf{2 b}$.

	$\mathbf{1 d}$	2b
Crystal habit, color	prism, yellow	rod, colorless
Crystal size	$0.27 \times 0.17 \times 0.16 \mathrm{~mm}^{3}$	$0.36 \times 0.08 \times 0.08 \mathrm{~mm}^{3}$
$F(000)$	592	992
θ range for data collection	3.00 to 27.87°	3.32 to 27.87°
Limiting indices	$-12 \leq h \leq 12,-12 \leq k \leq 12,-17 \leq l \leq 17$	$-22 \leq h \leq 19,-22 \leq k \leq 22,-8 \leq l \leq 8$
Completeness to θ	$99.4 \%\left(\theta=27.87^{\circ}\right)$	$99.8 \%\left(\theta=27.87^{\circ}\right)$
Max. and min. transmission	0.4708 and 0.3160	0.5963 and 0.1812
Refinement method	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}

Table S3. Selected interatomic distances (\AA) for $\left[\operatorname{Ir}\left\{\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4}\right) \mathrm{NC}\left(\mathrm{NEt}_{2}\right) \mathrm{N}\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)\right\}(\operatorname{cod})\right]$, $\mathbf{1 d}$, and $\left[\operatorname{Ir}\left\{\operatorname{PhNC}\left(\mathrm{NEt}_{2}\right) \mathrm{NPh}\right\}(\mathrm{CO})_{2}\right], \mathbf{2 b} .{ }^{a}$

1d			2b
Ir-N1	$2.078(2)$	Ir-N1	$2.069(6)$
Ir-N2	$2.087(2)$		
Ir-C20	$2.115(3)$	Ir-C10	$1.832(9)$
Ir-C21	$2.107(3)$		
Ir-C24	$2.111(3)$		
Ir-C25	$2.104(3)$		$1.359(8)$
			$1.419(9)$
N1-C1	$1.347(4)$	N1-C1	
N1-C2	$1.412(4)$	N1-C2	
N2-C1	$1.350(4)$		$1.338(11)$
N2-C9	$1.411(4)$		$1.480(7)$
N3-C1	$1.359(4)$	N2-C1	
N3-C16	$1.457(4)$	N2-C8	$1.171(11)$
N3-C18	$1.472(4)$		
C20-C21	$1.417(5)$	C10-O	
C24-C25	$1.419(5)$		

${ }^{a}$ Numbers in parentheses are standard uncertainties in the last significant figures. Atoms are labeled as indicated in Figures 2 and 3.

Table S4. Selected angles $\left({ }^{\circ}\right)$ for $\left[\operatorname{Ir}\left\{\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4}\right) \mathrm{NC}\left(\mathrm{NEt}_{2}\right) \mathrm{N}\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)\right\}(\right.$ cod $\left.)\right]$, $\mathbf{1 d}$, and $\left[\mathrm{Ir}\left\{\mathrm{PhNC}\left(\mathrm{NEt}_{2}\right) \mathrm{NPh}\right\}(\mathrm{CO})_{2}\right], \mathbf{2 b} .{ }^{a}$

1d		2b	
N1-Ir-N2	$63.76(9)$	N1-Ir-N1\#1	$63.8(3)$
N1-Ir-C20	$104.93(11)$	C10-Ir-N1	$103.9(3)$
N1-Ir-C21	$101.46(11)$	C10\#1-Ir-N1	$167.5(3)$
N1-Ir-C24	$159.33(13)$		
N1-Ir-C25	$155.22(12)$		
N2-Ir-C24	$105.58(11)$		
N2-Ir-C25	$101.77(12)$		
N2-Ir-C20	$158.32(12)$		
N2-Ir-C21	$155.78(12)$		
C21-Ir-C20	$39.21(13)$	C10\#1-Ir-C10	$88.5(5)$
C25-Ir-C24	$39.35(13)$		
C24-Ir-C20	$90.50(13)$		
C25-Ir-C20	$81.34(14)$		
C21-Ir-C24	$81.71(13)$		
C25-Ir-C21	$98.25(13)$		
C1-N1-C2	$125.7(2)$	C1-N1-C2	$126.0(6)$
C1-N1-Ir	$93.71(17)$	C1-N1-Ir	$94.5(4)$
C2-N1-Ir	$133.00(18)$	C2-N1-Ir	$133.7(5)$
C1-N2-C9	$126.4(2)$		
C1-N2-Ir	$93.23(17)$		
C9-N2-Ir	$132.86(18)$		
C1-N3-C16	$121.4(3)$	C1-N2-C8	$120.9(4)$
C1-N3-C18	$121.0(2)$		
C16-N3-C18	$117.5(3)$	C8\#1-N2-C8	$118.2(7)$
N1-C1-N2	$109.3(2)$	N1\#1-C1-N1	$107.2(8)$
N1-C1-N3	$125.4(2)$	N2-C1-N1	$126.4(4)$
N2-C1-N3	$125.3(3)$		

${ }^{a}$ Numbers in parentheses are standard uncertainties in the last significant figures. Atoms are labeled as indicated in Figures 2 and 3 . Symmetry operation: $\# 1,-y+3 / 2,-x+3 / 2,-z+3 / 2$.

Table S5. Selected dihedral angles $\left(^{\circ}\right)$ for $\left[\operatorname{Ir}\left\{\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4}\right) \mathrm{NC}\left(\mathrm{NEt}_{2}\right) \mathrm{N}\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)\right\}\right.$ (cod)], $\mathbf{1 d}$, and $\left[\mathrm{Ir}\left\{\mathrm{PhNC}\left(\mathrm{NEt}_{2}\right) \mathrm{NPh}\right\}(\mathrm{CO})_{2}\right], \mathbf{2 b} .{ }^{a}$

1d					2b	
N1-C1-N2 / N1-Ir-N2	$1.6(3)$	N1-CC1-N1\#1 / N1-Ir-N1\#1	0			
N1-Ir-N2 / C20-Ir-C21	$84.9(2)$					
N1-Ir-N2 / C24-Ir-C25	$84.7(2)$					
C20-Ir-C21 / C24-Ir-C25	$87.1(2)$					
C16-N3-C18 / N1-C1-N2	$33.9(2)$	C8-N2-C8\#1 / N1-C1-N1\#1	$39.6(6)$			
$(\mathrm{N} 1, \mathrm{C} 1, \mathrm{~N} 2, \mathrm{~N} 3) /(\mathrm{C} 2 \rightarrow \mathrm{C} 2)^{b}$	$48.0(1)$	$(\mathrm{N} 1, \mathrm{C} 1, \mathrm{~N} 1 \# 1, \mathrm{~N} 2) /(\mathrm{C} 2 \rightarrow \mathrm{C} 7)^{b}$	$44.7(3)$			
$(\mathrm{N} 1, \mathrm{C} 1, \mathrm{~N} 2, \mathrm{~N} 3) /(\mathrm{C} 9 \rightarrow \mathrm{C} 4)^{b}$	$46.1(1)$					

${ }^{a}$ Numbers in parentheses are standard uncertainties in the last significant figures. Atoms are labeled as indicated in Figures 2 and 3 . Symmetry operation: $\# 1,-y+3 / 2,-x+3 / 2,-z+3 / 2 .^{b}$ Angle between the least-squares planes of the guanidinate atoms (e.g., $\mathrm{N} 1, \mathrm{C} 1, \mathrm{~N} 2$, and N 3) and the aryl ring atoms (e.g., C2, C3, C4, C5, C6, and C7).

Determination of the Self-Diffusion Coefficient of 2a

Diffusion ${ }^{1} \mathrm{H}$ NMR experiments to determine the D value of 2a were conducted in triplicate, and, for each experiment, data of two suitable peaks were averaged. The average D value from three measurements was $(9.6 \pm 0.2) \cdot 10^{-10} \mathrm{~m}^{2} \cdot \mathrm{~s}^{-1}\left(\mathrm{ca} .17 \mathrm{mM} 2 \mathbf{2}\right.$ in benzene- $d_{6}, 400$ $\mathrm{MHz}, 25^{\circ} \mathrm{C}$). Shown below are representative results for the NMe_{2} resonance signal of $\mathbf{2 a}$. The plot in Figure S3 confirms the expected linear relationship between $\ln \left(I / I_{0}\right)$ and G^{2}.

```
SIMFIT RESULTS for 2a
==============
```

INTENSITY fit : Diffusion : Variable Gradient :

16 points for Peak 4, NMe2 resonance signal
Converged after 28 iterations!

Results	Comp.	1
I[0]	$=$	$9.951 \mathrm{e}-001$
Diff Con.	$=$	$9.710 \mathrm{e}-010 \mathrm{~m} 2 / \mathrm{s}$
Gamma	$=$	$4.258 \mathrm{e}+003 \mathrm{~Hz} / \mathrm{G}$
Little Delta	$=$	4.600 m
Big Delta	$=$	26.950 m

RSS	$=1.176 \mathrm{e}-004$
SD	$=2.711 \mathrm{e}-003$

Point	Gradient	Expt	Calc	Difference
1	$6.740 \mathrm{e}-001$	$1.000 \mathrm{e}+000$	$9.934 \mathrm{e}-001$	$-6.558 \mathrm{e}-003$
2	$2.765 \mathrm{e}+000$	$9.693 \mathrm{e}-001$	$9.671 \mathrm{e}-001$	$-2.219 \mathrm{e}-003$
3	$4.855 \mathrm{e}+000$	$9.091 \mathrm{e}-001$	$9.112 \mathrm{e}-001$	$2.114 \mathrm{e}-003$
4	$6.945 \mathrm{e}+000$	$8.282 \mathrm{e}-001$	$8.310 \mathrm{e}-001$	$2.749 \mathrm{e}-003$
5	$9.036 \mathrm{e}+000$	$7.296 \mathrm{e}-001$	$7.334 \mathrm{e}-001$	$3.860 \mathrm{e}-003$
6	$1.113 \mathrm{e}+001$	$6.235 \mathrm{e}-001$	$6.266 \mathrm{e}-001$	$3.050 \mathrm{e}-003$
7	$1.322 \mathrm{e}+001$	$5.156 \mathrm{e}-001$	$5.180 \mathrm{e}-001$	$2.365 \mathrm{e}-003$
8	$1.531 \mathrm{e}+001$	$4.142 \mathrm{e}-001$	$4.146 \mathrm{e}-001$	$3.901 \mathrm{e}-004$
9	$1.740 \mathrm{e}+001$	$3.217 \mathrm{e}-001$	$3.211 \mathrm{e}-001$	$-6.007 \mathrm{e}-004$
10	$1.949 \mathrm{e}+001$	$2.429 \mathrm{e}-001$	$2.407 \mathrm{e}-001$	$-2.192 \mathrm{e}-003$
11	$2.158 \mathrm{e}+001$	$1.767 \mathrm{e}-001$	$1.746 \mathrm{e}-001$	$-2.092 \mathrm{e}-003$
12	$2.367 \mathrm{e}+001$	$1.249 \mathrm{e}-001$	$1.226 \mathrm{e}-001$	$-2.219 \mathrm{e}-003$
13	$2.576 \mathrm{e}+001$	$8.519 \mathrm{e}-002$	$8.335 \mathrm{e}-002$	$-1.840 \mathrm{e}-003$
14	$2.785 \mathrm{e}+001$	$5.695 \mathrm{e}-002$	$5.483 \mathrm{e}-002$	$-2.119 \mathrm{e}-003$
15	$2.994 \mathrm{e}+001$	$3.680 \mathrm{e}-002$	$3.491 \mathrm{e}-002$	$-1.893 \mathrm{e}-003$
16	$3.203 \mathrm{e}+001$	$2.283 \mathrm{e}-002$	$2.151 \mathrm{e}-002$	$-1.313 \mathrm{e}-003$
$==$				

Figure S3. Plot of the natural logarithm of the intensity quotient, $\ln \left(I / I_{0}\right)$, as a function of the square of the gradient strength, G^{2}, for the NMe_{2} resonance signal of $\mathbf{2 a}$ in benzene- d_{6} (ca. 17 $\mathrm{mM}, 400 \mathrm{MHz}, 25^{\circ} \mathrm{C} ; R^{2}=0.99997$).

Figure S4. Electronic absorption spectra of 2 mM 1 a in toluene at $20^{\circ} \mathrm{C}$ (solid black line), 3a generated from the reaction of $\mathbf{1 a}$ with O_{2} (solid blue line; $t=1 \mathrm{~h}$), and the solution after decay of 3a under Ar (solid red line; $t=19 \mathrm{~h}$; path length, 0.5 cm). Also shown is the spectrum of a solution obtained from decay of $\mathbf{3 a}$ in toluene under O_{2} at $20^{\circ} \mathrm{C}\left(20 \mathrm{~h}\right.$ after addition of O_{2} to $\mathbf{1 a}$; dashed red line). Inset: Time course of the reaction of $\mathbf{1 a}$ in toluene with O_{2} at $20{ }^{\circ} \mathrm{C}$ and subsequent decay of 3a under $\operatorname{Ar}(\lambda=417 \mathrm{~nm})$.

Figure S5. Solid-state IR spectra (KBr) of $\mathbf{3 a}(-$, black) and its decay products (- , red).

Figure S6. Solid-state IR spectra (KBr) of $\mathbf{3 b}(-$, black) and its decay products $(-$, red).

Figure S7. Solid-state IR spectra (KBr) of $\mathbf{3 c}(-$, black) and its decay products (- , red).

Figure S8. Solid-state IR spectra (KBr) of $\mathbf{3 d}(-$, black) and its decay products $(-$, red).

Figure S9. Solid-state IR spectra (KBr) of $3 \mathbf{e}(-$, black) and its decay products (- , red).

Figure S10. Solid-state IR spectra (KBr) of $\mathbf{3 f}(-$, black) and its decay products (- , red).

Table S6. IR absorption bands of the (alkene)peroxo complexes $\mathbf{3 a - 3 f}\left(1700-1200 \mathrm{~cm}^{-1}\right) .{ }^{a}$

Complex	$v\left(\mathrm{~cm}^{-1}\right)$			
3a	$1593,1577(\mathrm{sh}), 1567$	1488	$1452,1437,1411$	$1331,1261,1220,1195$
3b	$1593,1577,1541$	1488	1450,1427	$1280,1263,1224$
3c	$1609,1576,1561(\mathrm{sh})$	1505	1444,1407	$1330,1262,1221,1195$
3d	1541	1505	1433	$1286,1262,1223$
3e	1603,1568	1504	$1461(\mathrm{sh}), 1442,1409$	$1331,1286,1261,1240$,
				$1221(\mathrm{sh}), 1195$
3f	$1626,1591,1558$	1473	$1435,1411,1374$	$1330,1261,1213,1186$
Solid state (KBr disk).				

${ }^{a}$ Solid state (KBr disk).

Figure S11. Time course (${ }^{1} \mathrm{H}$ NMR, 300 MHz) of the reaction of 18 mM 1 f (black squares) in benzene- d_{6} with O_{2} at $20^{\circ} \mathrm{C}$, producing $3 f$ (red circles), and regeneration of $\mathbf{1 f}$. To initiate the regeneration of $\mathbf{1 f}$, the solution was purged with Ar for 5 min after 18 and 44 h . Concentrations were determined using 1,2-dichloroethane as an internal standard and plotted relative to the initial concentration of $\mathbf{1 f}$.

[^0]: ${ }^{a}$ Solid state (KBr disk).

