## Supplementary Material Gold, Carbon and Aluminum Low-reflectivity Compact Discs as Microassaying Platforms

Eva M. Brun, Rosa Puchades, and Ángel Maquieira\*

Centro de Reconocimiento Molecular y Desarrollo Tecnológico, Departamento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain





В



С



**Figure S1.** AFM image of a (5  $\mu$ m × 5  $\mu$ m) exposed layer for (A) gold, with the corresponding cross-sectional profile, (B) carbon, (C) aluminum L-CD.



**Figure S2.** Gold thickness AFM measurement. (A) AFM image of a peeled off gold L-CD ( $2 \times 2 \mu m^2$ ). The gold has been removed on the left of the CD track, but is present on the right. (B) Cross-sectional profile of (A). Vertical distance between track sides is around 10 nm.



**Figure S3.** Transmittance and S/N values (mean value ± standard deviation of 91 replicates) related to gold film thickness.



**Figure S4.** UV-VIS spectra of the developed gold, carbon and aluminum L-CDs. A CD polycarbonate base was used as blank.



**Figure S5.** Variation of water contact angle of a carbon-coated CD surface as a function of storage time.



**Figure S6.** Superposed overview XPS spectra of L-CDs: (A) original and SAMmodified gold, (B) carbon and oxidized carbon, (C) aluminum and silanized aluminum. (B) inset: Detailed C 1s XPS spectra from carbon (blue) and an oxidized carbon L-CD (red).

Α



Figure S7. XPS spectra of the S 2p and C 1s core levels from an 11-MUA SAM-modified gold L-CD.

В

С



**Figure S8.** AFM topographic images  $(500 \times 500 \text{ nm}^2)$  and section profiles of (A) gold L-CD top surface (left) and 11-MUA SAM-modified L-CD (right), (B) carbon L-CD surface (left) and oxidized carbon L-CD (right), and (C) aluminum L-CD surface (left) and silanized aluminum L-CD (right).



**Figure S9.** Cyclic voltammograms (scan rate 10 mV/s) on bare and SAM-modified gold L-CDs in aqueous electrolytes containing 5 mM KNO<sub>3</sub> and 5 mM K<sub>4</sub>Fe(CN)<sub>6</sub>.



**Figure S10.** S/N values (mean value  $\pm$  standard deviation of 48 replicates) obtained from CD drive read-outs after the immunoassay depending on the concentration of (A) protein-hapten conjugate and (B) 11-MUA.

## A) Covalent linking



Figure S11. Images obtained for the different surfaces after CD reading, corresponding to a chlorpyrifos concentration of  $0 \mu g/L$ .



**Figure S12.**  $1 \times 1 \ \mu m^2$  and  $300 \times 300 \ nm^2$  AFM topographic images of (A) gold L-CD top surface, (B) 11-MUA SAM-modified L-CD, (C) Conjugate OVA-triclopyr adsorbed onto a SAM-modified L-CD.

| Material<br>surface | Layer thickness<br>(nm) | % Reflectivity<br>(780 nm) | % Transmittance<br>(780 nm) |
|---------------------|-------------------------|----------------------------|-----------------------------|
| Gold                | $10.2 \pm 0.5$          | 32                         | 52                          |
| Carbon              | $35.1 \pm 4.6$          | 28                         | 72                          |
| Aluminum            | $16.7 \pm 0.6$          | 25                         | 48                          |

**Table S1.** Layer thickness, reflectivity and transmittance of L-CDs.

| CD top layer           | Contact angle (°) | Spot size (µm)* |
|------------------------|-------------------|-----------------|
| Gold                   | $79.2 \pm 1.0$    | $561 \pm 12$    |
| SAM-modified gold      | $47.5 \pm 0.3$    | $741 \pm 19$    |
| Carbon                 | $44.3 \pm 1.3$    | $923 \pm 12$    |
| Oxidized carbon        | $15.6 \pm 0.4$    | $1168 \pm 45$   |
| Aluminum               | $56.3 \pm 0.8$    | $621 \pm 18$    |
| Silanized aluminum     | $28.5 \pm 0.3$    | $1023 \pm 46$   |
| *Printed volume: 20 nI |                   |                 |

 Table S2. Wetting characteristics of the studied surfaces.

\*Printed volume: 20 nL.

**Table S3.** Elemental composition determined by XPS of (A) gold and SAM-modified gold L-CD, (B) carbon and oxidized carbon L-CD, (C) aluminum and silanized aluminum L-CD.

| Element   | Gold L-CD | SAM-modified gold L-CD |
|-----------|-----------|------------------------|
| O 1s (%)  | 5.7       | 10.0                   |
| C 1s (%)  | 40.3      | 57.0                   |
| S 2p (%)  | -         | 2.5                    |
| Au 4f (%) | 54.0      | 30.5                   |

(B)

| Element  | Carbon L-CD | Oxidized carbon L-CD |
|----------|-------------|----------------------|
| O 1s (%) | 10.0        | 16.0                 |
| C 1s (%) | 90.0        | 84.0                 |

(C)

| Element   | Aluminum L-CD | Silanized aluminum L-CD |
|-----------|---------------|-------------------------|
| O 1s (%)  | 44.9          | 46.8                    |
| Al 2p (%) | 38.1          | 32.3                    |
| C 1s (%)  | 17.0          | 19.4                    |
| Si 2p (%) | -             | 1.5                     |