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Abstract

A model equation derived by B. B. Kadomtsev & V. I. Petviashvili (1970) suggests that
the hydrodynamic problem for three-dimensional water waves with strong surface-tension
effects admits dully localised solitary wavevhich decays to the undisturbed state of the
water in every horizontal spatial direction. This prediction is rigorously confirmed for the
full water-wave problem in the present paper. The theory is variational in nature. A simple
but mathematically unfavourable variational principle for fully localised solitary waves is
reduced to a locally equivalent variational principle with significantly better mathematical
properties using a generalisation of the Lyapunov-Schmidt reduction procedure. A non-
trivial critical point of the reduced functional is detected using the direct methods of the
calculus of variations.



1 Introduction

1.1 The main result

The classicathree-dimensional gravity-capillary water wave probleoncerns the irrotational

flow of a perfect fluid of unit density subject to the forces of gravity and surface tension. The
fluid motion is described by the Euler equations in a domain bounded below by a rigid horizontal
bottom{y = 0} and above by a free surfa¢g = h + p(z, z,t)}, whereh denotes the depth

of the water in its undisturbed state and the funcjatepends upon the two horizontal spatial
directionsz, z and timet. Steady waveare water waves which are uniformly translating in a
distinguished horizontal direction without change of shape; without loss of generality we assume
that the waves propagate in thalirection with speed and continue to write as an abbreviation

for x — ct. In terms of an Eulerian velocity potentialx, y, z, t) the mathematical problem for
steady waves is to solve the equations

Gz + Qyy + G2z =0 0<y<l+np, (1)
¢y:O Ony:()? (2)
Gy = Pubr + P20z — pPa ony=1+p (3)

and
1
—6r + 5(02 + 6, +62) +ap

Pa 2
Nl ol o o
(see Stoker [35]), in which we have introduced dimensionless variables. The equations involve
two physical parameters := gh/c* andj := o /hc?, whereg ando are respectively the accel-
eration due to gravity and the coefficient of surface tension.

The steady water-wave problem (1)—(4) is a free boundary-value problem with nonlinear
boundary conditions, and in this respect its solution poses considerable mathematical difficulties.
At a formal level these difficulties may be overcome by replacing the above equations by a
simpler model equation based upon certain approximations. One of the more widely used model
equations is the KP-I equation
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in which v depends upon two unbounded spatial directior@d z. This equation was derived
formally by Kadomtsev & Petviashvili [21] as a long-wave approximation for solutions of the
steady gravity-capillary water-wave problem (1)—(4) in which
B> 1/3, a=1+¢ 0<ex]; (6)
the variableu is supposed to approximate the free surface of the water via the formula
el2g

p(z,2) = EU(W,&Z) +O(e?).
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The KP-1 equation (5) admits the the explicit solution

3—a2 422
= -8— 7
u(z, z) B2t (7)

which defines dully localised solitary wavethat is a wave which decays to zero at large dis-
tances in both spatial directions (Ablowitz & Segur [1]); this wave is sketched in Figure 1. In the
present paper we confirm the prediction made by the KP-1 equation by proving that the steady
water-wave problem (1)—(4) has a fully localised solitary-wave solution in the parameter regime
(6). Our result contrasts with a recent theorem by Craig [11], who showed that in the absence of
surface tension there are no fully localised solitary waves with0.

\

Figure 1: A fully localised solitary wave; the arrow shows the direction of wave propagation.

1.2 Variational methods

The key to our existence theory for fully localised solitary waves is the observation that the
hydrodynamic problem (1)—(4) in the parameter regime (6) follows from the formal variational
principle

Lte _ 2 2 2)
A [ ([T (osj@rare
+ +e)p2+6(\/1+p§+p§—1)> dde}ZQ (8)

where the variation is taken ip, ¢) (see Luke [28]). A more satisfactory version of this varia-
tional principle is obtained using the transformation

[\]

y:g(1+p(xv2))> ¢($,y,2):q>( 'Y, 2 )
€

which maps the variable fluid domai, = {(z,y,2) : (z,2) g € (0,1 + p(z,2))}
bijectively into the fixed strip = {(z, 7, 2) : (x,2) € R%, 5 € (0, 1)} and it is also appropriate
to introduce the scaled variables

(p(7,2), 87,9, 7)) = (e p(x,2),e 2 ®(2,y,2), (&%) = (e2x,¢e2) 9)
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associated with the KP scaling limit. The hydrodynamic problem (1)—(4) is transformed into the
equation
(1+2)p — Bepra — BE°pzz = Paly—r + ' Ni(p, ) (10)

and the boundary-value problem

—e®,, — 2P, — Dy, = = 2Ny(p, D), 0<y<l, (11)
epe+®, = £ 3N3(p, D) ony =1, (12)
¢, =0 ony =0, (13)

while the functional in the above variational principle is transformed into
V(p,®) =
1 2 2 2
- P ® g P
/ / E(I)x_gyp 1+ . 2+€_(I)z_€yp z (1+ep)dy
r2 LJo \2 1+ep 2(1+¢€p) 2 1+ep

1 1
+ 55(1 +e)p® + Be V1 +e3p2 +e4p2 — 1] + 8/ (p2y®, — p®,) dy} dz dz;
0

here the tildes have been dropped for notational simplicity and explicit formulae for the nonlinear
functions Ny, Ny, N3 are given in Section 2. At a formal level it is readily confirmed that
critical points of V correspond to weak solutions of (10)—(13). Our strategy is therefore to
apply the direct methods of the calculus of variations to find critical pointg (efined upon
a suitable function space) and develop a regularity theory which shows that the corresponding
weak solutions of (10)—(13) are in fact strong solutions of these equations.

The calculus of variations offers a variety of results for studying functionals of the type

T(u) = /S J(u) da”

which are defined on spatially extended doma¥inghat is subsets dR™ which are unbounded
in one or more spatial directions). A problem of this kind is typically treated in two stages.
Firstly one establishes the existence dPalais-Smalesequenceu,,} with the property that
J () — a, J'(u,,) — 0asm — oo for some nonzero constamtso that{,, } is a sequence of
successively better approximations to a putative critical poiat0 with 7 (u) = a, J'(u) = 0.
The second step is to study the convergence propertigs,gf (note that weaker results than the
strong convergence ¢f.,, } are sufficient to guarantee the existence of a nonzero critical point).
The concentration-compactness princigéLions [26, 27] is frequently helpful in this respect;
it has been applied with great success to the following class of problems collectively known as
‘the coercive, semilinear, locally compact case’. Supposefthata smooth functional o/’ (S),
where X (U) is a Sobolev space of functions defined upon the spatial domanR™. Let us
write

J(u) = Fo(u) + Ine(u),

where 7, : X(S) — R is the quadratic part aff, and suppose thafy;, extends to a smooth
functional 7x1, : Y(S) — R, where

(i) (‘coerciveness’); is equivalent to thet' (S)-norm;
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(i) (‘semilinearity’) Y(S) is continuously embedded i (S);

(iii) (‘local compactness’)Y(U) is compactly embedded it (U) for every compact subsét
of R™.

The use of concentration-compactness methods to find solitary-wave solutions of model
equations for two-dimensional water waves was pioneered by Weinstein [39], who considered a
variety of third-order equations. The method has been extended to many other equations arising
in water-wave theory, including fifth-order models (Kichenassamy [22], Groves [14], Levan-
dosky [24]), systems of model equations (Bona & Chen [4]) and model equations for three-
dimensional water waves (de Bouard & Saut [13], Pego & Quintero [32]); all of these problems
satisfy the coerciveness, semilinearity and local compactness conditions. Let us now examine
the variational functional’ associated with the full water-wave problem. A straightforward
calculation shows that

1 2
€ € 1
Va(p, @) = / { / (;Pi + 502+ 50+ oy ®y — p%)) dy
R2 0

1
+ (1 +¢)p® + éézpi - ée?’pﬁ dzdz,
2 2 2
1 2 2 3,2MH2 2 4, 2H2 2
€ 1 epd ey Prpy ey Pips
VNL(p,CI)):/ {/ (§p®i+§€3p©g— 5 Py + Yl + Y P
r2 | Jo (I4+ep) 2(1+4¢cp) 2(1+¢p)

- 529@;/(1)9:033 - gqu)yq)zpz> dy

—1/(.3 2 4 2\2
B Etpl) }dxdz,
2(\/1+£3p2 +e1p2 +1)2

and it is readily confirmed that there are no function space®?® x 32), Y(R? x X3) that meet the
criteria set out above. (In particular, it is not possible to choose a function spaggfevhich
requires less regularity of its elements than thatWgrthe problem iquasilinearrather than
semilinear in this respect.) We therefore proceed by studyimg one of the widest possible
Sobolev spaces upon which it defines a smooth functional, naffiély(R?) x U%*(2)] N
[(Witor(R2) x UP(X)] for 6 € (0,1) andp € (3/6, c0), where

U(S) = {0 : 2]

vsw(x) = || P |lwen(z) + | Pyllwers) + | P:||wsrs) < o0},

and using a reduction technique to show that the problem of finding critical poiMsafthis
function space is locally equivalent to one of finding critical points of a reduced functional which
falls into the coercive, semilinear, locally compact category.

Our reduction procedure is an extension of the variational Lyapunov-Schmidt reduction (e.g.
see Mielke [30, pp. 62—63]). Consider the Euler-Lagrange equation

F(u)=0 (14)

associated with a variational functiondl : X — R. Suppose thaf’ admits a direct-sum
decompositionY = &} & X,, and write (14) as

Fl(ul+U2) :0, FQ<U1+U2) :0,



whereu; = Pu, uy = (I — P)u, | = PF, F, = (I — P)FandP : X — X is the projection
onto &} alongX,. The decomposition is constructed so that the equatiotifaran be locally
solved foru, as a function of:; using the implicit-function theorem; substituting = wus(u;)
into the equation foF;, we obtain theeduced equation fot;, namely

Fl(ul + ’LLQ(Ul)) = 0. (15)

The variational structure of (14) is inherited in a natural fashion by (15) provided that the
guadratic part/, of 7 can be expressed as a sum

To(ur + ug) = jgl(ul) + «722(1‘2)
of separate quadratic forms for andu,. The calculation

dJ [(ur + ua(uq)](wr)
= (dJ3 [w1] + dInw[ur + ug(ur)]) (wr)
+ (dF5 [ug] + AW [us + ua]) (dus[us]) (wr)
= (AT [u1] + dInfur + ua(ur)])(wr),

in which the second equality follows by defining propertyefu;) as a solution of the equation
for F5, shows that (15) is the Euler-Lagrange equation for the reduced functidnah-uo(u;)).

The classical application of this theory is the scenario in whigh0] is a (necessarily self-
adjoint) Fredholm operator amy = ker dF'[0], X, = Im dF'[0]; in this framework the method is
termed thevariational Lyapunov-Schmidt reductiamd is particularly useful when equation (14)
is a system of partial differential equations, since they are reduced to a locally equivalent system
of ordinary differential equations. This method has been applied to several problems involving
wave phenomena, in particular by Moser [31] in his investigation of the resonant case of the Lya-
punov centre theorem for periodic solutions of Hamiltonian systems, and by Craig & Nicholls
[12] in their existence theory for doubly periodic three-dimensional water waves. In the present
paper we use the theory in the more general framework given above to redugeasiimear
system of partial differential equations to a locally equivakamilinearpartial differential equa-
tion which meets the criteria set out above for an application of the concentration-compactness
method.

1.3 The reduction technique

A preliminary step is necessary before the reduction method can be applied to our water-wave
problem, namely elimination of the variabte To this end we solve equation (10) fpras a
function of ® and substitute = p(®) into equations (11)—(13). Observing that (10) and (11)—
(13) correspond to the Euler-Lagrange equation3farth respect tg and®, that is

dﬂ/[p, (I)] = 0, dgV[p, (D] = O,

we find that the ‘reduced’ version of (11)—(13) with= p(®) is the Euler-Lagrange equation
for the functionalV = V(p(®), ®), since

AW[P] = diV[p(®), @[(dp[®]) + d2V[p(®), D]
= daV[p(®), @],
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in which the second line follows by the defining propertyp0f) as a solution of the Euler-
Lagrange equation fa¥ with respect tg. This calculation shows that the eliminationoélso
gualifies as ‘natural’ with respect to the variational structure.

Taking Fourier transforms of the ‘reduced’ version of (11)—(13), we obtain the equations

—d,, + 2D = H(D), 0<y<l, (16)

¢y:07 y:O7 (17)
95

~ EM(I) o

b, — ——— = h(D =1, 18

Yy 1+€+6q2 ( )7 Yy ( )

where (u, k) is the independent variable associated with the Fourier transforfm, i) and
q* = eu® + €2k?; the nonlinear functiongl, h are defined by

A~

H=e2Ny(p(®),®), h=¢e

A

Ral(p(®), B) = "5 N (p(@). D)

ol

Consider the equation

62

1+¢

[—coe(02 +£02)° + (B — 3)(02 + £02)* — (1 4 2)02 — 92]®y
1
0

for ®; = ®,(z, z) and the boundary-value problem

2 1 2&
A - g (1+¢ A ep Do, — -
—(I)gyy + QQCI)Q + %(q2/0 (132 dy — 1—|—€——2|—’yﬁ;2) = H(q)l + (I)z), 0< Yy < 1, (20)
2F 2 1 2&
2 ep Py (14 ¢e)ep 2/ 2 e Pofy—1 7
by, — Pydy — ———— | = h(P1 + Dy),
W Trer e T AsA e+ @\ Jy PV T Tre g ) T T
y=1, (21)
by, = 0, y=0 (22)

for &y = ®y(x,y, 2), where
Q=F(1+e)+p"+ (8- 35)e2q" + coe ¢,

(1 +¢) N (1+ ¢)eu?
e’Q) 2Q(1+e+B¢%)
One can show that any solutidf®,, ®,) of this pair of equations yields a solutidh= ®; +
of (16)—(18), and conversely any solutignof (16)—(18) can be decomposed into a s@n=
o, + O,, where(Py, d,) solve (19) and (20)—(22) (the functios and®, are calculated from
the formulae obtained by replacing, + ®, by ® on the right-hand sides of (19) and (20)—
(22)). The boundary-value problem (16)—(18) is therefore equivalent to equation (19) and the
boundary-value problem (20)—(22).

S=1-



The left-hand side of (19) defines a formally self-adjoint operator acting @p6n =) which
is associated with the quadratic form

2
S 3e2d? 332
2(1+ ) + Je + 3¢ 7., +

laxxz

{CO (6(1)2

lxxx

E2Q1(Cb ) 4¢)%zzz)

and similarly the left-hand side of the boundary-value problem (20)—(22) defines a formally self-
adjoint operator acting upoby(z, y, z) which is associated with the quadratic form

Qu@) = & [ [l vty bl
2 2—2R2 ; 2y q P2 Y 1+e+ 8¢ 2|y=1

l4e|, (‘s e2dsfy |
Oydy — ——————| pdudk;

+

furthermore, note that

AWy [@)(V) = /R {/OlH(CD)\IJ dy + h(CID)\IJ\yzl} dz dz.

One concludes that (19) and (20)-(22) are the Euler-Lagrange equations for the functional
Q1(P1) + Qo(P2) + Wir(®; + ®,) corresponding t@, andd,.

We now have all the ingredients necessary to apply the variational reduction method de-
scribed in Section 1.2. Solving (20)—(22) fd, as a function of®; and substitutingb, =
®,(P4) into (19), we obtain the reduced equation dar, namely

<,52

1+¢

[—coe(07 4+ €02)° + (B — 2)(02 + €02)* — (1 + )02 — 92]®,
1
0

which is the Euler-Lagrange equation for the functional

[(®)) = 2Q1(P1) + Qao(Po(P1)) + Wi () + Po(P1)).

It is apparent from the above discussion thagwhich isc2(Q,) involves higher derivatives @b,
than Iyr,, and carrying out the reduction procedure in appropriate function spaces (see below),
one in fact finds thaf; andIy;, define smooth functionals upon respectively

X ={® : [[®1][x := Q:1(P1) < o0}
andU%%(R?) N U%?(R?) for § € (0,1), p € (3/, ), where

UP(R?) = {®1 : [|@4]

vsr®2) = || Prallwerm2) + || Pz |lwer@e) < 00}

It is readily confirmed thaf{ is continuously and locally compactly embedded/it?(R?) N
U%P(R?); the functionall therefore falls into the ‘coercive, semilinear, locally compact’ cate-

gory.



The above discussion is designed to describe the reduction procedure in an illustrative fash-
ion; complete mathematical information is given in Section 2. Section 2.1 presents a full de-
scription of the reduction procedure itself, including an explanation of the decompositibn of
into the sum®; + ®, and precise definitions of weak and strong solutions of the original hydro-
dynamic problem (10)—(13), the equation (19) 4darand boundary-value problem (20)—(22) for
®,. It is essential to develop the reduction procedure in terms of weak solutions of the various
eqguations since critical points of a variational functional in general correspond to weak solutions
of the associated system of partial differential equations. Sections 2.2 and for 2.3 are concerned
with the details of solving the weak forms of the equations to finas a function of® and
®, as a function ofb;. The conclusion of the analysis is thate W12(R?) x WitoP(R?)
is a function of® € U%%(X) N U%(X) and thatd, € W12(X) N W*Ho»(X) is a function of
o, € U%(R?) n U (R?) for sufficiently small values of € (0, 1) and sufficiently large val-
ues ofp € (3/6,00). In Section 2.4 we develop a regularity theory by demonstrating that any
weak solution of the reduced equation fbr (which by definition belongs taY) in fact lies
in ®; € U%(R?) N U'?(R?); this improved regularity is inherited by, andp, which belong
to respectivelyi¥13(X) N W22(X) andWH2(R?) x W2P(R?). We thus obtain the final result
any weak solution of the reduced equationdgrgenerates a strong solution of the water-wave
equations (10)—(13).

The tasks of solving fop as a function of® and for ®, as a function ofd,; are accom-
plished by re-formulating the equations f@and®, as integral equations (by taking the Fourier
transform and using a Green’s function); these integral problems define fixed-point problems in
suitable Banach spaces. One solves the fixed-point problems using the contraction mapping prin-
ciple, controlling the size of the Lipschitz constant using the bifurcation parametgoduced
in equation (6). Recall thatalso plays the role of a scaling parameter (see equation (9)), and it
is in fact necessary to work in correspondingly scaled versions of the Banach spaces mentioned
above to confirm that the functions under consideration are contractions. The main issue here is
the careful book-keeping required to control thdependence of many constants.

Section 3 deals with the remaining part of the existence theory, namely the proof that the
reduced equation fob; has a non-zero weak solution. The key step here is of course to es-
tablish that the reduced variational functiodahas a nonzero critical point; critical points bf
correspond to weak solutions of the reduced equatio®forPrecise details of the variational
structure of the reduced equation by are given in Section 3.1, and Section 3.2 presents the
proof that/ has a nonzero critical point using the method outlined in Section 1.2 above. We show
that I is a functional ofmountain-pass typdhat is it has a strict local minimum at the origin
and is negative at some non-zero elemenkofThe mountain-pass lemm@@.g. see Brezis &
Nirenberg [5, p. 943]) yields the existence of a Palais-Smale seqéngg with 1(®,,,) — a,

I'(®y,,) — 0asm — oo, Wherea is a nonzero constant (which may be interpreted geometrically

as the minimum height attained by any path connecting the origin to another point at ‘sea level’).
The convergence properties of this Palais-Smale sequence are examined with the concentration-
compactness principle according to the method given by Groves [14] in a study of solitary-wave
solutions to a fifth-order model equation for water waves.

Two significant technical difficulties emerge in the analysis outlined above, and both involve
the Fourier-multiplier operators used to convert our equations into fixed-point problems.

(i) The appearance of Fourier-multiplier operatord.iirbased spaces fgr # 2 means that
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a more detailed study of their mapping properties is necessary than would be the case in
L?-based spaces (where straightforward results such as Parseval's theorem can be used to
estimate their norms). Suitably scaled versions of the classical theorems of Mikhlin and
Marcinkiewicz can be used to obtain estimates on the norms of Fourier-multiplier operators

in LP(R?)-based spaces; dealing with Fourier-multiplier operator&ift:)-based spaces
however requires the use of deeper results from singular-integral theory (vector-valued
versions of Mikhlin’'s and Marcinkiewicz’s theorem are not available).

(i) The appearance of non-local operators, namely the functional relationBhipsd, (P, ),
p = p(®), in the integrand of the functiondl : X — R introduces an additional diffi-
culty in the critical-point theory. In applying the concentration-compactness principle to a
functional 7 : X — R? it is necessary at one step to demonstrate that

(T'(@2), 1) — 0,

whereV, is a function of compact suppop{t@ﬁi} is a sequence of functions whose sup-
ports are contained i®? \ By, (0), and{R,,} is a sequence of positive real numbers
with the property that?,, — oo asm — oo. The above limit is easily obtained when

J is defined by an integrand containing orlcal operations such as differentiation,
pointwise addition and pointwise multiplication, since in that case the integrand defin-
ing (j’(@ﬁ{), U,) is identically zero wheneveR,, is larger than the radius of support

of W;. This simple argument does not apply to the integrand defihigigice it contains
non-local functions. Fourier-multiplier operators again lie at the heart of this difficulty,
since the non-local relationshigs, = ®,(®,), p = p(P) are constructed using them.

In Section 3.2 we show that the proof of the above limit reduces to showing that each of
our Fourier-multiplier operatorg satisfieslflg@ﬁi) — 0 in Wtor(R2) for sufficiently

large values op.

These technical difficulties are encountered in respectively Sections 2.2-2.4 and Section 3.2,
where we merely state the required results concerning the Fourier-multiplier operators in ques-
tion. Full proofs are presented in Section 4, which is entirely devoted to these issues.

1.4 Other variational existence theories for water waves

A number of existence theories for three-dimensional gravity-capillary water waves have re-
cently been published, all of which are based upon variational principles equivalent to (8). There
are also several existence theories for two-dimensional steady water waves which are variational
in character (and many that are not). In this section we present a brief survey of the currently
available variational results.

The present paper is the latest in a series of results justifying the use of the KP-1 equation (5)
as a model equation for solitary gravity-capillary water waves. This equation has several explicit
solitary-wave solutions, namely thiee solitary wave

u(z) = — sech? (g)

10



which decays exponentially to zero as— oo and does not depend upon the transverse spatial
directionz, the family

4(1 —6%) 1 — §cosh(a’z) cos(w’z) s [1—¢2 i V3(1 —42)

4 — 6% (cosh(a’r) — 6 cos(wiz))?’ “CTVi 48

u(x, 2) = —

whereé € (0, 1), of periodically modulated solitary wavewhich decay exponentially to zero

asz — Foo and are periodic with frequency’ in = (see Tajiri & Murakami [36]), and of course

the fully localised solitary wave (7) which decays algebraically to zei¢:as)| — co. (In fact

the line and fully localised solitary waves correspond to the limiting cagasdu, in the above
formula.) It was shown by respectively Kirchgsner [23] (see also Amick & Kirclagsner [3]

and Sachs [33]) and Groves, Haragus & Sun [17] that the steady water-wave problem has a line
solitary-wave solution and a family of periodically modulated solitary-wave solutions in the KP-I
parameter regime (6).

The existence theories of Kirchgsner and Groves, Haragus & Sun are based upon a method
known as ‘spatial dynamics’. This phrase refers to an approach where a system of partial differ-
ential equations governing a physical problem is formulated as a (typically ill-posed) evolution-
ary equation in which an unbounded spatial coordinate plays the role of the time-like variable.
The steady water-wave problem has one bounded direction, namely the vertical direction; by
contrast no restriction is placed upon the behaviour of the waves in horizontal directions, and
so any horizontal coordinate qualifies as ‘time-like’. One may therefore study the problem us-
ing spatial dynamics by formulating it as an evolutionary system whose time-like coordinate
is an arbitrary horizontal spatial direction and whose infinite-dimensional phase space consists
of functions of the vertical coordinate and another, different horizontal coordihaite which
the behaviour of the waves is prescribed (e.g. they may be periodicandecay to zero as
7 — +00). The spatial dynamics formulation is derived by considering the functional in the
variational principley) = 0 as an action functional in whichis the time-like variable(n, ®)
are the coordinates arig;, ¢,) the corresponding velocities; the Legendre transform yields the
required evolutionary equation in the form of an (infinite-dimensional) Hamiltonian evolutionary
system. A wide variety of three-dimensional water waves has been found using this method by
Groves & Mielke [18], Groves [15] (who studied waves aligned parallel with and perpendicular
to their direction of propagation) and Groves & Haragus [16] (who studied waves with an ar-
bitrary orientation). In these references solutions are found using a reduction technique which
shows that the infinite-dimensional Hamiltonian system is locally equivalent to a Hamiltonian
system with finitely many degrees of freedom, whose solution set can be analysed.

A different technique was used by Craig & Nicholls [12] in an existence theory for doubly
periodic water waves. The starting point of their analysis is again the variational principle (8), but
they overcome the difficulty posed by the variable dom@ajrby introducing a new variable =
¢ly=1+, and expressing the variational functional in termg @ind{. The resulting expression,
which is still quasilinear in character, involves the nonlocal ‘Dirichlet-Neumann’ ope¢&tor
defined byG(p)¢ = Vo.(—ps, —p2, 1)|y=14,, Where the potential functionp is the harmonic
extension of¢ into D, with Neumann data ay = 0. Craig & Nicholls apply a version of
the variational Lyapunov-Schmidt reduction discussed in Section 1.2 above to show that their
variational principle is locally equivalent to a finite-dimensional variational principle and find
critical points of their reduced functional using topological arguments.
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The method of Craig & Nicholls, like the result in the present paper, relies upetuation
method which converts a global variational principle into a more tractable local variational prin-
ciple. An alternative method is textenda variational principle to a more general problem to
which the direct methods of the calculus of variations can be applied. Bufféré,& Toland
[10] have recently used this approach in a study of two-dimensional periodic steady waves on
deep water in the absence of surface tension. These authors use a conformal mapping of the fluid
domain to the lower half-plane together with complex-variable methods; the relevant version of
the variational principle (8) is transformed into a variational principle whose functional depends
upon the single variable defined implicitly byn(z + Cw(z)) = w(z), whereC is the Hilbert
transform. This quasilinear functional is made semilinear by the addition of a regularising term
(with higher derivatives), and priori estimates are used to confirm that the detected critical
points of the regularised functional are actually critical points of the original. The method has
been extended to gravity-capillary solitary water waves (in finite and infinite depth) by Buffoni
[6, 7].

There are several further variational results in the literature concerning two-dimensional
steady water waves. Hamiltonian spatial dynamics methods have been successfully applied to
the problem for gravity-capillary waves by Buffoni, Groves & Toland [9] and Buffoni & Groves
[8], who found a multitude of solitary-wave solutions to this problem. Finally, Turner [37] found
periodic and solitary-wave solutions to the problem for gravity waves by applying the direct
methods of the calculus of variations. Turner used semi-Lagrangian coordinates to map the fluid
domain into a strip; the resulting quasilinear variational functional is handled by extending it to
a tractable semilinear problem and usangriori estimates to return to the original setting.

1.5 The functional-analytic framework

In this section we define the scaled function spaces in which the subsequent theory is developed
and state the fixed-point theorem used to solve nonlinear equations in these spaces. Here, and in
the remainder of this paper, we use the symbiol denote a general positive constant (which in
particular does not depend upen

Function spaces

In the following analysis we use four basic spaces for functions of two real variables, namely
(i) the Hilbert spaceX = {u : ||ul| < oo}, where
{u,v) = / {CO(Eumvm + 36 UagVags + 36 Uz Vpzs + €Uz 022
R2
+ (8 — %)(umvm + 28U Vg + E2U205,) + Uy + (14 5)uzvz} dx dA23)

andcy = (/2 — 2a/15;

(i) the Banach spacl/o?(R?) = {u : ||ul|sp. < oo}, where
lullspe = 1F (1 + 2 + ek?)2 Ful |,
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F and F~! denote respectively the Fourier and inverse Fourier transfaims,) is the
independent variable associated with the Fourier transfofm in) and||-||,, is the L7 (R?)-
norm;

(iii) the Banach spac®?(R?) = {u : |uls,. < oo}, where

[ulspe = |F A + 3 (42 + ek?)25) Ful |
iv) the Banach spacg®?(R?) = {u : ||ul|,s» < oo}, Where
p € UE
1
[ullyor = luzllope + €2 lluslsp.e-

The space$V’?(R?) andV°P(R?) are scaled versions of the standard Sobolev spatésR?)
andW1+r(R?) defined using the Bessel potential (see Adams & Fournie§7[83]); similarly

X andU??(R?) are scaled versions of familiar spaces in which only the derivatives of functions
play a role. Both the scaling and the choice of coefficiep@nd s — 1/3 used in the definition

of X are dictated by the hydrodynamic problem (see Section 3.1); on the other hand the scalings
used in the other spaces are chosen in view of their compatibility Withnd usefulness in
fixed-point arguments for solving nonlinear equations.

The following proposition states some of the basic properties of the above function spaces.
Parts (i)—(iv) are proved by applying straightforward scaling arguments to well-known properties
of the standard function spaces from which they are constructed, parts (v) and (vi) follow by
scaling the results given by Mazya [297.1.2], and part (vii) is obtained using the method
described by Wang, Ablowitz & Segur [38, Lemma 1].

Proposition 1.1

(i) The function space®/?2?(R?) and V°2*(R?) are continuously embedded in respec-
tively WoP(R?) and V21P(R?) whenever; < d,; in particular we have the embedding
inequalities

[ulls,pe < Ntllsypes  |ulsype < |ulsype, 01 < 02

(i) The spacdV??(R?) is a Banach algebra and continuously embedde@jfR?) when-
everd > 2/p; in particular we have the inequalities

1 1
lwvllspe < ce™2 lullspellvllspe  ulloo < ce 2 ullspe, 6> 2/p.

(i) The inequality
_9
[ullope < ce™>[ulsp.e

holds for each) > 0.

(iv) The spaceX is continuously embedded i#’?(R?) for § € [0,1] and we have the
embedding inequality

lullyso < e T3], 8 € 0,1]. (24)

13



(v) TheW??(R?) norm may be replaced by the equivalent norm

_ s
lullspe = llully + 17 (1" + ek*) 2 Ful.

(vi) TheV?P(R?) norm may be replaced by the equivalent norm

1 — 1.9
[ulspe = llully + 2|77 {(1* + k)2 2 Ful .

(vii) The sharper embedding inequality
[l < cffjull (25)

holds whenevep € (2,6).

It is also necessary to consider functions= u(x, z) defined upon an open subsgtof
R? (with smooth boundary); for this purpose we use the spagewhose norm is defined by
formula (23) with the range of integration replaced $ythe spacé?’?(S), which is defined
by interpolation (see below), and the spdée’(S), which is obtained fromi¥’»(S) in the
same way that/>?(R?) is obtained fromi¥V??(R?). The function spac&°»(S) defined by an
interpolation procedure according to the formulae

S

E -
W2P(S) = {u: Jullspe < 0o}, ullspe = D 2l|0505ull,
i+k=0

fors=0,1,2,...and
W2(S) = W (S), WP (S)]5- 15

for arbitraryd > 0, in which || - ||, is the L?(S)-norm, the symbol$- | and|-] refer to the ‘floor’

and ‘ceiling’ of a positive real number and the interpolation is carried out in the sense of Lions
& Magenes [25] (see also Adams & Fournier §2,57]). Of course this procedure can also be
used to define the spa¢g’”(R?) itself, and in fact leads to a space which coincides with that
constructed using the Fourier transform (see Adams & Fournigf7250—7.66]). The following
proposition states the key propertiesf, Wor(S) andU?(S); note that it is the compactness

of certain embeddings rather than the size of embedding constants which is of most interest here.

Proposition 1.2 Suppose tha$ is an open subset @2 with smooth boundary.

(i) The spacéV??(S)is a Banach algebra and continuously embedde@ij(S) whenever
J > 2/p.

(i) The spaceXs is continuously embedded i’*(S) for 6 € [0,1]. The embedding is
compact wheneve¥ is bounded.

14



We also consider functions of three variablesy, z) € 3, whereX is the strip{(z,y, z) :
(z,2) € R% y € (0,1)}, using the function spad&’? (%) defined by an interpolation procedure
according to the the formulae

s

E . .
WIP(E) = {u: [ullspe <00}, Nullspe = D e2[8;850%ull,

i+j+k=0

fors=0,1,2,...and
W2P(5) = [WEIP(3), WP (S)]s5-

for arbitraryé > 0, in which|| - ||, is the LP(X)-norm. The spac&’? (%) = {u : [ull s < 00}
is derived fromi//%? (%) in the usual fashion, so that

1
[ullgsr = luallsp.e + luyllspe + €2 l[uzllspe-

The following properties of’>?(3) are readily deduced from the fact that it is a scaled version
of the standard interpolation spald&? ().

Proposition 1.3

(i) The spacéV?22?(%) is continuously embedded W21 ?(3) whenevew; < d,; in par-
ticular we have the embedding inequality

[ullsy p.e < lJullsspe;, 01 < 0.

(i) The spacdV??(X)is aBanach algebra and continuously embedde@,jt®) whenever
d > 3/p; in particular we have the inequalities

_ 1 _ 1
[wvllspe < ce” 2 [ullspellvllope,  Nullee < ce™2llullspe, 0> 3/p.
Finally, we state some elementary properties of operators which arise naturally when passing
between functions defined @y and functions defined on.
Proposition 1.4
(i) The mapping
- /
defines a bounded linear operatdro?(3) — Wor(R?).

(i) The natural extension af : R> — Rtou : ¥ — R defines a bounded linear operator
WoP(R?) — WEP(D).

(i) The trace mapping. — uls defines a bounded linear operafidf! () — W./**(R?)
andW?»(x) — W~ /PP(R2) for p > 2.

The norms of the linear operators listed above are all independent of
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A fixed-point theorem

A large part of the theory in this paper is taken up with solving fixed-point problems, and for
this purpose we use the following fixed-point theorem, which is a straightforward extension of a
standard argument in nonlinear analysis.

Theorem 1.5 Let X, )4, ...,), be Banach spaces, Y7, ...,Y,, be closed subsets of respec-
tively X, V1, ..., )V, which contain the origin andF : X xY; x ... x Y, — X be a smooth
function. Suppose there exists a functiony; x ... x Y,, — [0, co) such that

[FO ol <r/2,  diFla, gl < 1/2

foreachr € B,(0) C X andeachy € Y; x ... x Y,,.
Under these hypotheses there exists for eaehY; x ... x Y,, a unique solutiorx = z(y)
of the fixed-point equation
v =F(z,y)

satisfyingz(y) € B,.(0). Moreoverz(y) is a smooth function of € Y; x ... x ¥, and in
particular we have the estimates

[dizlys, syl < 20dia Flz(), -l i=1,.00n

for its first derivatives.

2 Reduction to a single pseudodifferential equation

2.1 Overview of the reduction method

We begin by introducing the transformation

y=91+p(x,2),  oxy,z) =7 2),
which maps the variable fluid domalp, = {(x,y, 2) : (z,2) € R?, 5 € (0, p(z, 2))} bijectively
into the fixed strip = {(x,9,2) : (x,2) € R* g € (0,1)}, and the scaled variables
(5(7,2), B(,y, 7)) = (¢ pla,2), e 20(w,y.2)),  (3.2) = (e2z,¢e2)

associated with the KP scaling limit. The hydrodynamic problem (1)—(4) is transformed into the
equation
(1+2)p — Bepaa — B poz = Duly=1 + ' Ni(p, ®) (26)

and the boundary-value problem

—ed,, — 2P, — Dy, £~z Ny(p, ®), 0<y<l, (27)
epr + P, = g‘%Ng(p, D) ony =1, (28)
¢, =0 ony =0, (29)



in which the tildes have been dropped for notational simplicity and the nonlineayitie’s,, N3
are given by the formulae

®) =

2 3 Pz 3
{ V1+ep2 +€4sz e 2 {\/1 +€3p§+64p§]z e

2 2
T R
0 1+ep 1+¢ep
9 eYp. P _cyp:®
D, — )
Ao )m) (o220
, 2
+ g% o, — gypx(I) £2 o, — eyp.P y(I)y + Eq)y dy,
14ep 1+5p 1+5p L+ep  2(14¢€p)?

NQ(pﬂ (I)) =
5 T 5 7
52(p<bx)x +62<p¢z)z - 62<yq)yp$>x - Q(y(Pypz)z

3
— et <(<I>z - —gypxq)y)ypx) — et ((sz — —gypzq)y)ypz) Ty
1+ep Y 1+ep , ltep

3
e, (0 282) i (0, ) el
1+ep 1+ep L+epl,

The goal of this paper is to find solutiofis, ) of the scaled equations (26)—(29) which lie
in [W12(R?) x U%(2)] N [W2P(R?) x ULP(%)] for all sufficiently large values gf > 2; the
trace®,|,—; and nonlinearitiesV;, N,, N5 are well defined and smooth (in a neighbourhood of
the origin) in these function spaces. We refer to such solutiosr@sg solutionof (26)—(29).
Our strategy is to seekeak solution®f these equations which lie in the larger function space
[WL(R?) x U%(X)] N [WiHoP(R2) x U°P(X)] for sufficiently small values of € (0,1) and
establish a regularity result that weak solutions are in fact strong solutions. We always &¢hoose
andp with § > 3/p so that the weak forms of the nonlinearities are well defined and smooth. Itis
moreover necessary to work in scaled versions of these function spaces in order to solve certain
fixed-point equations, and we therefore henceforth employ the speté&r?) x U>2?(32)] N
[VIP(R?) x UMP(X)] and [VO2(R?) x U%%(X)] N [V2P(R?) x UP(Y)] for strong and weak
solutions.

Definition 2.1 A weak solutiorf (26)—(29) is a pailp, ®) of functions which lie ifv*(R?) x
U%2(X)] N [V2P(R?) x USP(X)] and satisfy

/ {(1 + &) pw + B ppw, + Betpaw, drdz
RQ

1
—/ /(w$y®y—w®$)dydxdz+/ e Ny (p, ®)wdxdz, (30)
r2 Jo

RQ
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1
/ { / (@, ¥y + P, V, +°0,0,)dy + ,Ox‘l/|y:1} dz dz
R2 0

1 1
:/ / €§N4(,0,<I>)‘Ildyda:dz+/ / 57%N5(p,<1>)‘i1ydydxdz (31)
r2 Jo r2 Jo

for all (w, ¥) € V22(R?) x W12(X) (or any dense subset thereof). Here

5

N4(p7 (I)) = g2 (pq)m)z + 5%<:0q)z)z - €%<yq)ypx):p - gg(yq)ypz)zv

cYp, P eyp, P E%p(I)
5 7

N5(p,®) = ez, — =214 ez | D, — 2y -
(0, ®) c ( 1+6p>yp © ( 1+5p)yp IT+ep

and the ‘outer’ derivatives with respect toand z in N, and [V, are transferred to respectively
¥ andw by an integration by parts.

Let us now outline the strategy we use to find weak solutions of the scaled water-wave prob-
lem. We begin by fixingb and examining the equation fpr The first step here is to take the
Fourier transform of the strong form (26) of the equationfoso that

1 I 1 R
p=— ] o, dy+ [ O,dy+e'Ni(p, @), 32
p 1+8+ﬂq2(w/oy ydy /0 y 1(p )) (32)

whereq? = eu? + ¢2k? and we have used the identity

1 1
Q|1 :/ y@ydy+/ O dy.
0 0

Inspecting this equation, one finds that it is well defined(for®) in the larger function class
[VO2(R2) x US2(X)] N [VOP(R?) x USP(X)], and in this setting we refer to it as tirgegral form
of the equation fop. We can also obtain a weak form of the equation/fday multiplying the
strong form by a test function and integrating by parts.

Definition 2.2 Suppose thab € U%?(X) N U2P(X). A weak solutiorof the equation fop is a
functionp* € V2(R?) N V2?(R?) which satisfies

/ {(1 + &)p*w + B piw, + et piw, do dz
R2
1
= _/ / (wacyq)y - wq);z) dy dzdz + / 8_1N1(p*, Cb)u) dx dZ,
r2 Jo

]RQ

for all w € V2%(R?) (or any dense subset thereof); here the ‘outer’ derivatives with respect to
andz in N, are transferred tav by an integration by parts.

The weak and integral forms of the equation paare in fact equivalent.

Proposition 2.3 Suppose thab ¢ U%%(X) N U?(X). A functionp* € VO23(R?) N V2P(R?)
solves the integral form of the equation foif and only if it is a weak solution of the equation
for p.
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The boundary-value problem fdr yields integral and weak formulations in an analogous
fashion. Taking the Fourier transform of the strong from (27)—(29) of the equatioris &md
using (32) to eliminate from the linear part of the equations, we obtain the boundary-value
problem

—d,, + 20 =2 Ny(p, ), 0<y<l,
2 % .

A e P —ip - 1

P, — = Ni(p, @)+ 2N3(p, P ony =1,

Y 1—|—€+/6q2 1+5+5q2 1(p ) 3(p )

o, =0 ony = 0.

This boundary-value problem can be recast as the single equation

1—1—8——1-ﬁq2N1(p’ (I)) + 8_5]\73(07 (I))> )

1
D = —/ Ge™2 Ny(p, @) dE — G|§:1<
0
in which the Green'’s functiotr(y, £) is given by

coshqy (1 + ¢ + B¢®) coshg(1 — ) + (ep*/q) sinh (¢ — 1)

O<y<gx<l

cosh g ¢*> — (1 + ¢ + B¢?)qtanh ¢ — £2k? ’ y<&<l,

G(y.§) =
cosh g€ (14 ¢ + B¢*) cosh q(1 — y) + (ep*/q) sinh g(y — 1), 0<&<y<l,
cosh g > — (14 ¢+ B¢?)qtanh ¢ — e2k?

and an integration by parts yields the alternative representation

b= [t i [ aetip i IS0 @)
= ) 4\ p, o 3 50 1+5+ﬁq2 1\P, .

Equation (33) is well defined fdp, ®) € [VO3(R?) x UX2(X)] N [V2P(R?) x UP(X)], and in
this setting we refer to it as thietegral form of the equation fob.

The appropriate weak form of the equation dois found by multiplying the above boundary
problem by a test function and integrating by parts.

Definition 2.4 Suppose that € V°2(R?) N V2P(R?). A weak solutiorof the problem ford is
a function®* € U%%(X) N US*(X) which satisfies

o - 1 T I _
<I>*\If+2<1>*\11d——52/<I>d—'/<1>xd>\llz}ddk:
/RQ{/O(yyq ) dy 1+5+5q2(u0yyy | Y ) U= p dp

! L -~ 1~ ~ 1,u ~ =
_ =5 Ny(p, @)W + =5 Ny (p, @)W, ) dy — ——2 Ny (p, @),y b dpdk
R R L L R e A S LT Y

for all & € W?(X) (or any dense subset thereof); the ‘outer’ derivatives with respectaiod
z in N, and N; are transferred to respectivelyy andw by an integration by parts.

The next proposition shows that it is sufficient to consider the integral form of the equation
for ® when seeking weak solutions.
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Proposition 2.5 Suppose that € V?(R?) N V2?(R?). A solutiond* € U%2(X) N U?(X) of
the integral form of the problem fab is a weak solution of the problem fér.

Proof. With slightly more generality we consider the problem posed by the above equations in
which Nj is an arbitrary function ir.?(X), Ny is an arbitrary function of the form

Ny =ipN! +ie2kN?,  NE N? € L*(D)
and N, is an arbitrary function of the form
Ny = N} +ipN? +ie2kN?, N}, N N2 € L*(R?).

Fix I € W2?(X) and observe that any solution of (33) satisfies

1 = = 1 1 R 1/\ -
OV, + POV dy — —————— 2/ @d—’/@xd U, _
/( +q ) dy 1+€+ﬁq(€u0yyy ip y | Wly=1
=Y N, de, d Nd\Ifd e 1GNd\i

U N de b, d dexpd e "G gacd
1/2 5 5 Yy — 5 § y+ 1+5+ﬁq2 0 51/2 5 5 |y:1

1 UGy le=1 Gle=1 4 = eipPGlemt ¢ 3
+ —N\pd+/ —5prd e ol S S V8 T
/0 1+ ¢ + B¢ 1ret 82 Y T At gt ly=1

Suppose first thal; belongs to the dense sub$gf*(X) of L*(X). A straightforward calcula-
tion using integration by parts and the properties of the Green'’s fun€tishows that the first,
second and third lines on the right-hand side of the above expression are equal to respectively

1 1 .

1l 2 1~z 10 A =

e 2N,V dy, e 2 N5V, dy, - NV |,—1;

/0 4% dy /0 5%y dY 1+6+5q21|y1

the extra regularity ofVs is required to obtain the second equality. Integrating with respect to
(u, k) overR?, we find thatd* is a weak solution of the equation fér.

It remains to confirm that

L St [ [ 7t

Ge
N:dEW dudk — 2N\I/dddl<;:0
+/Rzl+5+ﬁq2/0€1/25§|ylu /R?/g 5 yap

for a general functioriV; € L?*(X). Using the results presented in Lemma 2.15 below, we find
that the left-hand side of this equation defines a continuous funéfi¢n) — R of N;, and
since it vanishes foN; € 1,*(X) a standard density argument asserts that it also vanishes for
eachN; € L*(%). O

The next step is to decompose the Green’s function into a singular and a smooth part using

the formula
1+¢

£2Q)
20
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where

Q=FK1+e)+ "+ (B—1e?¢" + e ¢,
and to define function®,(z, z) and ®,(z, y, z) by replacingG with respectively its first and
second component in the integral form of the equationtfoso that

2 1+¢ ! 1o~ i N

() = 2 N, d¢ — —N d 34
1 52Q </ € 4(p7 ) 5 1+e _l_ﬂq (p ))7 ( )
b, = — iMG1|£:1 o

¢ = /0 s Valp, @) dS — / 575 Vs, @ VAt 5 e e ) (39)

It is a straightforward matter to confirm that equations (34), (35) are equivalent to equation (33).

Proposition 2.6

(i) Any solution of the integral form (33) of the equation fiocan be expressed as the sum
® = ¢, + Dy, whered,, ¢, solve (34), (35).

(i) Suppose conversely thét,, ¢, satisfy equations (34), (35) with = &, + ®,. The
function® satisfies equation (33).

In keeping with this proposition, we henceforth abandon the integral form of the equation
for & and work instead with (34), (35) witk = ®; + ®, on their right-hand sides; these
equations are thantegral forms of the equations fab; and ®,. Equation (34) is valid for
p € VOERYH) N VIP(R?), d; € X, Py € WEE(X) N WIHP(X), while equation (35) is valid for
p € VO2(R?) N VIP(R?), &, € UM(R?) N UM (R?), &, € WH(X) N W2HP(X). Notice the
difference in the regularity requirements fbr here; in fact membership éf!2(R?) N U2?(R?)
is implied by membership ok, and this fact plays a key role in the existence theory presented
in Section 3.2 below. It is convenient to place a further requirement dpdn relation to the
integral form of the problem fo,, namely that it should also lie ib?*(R?) (which is again
a subset ofX). This restriction allows one to obtain better estimates fordthequation in the
subsequent existence theory; we also apply it in the requirements for a weak solution of the
equation ford,.

Strong and weak forms of the equations #fgrand®, are derived in the usual fashion. The
strong form of the equation fab, is clearly

62

14¢
b —1 ip S
= [ e ENy(p, ®)dE — F | —————Ni(p, ®)
0

1+¢e+ fB¢?

[—coe (82 4 €02)* + (6 — 3)(02 4+ 202)* — (1 + )07 — 02]®y

and is well defined fop € V2%(R?) N V1P(R?), &, € UPP(R?), &y € W2 (2) N W2P (D),
while the strong form of the equation fdx, is calculated by substituting

1| 1+e by 1 -
o0y |2 ([t - R

£2Q 1+e+ 0q
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into the strong form of the equation fdr, one finds that

—Poyy +q° Py = 87%]%([), P)
B C]2(8125 £) {/01 3 A4<p7 D) dy — H;—ﬁ_ﬁqz]vl(p’@)}’ 0<y<1,(36)
D, 1 j/;QfQﬁq? =2 N3(p, @) — 1 _i_;'j_ 3¢ Vi(p, @)
sQQ((lli?T;QQ) Uol R )y q))]’ v B

@21! - 07 Yy = 07 (38)

and this boundary-value problem is well defined fae V?(R?) N V2P(R?), &, € UM (R?*) N
UbP(R?) and®, € WH2(2) N WW2P(X).

Definition 2.7

(i) Suppose that € V22(R?)NV2P(R?) and®, € WEHEH(X)NW2iHoP(X). A weak solution
of the equation for, is a function®; € X which satisfies

_1+6

gor vy =55 [ ([ v ae- 7 [ sie) )i

g2 l+e+pBg2 "

forall U, € X (or any dense subset thereof); hdre= 7+ ®, and the ‘outer’ derivatives
with respect tar and z in N, and V; are transferred tol, by an integration by parts.

(i) Suppose thap € VO2(R?) N V2P(R?) and ®; € U%%(R?) N U%4(R?) N USP(R?).
A weak solutiorof the problem for, is a function®; € W2(¥) N Wit (X) which
satisfies

1 _ _ 2 A x >
L, F e ®5|y=1V|,=1
o U 2050 dy —
/R2{/o(2y y TPy 1 +¢e+ B¢

~

x (M/Olifzdy— (1+¢)ep’Vy ))}dudk:

eQ e2Q(1 + ¢+ f¢
' L T 1y = IM ~ =
Y O\ 2 NN, )y, )dy — ————— N P)W,|,—1 » dudk
/]1@2{/0 (E 2 4(/)7 ) o+ 2 5(/37 ) 2y) Yy 1+e+ 37 1(/), ) zly_l} 1

for all U, € W1%(Z) (or any dense subset thereof); hdre= @, + @3 and the ‘outer’
derivatives with respect to and z in NV, and N; are transferred tol; by an integration
by parts.

The next result is obtained using the arguments given in Propositions 2.3 and 2.5.
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Proposition 2.8

(i) Suppose thap € V22(R?) N V2?(R?) and @, € W123(%) N WiHP(%). A function
®7 € X solves the integral form of the equation for if and only if it is a weak solution
of the equation fo;.

(i) Suppose thap € V22(R?) N Vo?(R?) and®; € UX?(R?) N U4(R?) N U’P(R?). A
solution®s € W12(X) N W+or(x) of the integral form of the problem fab, is a weak
solution of the problem fob.

We now proceed in a fashion reminiscent of the classical Lyapunov-Schmidt reduction. In
this method a problem is treated by writing it as a pair of coupled equations for two unknowns
X andY’; one of the equations is solved to yield the functional relation$hig- Y (X), and
inserting this function into the other equation one obtains the ‘reduced equatioX'.foNe
use this two-step approach for our water-wave problem in the following manner. Firstly we
apply fixed-point principles to solve the integral forms of the equationg fand @, for p, ®,
as functions ofb; and secondly we substitute the solutigns- p(®,), P = Po(P,) into the
integral form of the equation fob; to obtain a reduced equation fdy. The result of the first
step is stated in the following theorem, whose proof is given in Sections 2.2 and 2.3 below.

Theorem 2.9 Suppose tha®, belongs toU2*(R?) N U2*(R?) N UZP(R?) with ||y 50 <
ce~1/4=A For sufficiently small values @fand sufficiently large values of(with § > 3/p) the

integral forms of the equations ferand ®, admit unique solutiong = p(®,) in V>2?(R?) N
VIP(R?) and @y € @y () in WE2(X) N W1HoP(%) that satisfy

IN

_ 1

ce 2 (|| P1allspe + Pale7]| P ly0)),
_ 1

ce™ 2 Py |1 s,

1 1
ce2 B Py(e ]| @4 o),

| :0| 0,p,

IA

P2l 146,

IN

[Py l5p,c

IN

1 1 1
c(|Prallz + e[ ®1]F00 + €272 @]l o2 Pr(e¥]| @all o),

1

plo.2.c
1 1_ 1
[P2]l1.2.6 c(e2 | @10 + 272Dl oz Pr(e || Pl ys0)),

[Poyll < e(ell®][7nn + "Dl o2 Pr(e @1l ys0));

IN

the functiong and®, depend smoothly upaby in the topology defined by these function spaces.
The symbols\ and P, denote respectively a quantity which@¥é + 1/p) and a polynomial
which has unit positive coefficients and no monomials of degree lessthan

Substitutingp = p(®;) and®, = d4(P,) into the integral form of the equation fdr; we
obtain the (integral form of the) reduced equation

~ 1+4+¢
=5

for the single variableb; € X; the nonlinearities are well defined sinéé is continuously
embedded irUo?(R?), U%?(R?) and U%4(R?) (see Proposition 1.1(iv)). The above analysis
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shows that any solutio®}] of this equation generates a weak solutipn®) of the original
hydrodynamic problem, whege= p(®3) and® = &% + &%(d1). We now study the derivational
aspects of this equation in detail; the details of the procedure used to solve the equatjons for
and® are given in Sections 2.2 and 2.3, while Section 2.4 presents a regularity theory which
assures that any solution of the integral form of the reduced equatioh, for fact defines a
strong solution of the hydrodynamic problem.

2.2 Elimination of the variable

In this section we show how the integral form of the equatiorpfoan be solved fop as a func-
tion of ®. Anticipating the later stages of our analysis, we supposeithaimits a decomposition
of the type

(I)(Z’, Y, Z) = q)l(xa Z) + (I)Q(ZL‘, Y, Z)

and consider the integral form of the equationfon the form

1 1
p=— (D, +i Udy + [ $opdy+ e Ny(p, &1 + s) ).
P 1‘1‘5—1‘5(]2( 1 W/O?/ Y /0 20 dY 1(p, @1 2)>

The new variablel is identified with®,, later; we introduce it here since it plays a significant
role in the solution of the equation far, in Section 2.3 below.
Let us therefore write the integral form of the equationd@s

P:«7:1(P>‘I’aq)1,q)2) (39)

and solve this fixed-point problem fpras a function ofb,, ®, andW. For this purpose we need
precise estimates on the norms of the Fourier-multiplier operators appearing in (39); the requisite
information is given in the following lemma, whose proof is deferred to Section 4.

Lemma 2.10 The following statements hold for ea¢ke [0, 1] andp € (1, ).
(i) For eachu € W2?(R?) the function

Gi(u) = 7! [;}"[u]]

1+¢e+ G

belongs to/2?(IR?) and satisfies the estimate

G1(Wlspe < cllullspe

(i) For eachu € W?oP(R?) the function

Go(u) = F! [H;—/jrﬁqzﬂu]]

belongs to*?(IR?) and satisfies the estimate

_1
|Ga(W)]5p.c < ce72 |ullspe
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(iii) For eachu € W??(R?) the function

L ie2k
Gau) = 5|l

belongs to/??(R?) and satisfies the estimate

_1
|Gs(W)]5p.c < ce™2|ullspe.

We now solve the fixed-point problem (39) by applying our basic fixed-point theorem (The-
orem 1.5); the technique developed for this purpose in the following result involves showing that
JF1 is a contraction whose Lipschitz constant is bounded by a positive power\We hence-
forth adopt the notation introduced in Theorem 2.9 thaits a quantity which is bounded by
c(6 + 1/p); itis always supposed to be as small as required for the result in question by daking
sufficiently small angb sufficiently large while maintaining the relationship> 3/p.

Theorem 2.11 Suppose that
H\PH&p,E < Cgé_A’ “q)lHUf”’ < Ce_i_A> H(I)2H1+6,p,e < ce™?. (40)
Equation (39) has a unique solutign= p(V, ®;, &5) which satisfies the estimate

_1 —_ 1
plspe < el Pallspe + 2| Wllspe + 2 (2|

ysr t H(Dyué,p,s)z)' (41)

Moreoverp is a smooth function of¥, ®,, ®,) with respect to thé/??(R?) and Wo*(X) x
U2P(R?) x W1Ho»(3) topologies and in particular its first derivatives with respectit@nd @,
satisfy the estimates

- 1= - s
0w Pspe < ce 2l Tllspe,  [panPalspe < ™[ Palliespe-

Proof. This result is established by applying Theorem 1.5 with= V7(R?), ), = WP(%),
Vo = UP(R?), V3 = WIP(X) and X, Y}, Y,, Y3 closed origin-centred balls of radius
O(e=172), 0(e272), O(e~172), O(e~2). According to this theorem, we have to verify that

_1 _ 1
[F1(0, 0, @1, @2)spe < (| Pallspe + e 2 [ Cllspe + 72 (2@l s + @y ll5pe)*)  (42)

and that

|1 Filp, U, @1, $y < (43)

1
lveree—verme) < 3

whenever (40) and (41) hold.
To verify (42) note that
Nl (Ov (I)) -

1 2 3 .
B /0 {%(bi + S0+ X (Duydy), + (DoY) +eF Duyd, + 2y, + gq)z} 4.
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whence

‘]—"‘1 {;e_lﬁl(O, @)}

1+ ¢+ B¢? S

1 Ve g2 1
< - —P% + —Pp? 2, yd O, yd 24 d
N P~{1+5+ﬁffll sz+2 T EIDYBy T yy+23} 4}
. 1
-1 14
_— d, yd, d
+‘f {1+5+ﬁq2}—[/0 S y”

.1 1
iezk 3
PSRV R
' {14'54—5612 [ 0 ey Spe
1
C<5||q>3:||6,p,€ + 52”‘1)3”5,;;,3 + 2|0,y Ps |5 pe + €l Py P l5pe + ||(I):?/||57p76

1
+ &2 || PpyPs|l5pe +El|P.yP. 5. )
< (@R 5 e + RS e + 2R3

1_ _
+e2 A||(I)x’|5,p,s||q)y||5,p,€+51 A||(I)Z||5,p,€||(py”6,p,6)
_ 1
< e (e3P o + [1Pyllspe)?

4,0,

d,p,e

in which Lemma 2.10 and the properties of our function spaces have been used. We similarly
find that

1 1
b vin [ yia +/<i>xd
7 g (e [ s )

< (| Prallspe + [1P2cllspe + 721 ¥]5pe).

d,p,e

and the estimate (42) follows directly from the above calculations.
The next step is to estimate

1 .
‘F‘l |:—5_181N1(p7 ‘P)ﬁ]

1+e+ (¢ Spe.
where we note that
DN (p, @) =
Be? { —Pa(E0% + €%p3) } B |:B€2px(€3pxﬁx + 54pzﬁz):|
VI+ERZ+eip2(l+ T+ +eipd)], | (L8t +etpf)??

L e { —p:(ep2 +£'p2) } B |:ﬁ€3pz(53pxﬁx + 84pzﬁz)}
V1t +etp2(1+\/1+e%p2 +e'p2)]. (14e3p2 +etp2)32 |,
B / e (@ ey®yp, )( —<y®@ype e2y<1>ypx/3>
0 Yo 1l+ep 1+ep (1+4+¢ep)?

O,0.\[ —ey®,p. 2y p.p
+53(¢3_6y yP )( cy®yp: | yPyp /2))
1+ep 1+ep (1+4¢p)

2 —ey®ypy | E2YPypup 3 —cy®yp. | E2yPyp.p
P )
e (y y( T+ep (repp)), T\ T T )
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N

+é

g(—sy%ﬁx +62y<1>ypxﬁ> yey,

B <q) _eyd, > y®,p
l+ep  (1+4+ep)?)1+ep © 14ep) (1 +ep)?

L2 (—Ey%ﬁz €2y<1>ypzﬁ) yey (q) _ eyd, ) y®,p
L+ep (I1+ep)?)1+ep L+ep) (1+4ep)?

G
(L+ep)?) =

We proceed by estimating the above quantity under the assumptions (40) and

‘p‘(s,p,s S CgiiiAy

which follows from (40) and (41), together with the rules

s 1 _
||p||57p,€ <ce 2 |P’5,p76 ||pz||5,p,5 <ce 2 |p|57p,€ ||Pz”5,p,€ <ce 1|p|5,p,€
and
H u gup
= u —
1+ep Spe 1+¢ep Spe

< ullspe + g2 (Ellpllspe + o5 pe + - - )
< cflullspe

(with similar rules for the other denominators). We find for example that

]_——1[ i ]_-[/1 829%1)3@:”
1+ ¢+ Bq? o ltep

y> P2,
1+ep

3,0,

3

ce 2

IN

d,p,€

_3 _
ce 2 ||?J2(I)g2,pz [Ere

IN

3 ~
ce 2 2@y l13,cllPallope

3_Ap~
ce2 ™| pu 5.

CgliA’ﬁ’zS,p,s;

IA A

estimating each term in this fashion we conclude that

R ~ 1 A~
5_1(91N1(p,<1>)p] < ce2 A|P|6,p167

F! [—
‘ 14+ e+ B¢? Gpe

from which (43) follows immediately.
Our fixed-point theorem states that

< e 2|0 |5 e

. 1 N

~ _ 14 2
puWlspe < Q‘f ! {—/ y\I’dy}
Pl l+e+ 8¢ )y Sipe
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and

1
1+e+ (¢

)
0,p,e

1 2 ~
P2, Polspe < 2‘?1{ (m/ y®y dy + 1Ny (p, q>)q>2)]
0

using the calculation

a1]\[2 /O7 (I)

2o, - eYyPype b ey, ps T cyPyp- b, cyPyp:
1+ep 1+ep 1+ep 1+ep
2 eyPyps\ =
®, — d
ff( ) y) - (

LW 5 _ yPyp: yo
o 1l+4ep o 1l+4ep ).

g(q)m 6y<1>ypx) y<1>y 3<(i)w_5yci)ypx> y®,
1 p

1+ep +e l+ep ) 1+4ep
Ty _eyPyp: yfby 2(§. cyPyp.\ yPy
1+ep 1—|—5p 1+ep/)1+ep
£®, P2
+ LYo td
(1+2p)? } !

and arguing as above, we find that

|pq>2(f>2|5,p,a <ce I|§>2||1+5,p,5- O

We also need some information about the behavioyr a$ a function ofl’, &; and®, in
L?-based function spaces.

Corollary 2.12 The solutiorp = p(¥, ®,, ®,) to (39) identified in the previous theorem satisfies
the estimate

_1 _ 1 1
ploze < c(IPollz + 72 Wllz + 72 (2| @[l o2 + [|By[l2)( 50 +[[Pyllape)).  (46)

Moreover p is a smooth function of ¥, ®;, ®,) with respect to the/??*(R?) and L*(2) x
U%?(R?*) x W12(¥) topologies and in particular its derivatives with respectit@nd @, satisfy

the estimates 3 o . .
lpe Vo2 < ce™ 2|V, |pa, Paloo: < CgiAH(I)QHLQ,E-

Proof. We begin by observing that

X = V2R {pe VIPR?) : |plspe < ce i 2},
Vi = LXE)N{0 e WD) : W5, < ce3Y,
Yo = WPARY)N{P) € UMP(RY) ¢ ||l yor < cs™172Y,

Y5 = WI(E)N{P2 € WITP(E) [ l1sape < 72}
28



are closed subsets of respectively = V*(R?), Yy = L*(X), V» = U2?*(R?) and)s; =
W212(3). We may therefore apply our fixed-point to equation (39) with these definitioAs of
Vi, Vo, Vs and X, Y7, Y3, Y3, the fixed point thus located clearly coincides with that identified in
Theorem 2.11. Our task is to verify that

|f1<07q17q)17q)2)|0,275
< c((|@ ]l + &2 ([ Wlz + 2 (2 ||z + [[Byll2) (2 @[l e + |y llspe))

and that 1
|1 Falp, W, 1, @afy02 g2y 022y < 2
whenever
Plspe < ce™i78 [ Wspe < ce? ™A, Byl s S eeTITA [ @oflipspe < et (47)
Observe that
1 R
FH e IN (0,0
‘ {1%—6%—ﬁq2 it 4 0.
< ' { {/1{5¢2+52¢2+§® D 1 D ¢+1¢2}d”
14+ e+ [¢? o L2 9 y vt 5% o

1
i
S A ®,yd, d
*’f {1+8+ﬁq2}-[/0 B y”

.1 1
ol | [ Seaa]]
o(e]| @22 + (| P22 + 7| Puyy®y |12 + £l Py Dy 12 + |32
+ 3| @y, [l + 2| Doy, ||2)
(el P lloo | Pall2 + €21 flool| D2 l2 + 1By | oc |y 2

1
+ €2[| Py [| o[ Py [|2 + ]| P2 [|oo [Py [|2)
< 6(51_A||q)x||57p76||q)x”2 + 52_A||(I)z||5,p76||q>2||2 + 5_A||¢)y||57p76”q)y||2

1_ —
+ 27| lspel|Pyllz + €2 Pellopl| Dyll2)
_ 1 1
< e (@21 @llgsr + 1Py lape) (2 [l oz + 1| Byl2),

0,2,

IN

IN

and we similarly find that

1 A I 1
F ol (&, +i / Ud +/(I):rd):|
‘ {1—0—6—#6(12(1 WOZ/ Yy ; 22 AY

< (| Puallz + @2l + 7| W]l2);

0,2,e

the estimate fofF; (0, ¥, ®;, )| 2. follows directly from the above calculations. The bound
for |d, Fi[p, ¥, @y, <I>2]|V€O,Q(R2)_>VEO,Q(R2) is obtained by estimating

e o1 Ni(p, q’)ﬁ}

F! [—
‘ 1+ ¢+ B¢? 0,2,
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using the assumptions (47) together with the rules (45) and

1 - ep

I+ep|lo B I+ep|.
< =P
- 14+ep|l
< 14ee? i

L+eplls,.

< 1 +657AH5PH<5,10,6
< c

(with similar rules for the other denominators). We find for example that

Y S T /1 S22,
1+ e+ [q? o l4ep

1,2,
26,2 ~
< ce”3 Yy
IT+epll,
22
s|| y*®
< e ? p
< et £ s
_3_ ~
< ez A||‘I)yH§,p,s||/):Jc||2

3_ ~
ce2 ™2 a2

CEI_A|ﬁ|0,2,67

IN A

and estimating each term in this fashion we conclude that

1 J— ~
< g2 2 plogee (48)
0,2,

e Oy (p, q))ﬁ}

f_l
‘ {1+€+ﬁq2

According to our fixed-point theorem, the estimates ot and ps, P, are given by the

formulae
. 1 N
_ i 2
2|F 1 —/ v d
’ l1+a+6q2 0 Y y}

I
< ce 2Py,

IN

’pllfq/|0,2,e

0,2,

1+¢e+ f¢?

< C€_A‘|(i>2||1,2,a,

~ 1 ) Loy B N ~
‘p¢2q)2|0,275 S 2’?1 l— (1/1,/ yq)g dy + e 182N1(p, (I))(I)2>:|
0

0,2,

where the second inequality is in each case obtained in the same fashion as (48). O

Finally, we record some further estimates fowhich are used later; they are proved using
the estimation techniques developed in Theorem 2.11 and Corollary 2.12.
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Lemma 2.13 Define

pnL(p, @1, P2) = }—_1{ N, (p, @17‘132)],

1 +¢e+ Bg?

so that

1 . s "3
_ 1 i
p= e (e s [ vians [ o) 4ot onen)

The functionpy;, satisfies the estimates
_ 1
’pNL‘&p,E < ce AP?(‘EQ ”(I)HU;}% H\PH&I),E» H(Dyué,p,a)v
1
oneloge < ele|@illfos +e (2 [P oo + [W]la + [Py ]l2)
3 1
X Pi(e]| @1 yon, 2| Pallysr, [Pllopes [ Pyllope))-

2.3 Elimination of the variablé®,

Substitutingp = p(V, &, ®,) into the integral form of the equation fdr, and identifying¥
with ®,,, one finds that
. ba, -
Py = — 5/2]\74( p(Poy, @1, Py), @1 + Pp) dE — 5/2 N5(p(@ay, D1, Ba), D1 + 0s) dé
0

1MG1|§:1
e2(1+e+ B¢?)

Nl(p(®2yaq)17q)2);q)1 + Oy). (49)

In this section we show that the above equation can be solvedlfas a function ofd,. We
proceed by replacing it with a pair of equivalent integral equations which have more favourable
mapping properties (see below), namely

A G G
(I)2 = _/0 5/12N6(p(\11 <I)1,CI>2) @1,@27 dg / 5}2 (p(\IJ (D17(I)2) q)lv(I)Qa\Ij) dg
inGile=r ¢
Ng(p(V, Dy, Py), Dy, Dy, V), 50
05t 00 s(p(, @1, 0y), 01, Py, V) (50)
A ! Gly G1y£
U = —/ 55/2N6(p(\11 (I)l,q)g) q)l,q)% df / £5/2 N7(p(\If,(I)1’CI)2)’(I)1’(I)2’\IJ) df
0
G _ ~
Gy le=t Ns(p(U, @y, @), 1, o, U). (51)

e2(1+e+0¢%)

The first equation is obtained by replacing the nonlinearities/V; and N; with new nonlinear
functions Vg, N; and Vg, while the second is obtained by differentiating the first with respect to
y and replacingb, with ¥ on the left-hand side; the function, N; and Vg are given by the
formulae definingV,, N5 and N; with all occurrences ob,, replaced byb.
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Proposition 2.14 Any solution®; of (49) defines a solutiof®;, ®3,) of (50), (51). Conversely,
any solution(®3, U*) of (50), (51) satisfied* = @35 and hence defines a solution of (49).

The following lemma gives estimates on the norms of the Fourier-multiplier operators that
appear in the above equations; its proof is given in Section 4.

Lemma 2.15 The following statements hold for eagk [0, 1] andp € (1, ).

(i) For eachu € W2?(%) the function
1
Ga(u) :f—l[ / mevan dg]
0

belongs toV1+97(%) and satisfies the estimate

1G1(W)[[145.p,c < cellullspee-
(i) For eachu € Wo(X) the function
1 1
G (u) _;f—ll / ie2kG1 F[u] dg]
0

belongs toV/1*+97(3%) and satisfies the estimate

1G5 (W)]l118p.e < cellullspe-
(iii) For eachu € W2P(3%) the function
1
gﬁ(u) = f_l |:/ Glg./f[u] df:|
0

belongs toV/}*+97 (%) and satisfies the estimate

G (W) [[146.p,e < cgllullspe-
(iv) For eachu € W2?(%) the function
1
Gr(u) =F ! {/ GryeFu] df}
0

belongs tdV??(X) and satisfies the estimate

1G7 () lsp.e < c&l|ullspe.
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(v) For eachu € W2P(IR?) the function

] 1Ghe=
Gs(u) = F [mf[u]]

belongs toV/}+97(R?) and satisfies the estimate

1Gs (W) [l1+5pe < cellullsp,e

(vi) For eachu € W2?(R?) the function

i&“%/{Gl ’,5:1 }"[u]}

_ —1

belongs toV1+9?(IR?) and satisfies the estimate

1Go(Wl1+5pe < cellullsp.e-

(vii) For eachu € W2?(RR?) the function

2
—p*Ghle=1
L+e+ ﬂqQ}—[u]]

Gio(u) = F [
belongs toV/1+97(R?) and satisfies the estimate
1

1G10(w) 1460, < ce2[[ullsp,e-

(viii) For eachu € W2?(RR?) the function

L [—eRpkGilen

Gu(u) =F I +et 3

Flul
belongs taV/}+9?(R?) and satisfies the estimate

1G 11 (W) |1 45pe < c22[|ullspe.

Our strategy in dealing with the coupled integral equations (50), (51) is to solve (51) for

U as a function ofd,, ®,, substitutel = ¥ (d,, ®,) into (50) and solve this equation fdr,

as a function ofd,; the two equations are solved by the method used for the equatignirior
Section 2.2 above. (Attempting to solve equation (49) directly using this method, one finds that
the estimates for certain terms have insufficient powees dhis difficulty is overcome by the

use of the equivalent equations (50), (51). Part (iv) of Lemma 2.15 ensures that an additional
power ofs appears in the estimate of the problematic term in equation (51), and this additional
power is inherited by equation (50) in the form of a good estimat&{piVe carry out the first

step by writing equation (51) as

\I’ :JTQ(\I’,(I)l,(I)g) (52)

and applying our fixed-point theorem.
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Theorem 2.16 Suppose that

1
1P2ll1rope < ce™2 ([ Dallysn < ce™T75 (53)

Equation (52) has a unique solutidh= ¥ (®,, ®,) which satisfies the estimate
155 < ce2 2 Pa(et (|l ysm, |y ll5e)- (54)

Moreover ¥ is a smooth function of®,, ®,) with respect to théV’?(%) and U’?(R?) x
W+or(3) topologies and in particular its first derivative with respect®g satisfies the es-
timate

[0, Ballspe < e 2|Pallirspe.
Proof. We obtain this result by applying Theorem 1.5 with = W2?(X), Y, = USP(R?),
Y, = WiHir(¥) and X, Y;, Y, closed origin-centred balls of radiu@(ez—2), O(s—1—2),
O(s72); one has to verify that

1F2(0, @1, Bo)l5pe < ca2 2 Po(eT(|D| s, |y ll5,.) (55)

and that

N | —

[d1 F2[W, @1, o505y ypsn sy <

whenever (53) and (54) hold.
We therefore begin by examining

. "Gy ¢ Gy
7| = [ Suo0.0), 0,006 - [ R p00,9),0.0) 0

iNG1y|£:1
e2(1+¢e+ (¢?)

NS()O(OJ (I))J (I)a 0>:| ’
where we use the expressions

NG(pa P, O) = 5g(p¢)z)x + 5% (pq)z)z,
N7(p, P, O) = Egypxq)x + E%ypz(I)Z,

(32 42
Ng(p,(b,()) — 6€2|: (5 Py +e pz)pr :|
VIt +etp2(1+/1+ep2 +e4?) ],
(32 4 42 1
‘|‘ﬁ53[ (e°pz +€°p2)p- ] _/ (202 + 20?) dy
V31t +etp2(l+/1+e3p2+2)],. Jo

and the estimate

1000, )5 < e (| Pallspe + (1Pyllope + 21l y20)?)- (56)
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The calculations

1
F { | St 2.0 ds}

d,p,e

1
_ Gy ¢
< Hf [/ 5—;2N6<po,<1>,0>d5]
0o € 1+6,p,e
3
< clellpo®ellspe + 2 p0P:lspe)
_ 1
< 2" Hpollspe (19 llspe + €2 (1P l5,p.e)
_ 1
< et A|p0|5,p,€(H(I)xH5,p,e+€2||(I)Z||6,p,s)
1_ 1
< ce? AP e |9l o, 19y llope)s

[ Gly&N o,
7p7€

c(e(1P0sPalls.p.e + °110: D=5 )

(e posllpel| Pallspe + 100z ll5pe D2l
ce2 ™2 pols e (| Pollspe + €2 D2 ]|5)

ce2 AP (e[| D] oo, @y l5c),

VANVAN

IAIA

— WGlz,/’& 1 Y }
F N, , 9.0
H { 1+5+ﬁ 2) s(o )

0,p,€

_ wGile=r ¢ }
< ||F! Ns(po, ®,0
< H [ 2(1+5+ﬁq2) 8(o )

1+0,p,e
T_ 9_ _
< C<82 AHpUl‘Hg,p,e te2 A”pOZHg,p,erOmH&p,E +€4 A||p01‘||§,p,e||p0z”57%5
+ 657A”p02”§,p,a + 817AH®35H§,p,8 + 627AH(I)ZH§,p,5)

c(e 2 pol3pe + e RPN 50)

1 1
< cez A1D2(54||(I)||U§4”||(I)y||‘571”’8)’

IN

in which p, is an abbreviation fop(0, ®), are obtained using Lemma 2.15 together with the
properties of our function spaces and yield inequality (55).
The next step is to estimate

1G . 1G . ~
Hfﬂ_/g%@%m®EM®—/—%%%mQWW%
0

e
_/0 55172581N7(p7(b \IJ pdg / 5/2 33N7(p,<I> \IJ)\IJdS

IMG1y|§=1
e2(1+ e+ B¢?)

i,UJG1y|£:1

O N, P U)p +
&?2(1—|—6+5q2) 1 8(/0 )/0

, (87)

4,p,e

93 Ns(p, ®, \P)\Tf]

wherep = py P, using the calculations

83N6(p7 (I), \P)\Ij = _83 (y\ijpx)a: - %(yqu;)z’
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2e3y?Wp, 2e2y?Wp, e2pP
1+ep 1+ep 1+ep’

63N7(p7 (I)7 \Ij)\ij

aSNS(p7q) \Ij \ij =
_eyVp, \ ey¥p, (e ey¥p. \ ey¥p,
l4+ep)1l+ep © 1+4ep)l+tep
9 ( y®, U 2€y2\11@px> 3(3/(1)2\11 25y2\11\ilpz)
+e — —
L+ep (L+ep)? l+ep (L+ep)?
+52y(1>z\if 203920 Wp, 2y, U 232U Up, A }d
Ttep  (I+ep)? | Lvep  (tep?  (At+ep)

2 (Y¥pa)e — €2 (y¥p2)z,

m\cn
MN

alNﬁp v)p e%<p<b>+ez<p<1>>

. <<I>x B \prm) e Upp
1+ep
5%,5\11 egpﬁlll
L+ep  (1+ep)?

i 2euVp: e2yPUp2p
L+ep )77 (1+4ep)?

(an expression fab; Ng(p, @, ¥)p is easily deduced from the formula (44) f@rN, (p, ®, V)p).
Estimating the quantity (57) using the method explained in Theorem 2.11 together with the
estimates (53) and

Plope S cei72, ([ Uy < 7

Y

(which follow from (53), (54), (56)), one finds that it is bounded by
(et plspe + TP lspe) < 1AW 5,

in which the further inequalitypy ¥|s,.. < cs~2|¥|5,. has been used (see Theorem 2.11).
Our fixed-point theorem states that

[T, ol |5,p,c

1 G R R 1 G . »
< z‘fl[_ | Shosp e mpds— [ SRoui(. 0,98, ac
0

‘G Cluge . « ]
_/0 851/;/2681N7(p,<1> U)pde — / ;ffagN7(p,q>,q/)q>2dg

Y

14+4,p,e

G 1yle=1 - UGy le=1 . = }
O, Ny(p, ®, )5 + 9, Ne(p, ®, U)d
P tet o) 0 2Pt Gy e & )

wherej = pg, . Observe that

< b,), + 2 (pd.).,
ype®, +e3yp.®.,

aZNﬁ(p7 @ \IJ)
92 N+(p, @, \11)<i>
82N8(p7 (I)> \I})&)

I\D\Ul N\O“
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2 Up,\ - To\ -
0 1+ep 1+ep
. N
- ‘ - 2P,  2yUd
20, + S (yUd.), + I |
+ e (yVo,), +°(y )+1+5p+1+€p y

(expressions fod Ng(p, ©, ¥)p, 01 N7(p, D, ¥)p, 01 Ns(p, @, ¥)p have already been computed);
arguing as above, we find that

W, ®al5pe < (e |lape + 5 21 Dall1sape) < et Dall1rape,
where we have used the estimgig, o < ce=2(|®s||145,.- (€€ Theorem 2.11). O
Corollary 2.17 The solutionV = ¥ (4, ) to (52) identified in the previous theorem satisfies
the estimate

1Tl < e(= 2 @1 ]lyoa + 272 (| Pol1 2 + €2 || ]| yo2) Pr(eT

[®al145pe))- (58)

MoreoverV is a smooth function dfp,, ®,) with respect to thé*(3) and [U??(R?*)NU>* (R?)] x
W212(%) topologies and in particular its derivative with respectdg satisfies the estimate

[Wa, ®slls < c1™2]|o|1

Proof. We apply our fixed-point theorem to (52), working in the closed subsets

X = L*E)N{T e W) ||U]lspe < ez Y,
Vi o= [U2A(RY)NUMR?)] N {®, € USP(R?) : [|@y]] s < ce7172),

£

Y, = WH(E)N{®y € W(D) : [[Bolliispe < ce™?}

3 £ wHe —

of respectivelyX’ = L?(X), Yy = U2*(R?) N U2 (R?), Yy, = W)3(XZ). We therefore verify that

[ F2(0, @1, @)

< (e @1 flyoa + €2 A ([Pl e + 2| @1llyo2) Pt | @1 |y [1Bo]l145p6)) (B9)

and that
[di Fo[W, @1, Dol L2y r2(m) <

DO | —

whenever 1 )
[0]lspe < ez, [[®1]lysr < ce™ 572, (| @ofl1yspe < ce 2

and hencépls, . < cemi A,
In order to estimate

Hf—ll—/o g}gNﬁ( (0,®),®,0)ds — / G;;f N+(p(0,®), ®,0) d¢

1/JJCTYly|£=1
e2(1+¢e+ (¢%)

NS(ﬂ(Ov (I)>7 (1)7 0)}

2
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we recall the equation
q)lx

0,8) = F|——12 |yt
p(0, ®) [1+5+Bq2]+ [14-64*5(]2

1
/ (Dgx dZ:| + pNL(Oa q))
0
and the inequalities

_ 1
(0, ®)5p.c (1 Pallspe + (€2 1Rl ysn + 1Dy ll5p6)%),
000, ®)loze < c(|Pullz + ™2 (e2]|Dllgoz + 1Py ll2) (2| Pllysr + [Py llsp.e)).

IN

- 1
oNL(0, ®)lspe < 2T Pa(e2 ]| @Iy, |y llspee).

One finds that

1 G .
1 1

Hf [A ;%Ndmﬁhmd4 2
1 G -

7| [ Samim 00
0 g

c(ellpo®alla + €2 [ po®.|2)

o,
FlH—=""|0y,
C(E l1+5+6q2] !

(i)lm
FlH——"— |0,
[1+6+5q2] !

IN

1,2,

IA

IA

+ e
2

1 L
Fi —/CI)zd b,
[1+5+ﬁq2 0 2 y} ! 9
ter||F! ! /1i> dy| ®
8 - 5 5 X z
) 14+e+ 08¢ ), 20 CY 1

3 3
+ ellpnLo®Piell2 + €l poPaz|l2 + €2 [ pnLoPiz|l2 + 62||00‘I’2z||2)

1 L
f—l[—/ cbhdy]H |®1]],02
14+e+6¢ Jo o

+ ellonpollool| D1 [l o2 + €||po||oo!|‘1>2HUg,2)

3
+e2

VAN

3
c{d¢ih+e%¢u®Ab+s

IN

cel|Pilfon + €72 (I P2nllspe + lonvolape) | Pillpoz + €' polsp.el| P2l o2)

1_ 1 1
< clell@llos +e2 (1 Dalhi2e + €2 [[Pallgo2) Prlet Pl yan, [ Palliespe)),

1
G .
-1 1y
H}— {/0 eb/2 N?(po,(I),O)df} 2
< 6(52||p0a2(1)a:“2 + 53||p0z(1)z”2)

.
2 -1 lx

cl e || F — Oy,
( [HHWL '

+ &2
2

IN

1 L
}"‘1{—/ %xdy} Dy,

1 L
—1
f |:1+€+5q2/0 CI)Qa:dy:| Zq)lz

+ €2HpNLOm(I)1zH2 + 52“,00x@2x“2 + €3HpNL02®12H2 + 53”0qu)2,2“2>

qA)lJ:
S A N
1+5+5q2L )| e

2

+&3

g
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3_
(22|20 + 2 2 (1P2ullope + |onLolope) @102 + 2272 polspel @2l yo2)
1
< ole? [ Ballfoa + A (112 02) Py (e[| 1[0, [|P2]l146p.)),

IN

-1 UGy le=1 Y
N. d.0
Hf L2(1+a+52) s(o; ’)}

H [ IMG1|§ 1
e2(1+¢e+ 3¢?)

< o3 A pd e + 22 2 polla + A P2uposll2 + €52 I0E N0
+ e 7B @2, + 222|922

< (e pl3pelploze
e TP 0a + AP [l o2 |l s + T @l oz | Bl y20)

< e @120 + 2 A (P2l 20 + 2 [Pl o) Pr(eF [ @1 ysos | Palliespe):

2

<

NS(pOa q)a 0):|

1,2,

where pxi,o IS an abbreviation fopyi, (0, @), and (59) follows from these inequalities. The
estimate for||d; Fo[¥, @1, o)l 2(x)—12(x) IS Obtained using the method developed to estimate
|dy Fip, U, D, cI>2]|Vso,2(R2)_)Vso,z(R2) in Corollary 2.12; one finds that

G Gy Y
Hf_ll_/ 5}381]\76(/?7‘1) U)pd§ — / 57;83]\76(“@’\1/)\1/(15
0

G
_/0 51/?42581]\77(,07(1) U)pdE — / ) a3N7(p’(I) \IJ)\II d¢

i1Gyle=1 Gy e : ~}

01 Ns(p, @, 0)p + 3 Ns(p, @, W)W
2t e+ o) e PP G Ty e 2. )

3

(T2 Plloge + 12T )
ce 1A,

2

IN I/\

wherej = pg ¥ and the estimatépy ¥]o,. < c= 2| U], has also been used (see Corollary
2.12).
Finally we note that

W g, Dol
< o|lF? GlyaN Gy
< - 52 6(p, @, ¥)pde — 5/2(92N6(,0,‘1> U)d, dE
0
- 1GlyfaN( ®,W)pdE — “’fafV( O, U)d, de
o 65/2 14V7( P, P 5/2 2IN7\ P, P, 2
iuGryle=1 ~ inGhyle=r Y % }
O, N, , O, U)p + 0sNg(p, ©, V)P
2(1+¢c+ B2 slp 7 e2(1+e+ 02 (e )2 12
< (e plone + 212 Dollr20)
< C€Z*AH&)2HL2,57
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in which 5 = pg,®, and the last line follows from the estimaig,, Ps o < ce™2||Ps]|12. (SE€
Corollary 2.12). O

We now substitut&r = U(P,, d,) into (50), write the resulting equation as
Dy = F3(Py, y) (60)
and solve this equation fdp, as a function ofb; using our fixed-point theorem.

Theorem 2.18 Suppose that
1
11| < ce™i 2, (61)

Equation (60) has a unique solutidn, = ®,(®P;) which satisfies the estimate
|@2llispe < = Paled]| @1l o). (62)
Moreoverd, depends smoothly updh with respect to thél’1*o7(3) and U2?(IR?) topologies.

Proof. This result is established by applying Theorem 1.5 wlith= W1 +o» (%), Y = U2P(R?)
andX, Y closed origin-centred balls of radig¥e2), O(~1~2); we show that

I1F5(®1,0)|115pe < ce ™ Pa(e|[®]]y50) (63)

and that
||d2f3 [@1’ @2]||W51+5,p(2)_)wel+5,p(z) S

whenever (61) and (62) hold.
Let us first examine
—1 ! Gl O ! Glf .
F _/0 MNG(p(\Ij(q)l)aq)l)yq)la\I’((I)l))dg_/0 65ﬂ]\f7(,0<‘1’(‘1)1)7‘1)1)7@1,‘I’((I)1))d§

iMG1’£:1
e2(1+ ¢+ 3¢?)

Ns(p(T(Dy), D), Dy, U(Dy))],

using the estimates

1_ 1
[U(@1)[lspe < ce2 2 Po(e || llysn), (64)
(U(@1), @1)lspe < a2 ([Prallspe + Pole[[ D1l y0))- (65)

The estimation methods used in Theorem 2.16 yield

.; 1 1 _1 N /) @ \IJ d
5/2 6( 1, ¥1, 1) 5
0o €

1+0,p,e

_ 1
< 0(51 A|p1‘5,p,€’|®1”U§’p+€2 A|p1|6,p,eH\I/1H6,p,6)
< et APy (e || D] yan),
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=ia G”N
5/2 ()017(1)17 1) d£

14+4,p,e
> C(gi_A‘Plb,p,qu)l”U;W + 51_A|p1’§7p,EH\Ile5,p75 + €_A‘p1’5,p,€”qjl|‘5,p,s)

< e Pl 0] ).

A\

-1 iMG1|§:1 -
N, P, 0
Hf |:52(1+5+ﬂq2> 8(p17 1, 1):|

_ R — 1_
< e nlipe T TR + 2R Wl

14+46,p,e

St (U ol VU PR [ Yl VA1 0N [ 21 -0
+ 2272 15191 | oo 1915

C€7AP2(€%‘pl|5,p,€7 <‘3%H(I)1”U§*7’7 1¥1l55.e)

< e AP (||| o),

IN

wherep; and¥, are abbreviations for respectively¥ (®,), ;) and¥(®, ), and inequality (63)
is an immediate consequence of these estimates.
Writing j = pa, s, p = poe¥, U = Uy, &, and using the estimates (61) and

Plope S ™18 [ Ulspe S e, [ @allspe < e

(which follow from (61), (62), (64), (65)), we find that
G
H}“—l{_/ 5/12@1N6(p,<13 ) (5 + p)dE — / 5/282N6(p,<1> )P, de
0
Gl G1§ ¢ <
- 5/283N6(,07(I> \Ij \I]df 5/261N7(p7q)7\11)(p+p) dg
0

G Gue - « .
_/ 5}282]\77(/77(1) \I/)(PQ d¢ — / 5}233N7(p,(137\11)\11d§
0

iuGe=1 ~ | = inGhle= Y 5

O Ng(p, ®,W)(5+ p) + O, Ng(p, ®, D

STk s(p, 2, ¥)(p+ p) ET L s(0, @, W),
i/j,G1’5:1

d3Ns(p, ®, \p)(iu}

e2(1 + ¢+ G¢?) L+ope

1 A, - _ 1_Anx 1 A=

< c(er (’P’5p6+,0|5p€>+54 A||CI)2||1+6,10¢5"‘6 4 AH\IJHM,&)
1

< c(er AH(I)2||1+517€+*E 4H\Ij||5ps)

< et Ba 145 e

in which the further inequalities
~ _ ~ ~ _l_ ~
|90, @alspe < e 2| Polliispe, 00V spe < g2 AW [5pe,

~ 3_ ~
1P, @ollspe < cet™ [ @allse

have been used (see Theorems 2.11 and 2.16). a
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Corollary 2.19 The solutionb, = ®,(P,) to (60) identified in the previous theorem satisfies the
estimate ) 1 .
1@a]l10.0 < e(e2 (| @1l s + 22| @1]| oz Pr (7| @1][y50))- (66)

Moreoverd, depends smoothly upd, with respect to thé?V1?(3) and U%%(R?) x U2*(R?)
topologies.

Proof. We again note that

X = WHAE)N{P € WHP(T): [P2l146pe < ce™),
Y = [UX(R?)NUMRY)] N A{®; € USP(R?) : || @] o0 < ce7172)

are closed subsets of respectivaly= W2(%), Y = U%?(R?) N U>4(R?) and apply our fixed-
point equation to (52) with these definitions&f ) and X, Y, verifying that

| F(@1,0)l2 < (e[l yos + 221 @allyoaPrlet | @ally20))

and that
||d2]:3[q)1, (I)2]”W51’2(2)HW€1¢2(2) <

N | —

whenever

1
1@1llysr < 7372, [[Pallisspe < ce

—-A

and hence

1 1
plspe < C&T*ZiAa [ lspe < ez,

We begin by estimating

1
.7:_1[—/0 g—/lzﬁﬁ(p(‘lf(@l)@l),% )) € — /G;}g (®1), 1), @1, W (21)) dg

iNG1’§:1
e2(1+e+ B¢?)

NS(P(‘D(@l)a¢1)>q)1,‘I’(q’1)) )

where we use the inequalities

[(P1) |5,

[0 (P1)l|2

p(W1(P1), P1)lsp,e
[oNL(W1(P1), P1)sp

The estimation techniques used in Corollary 2.17 yield

ce2 ™A Py(e || ),

c(e| el o + €2 ®ullyo Pr(e¥ (|1 [l y50)),
(| Prallspe + Paled ]| @1l ),

ce2 A Py(e |1 [ )

INIA

IN

.7 ! 1—1 N 1% @ \IJ dé
0 S

1,2,
1_
c(el|@1l1F0a + 22 21 lspe | Pall o2

_ 1
+ 72 onlopel| Pall o + €27 palspe | al2)
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(]| ][7 0. + &A@l o2 Pa(e @1l ys),

1 G R
H]—“—l{/ 65—}§N7(p1,(1)1,\111)d§:|
0

1,2,
1 _
< (e |20 + £ AW lspel @1l o2
+ 37 para s, A1 p1lspel U1 ]2)

< (e |20 + 2272 Dullyo Pr(e¥ (|1 [l y50)),

_ G et o
Fo e o @, W ]
| [ S

< 0(52_A101|§,p7a|01’0,2,s + 51_AH(I)1“U§*PH(I)1HUS*2 + 5%_AH\111“&p,suq)lHUQ’?
e W lspelWills + 2 prlspe P15l Wil
+ 2 2 I sl W [l + €272 o1l 01 |5 e | @1
(22Ul + ell@aGos + 372 ]@ 1l Prl= @1l s0)
(23| [? 0. + €272y | o2 Pr (3| | o),

1,2,

U?’Q)

IN

A

wherepnr,; is an abbreviation fopy, (¥(®4), ®4), and (59) follows from these inequalities.
The estimate fof|doF3[P1, o125y w2y IS Obtained using the method developed to
estimatel|d; Fo[V, @1, o[ 12(x)— 12(x) In Corollary 2.17; one finds that

G
H}"—l{_/ 5/1281N6(P,@ U)(p+ p)dE — / 5/232N6(p,61) ) D, d¢
0
G
_/ 5/1283N6(p,(1) \Ij \I/dg / 5/281]\77(,0,(1) \Il)(p+p) dg
0

G Gie . « i
‘Agi@MWQW%% / 57505 Ne(p, @, W) d

inGhle=1 L ey - -

O, N, O V) (p+p)+ OsNg(p, @, V)P

52(14’54'66]2) 1 8(P )(P P) 62(1+€+ﬂq2) 2 8(,0 ) 2
G |e=1

d3Ng(p, @, xp)ﬁ/}

e2(1+¢ + B¢?)

1,2,
1_ ~ _ 1_ =~ 1 =~
< c(ei2(|Ploge + IPloze) + 372 Pollige + 732 U|2)
e [ P s ([P
1_ ~
< g1 B[y,

wherej = po, P2, p = po¥, ¥ = U4, &, and the further inequalities
By e 3 L By s a -
|po, Polo2e < ce A||q)2|’1,2,z-:, lpe Vo2 < ce2 A||‘I’H27 | Ve, Doz < cet AH‘I)2H1,2,e

have been used (see Corollaries 2.12 and 2.17). O
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2.4 Regularity theory

The (integral form of the) reduced equation fby is obtained by substituting = p(®;) and
Py = Oy(Pq) (Wherep(P,) is an abbreviation fop( Py, (P1), P2(P1), 1) and¥ has been iden-
tified with ®,,) into the integral form of the equation fdr;. One finds that

A

. .
d, = 16;228 (/0 5_%N4(p(@1)7 Q1 + Oy(Py)) dE — H;—/fi-ﬁqZNl(p(q)l)’ n (I)z(q)l))(G;?)

according to the material presented in Sections 2.2 and 2.3 above, the quantity in brackets on the
right-hand side of this equation is well defined provided that

1@y ]| o < ce™i74, (68)

whence

Plope < e 178 || @] 14spe < e (69)

The corresponding weak formulation of the reduced equatio®fqaisee Definition 2.7(i)) re-
quires thatd; € X; in view of the embedding (24) we therefore study the integral and weak
formulations of this equation in the closed origin-centred b&ll € X : ||®4|| < ¢} of X,

Any solution of the integral form of the reduced equation 4grdefines a weak solution
(p(P1), D1+ Do(Py)) of the scaled water-wave problem (26)—(29), and in Section 3 this aspect of
the existence theory is completed with the confirmation that (67) indeed has a nonzero solution.
In this section we complete the analysis of the reduction procedure by presenting regularity
theory which asserts that;, ®, andp actually belong to the smaller function spaées’(R?),
W2?(%) andV?(R?) and solve the strong forms of their equations; it follows tha®, ), ®; +
®,(®P4)) is a strong solution of the equations (26)—(29).

Our first regularity result (Proposition 2.21 below) shows thatbelongs toU>?(R?). In
order to establish this result we need the following lemma, which deals with Fourier-multiplier
operators appearing in the integral form of the equatiorpfgits proof is given in Section 4.

Lemma 2.20
(i) For eachu € LP(R?) the function

Gio(u) = F {%}_M}
Q
belongs ta/2?(R?) and satisfies the estimate

1G12(u)l[ 20 < cllullp.

(i) Foreachu € L?(R?) the function
ie2k

Q

Giz(u) = F { .F[u]}

belongs ta/*?(R?) and satisfies the estimate

1Gr3 ()20 < ellullp.
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(iii) For eachu € L?(R?) the function

1
(I+¢e+6¢*)Q

belongs ta/??(R?) and satisfies the estimate

Gia(u) = F

”gl4(u)”U§’P < clullp-

(iv) For eachu € LP(R?) the function
2

_ 1 K
Gia(u) = F (1+¢e+3¢*)Q

belongs ta/*?(R?) and satisfies the estimate

1
1G5 (W) [ly2 < ce™2[ullp.

(v) For eachu € L?(R?) the function

—8%,[1/6
(L+¢e+B8¢H)Q

belongs ta/2?(R?) and satisfies the estimate

Gio(u) = F

_1
1G16(w)llyze < 272 [ull.

Flul

Flu]

Flu]

Proposition 2.21 A solution of the integral form of the equation fdr which satisfieg @, || < ¢
belongs ta/*?(R?) and satisfies the estimates

[@1flp2r < ™82 @z < ceTHR

1
o [ e mal

Uf’p

IAINA

1
ce’TA,

IA

HFI {Q(l - G e ‘b)}

Uf’p

45

_1
<ce 2

Proof. Using Lemma 2.20(i)-(ii) and the estimates (69) we find that

1 1
C(HP(I):EHP +e2 HPCI)ZH;D + H(I)yprp +e2 ”(I)ypz”p)

_ _1
ce” 2 (Iplapell®llysr + 721y lspelplspe)

and a similar calculation using Lemma 2.20(iii)-(v) and (69) shows that
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An inspection of the reduced equation (67) shows that
[®1]] 20 < 7274, (70)

and the remaining estimate
@l < cem78

follows by interpolation between (70) and

@y A

por < ([ ®afpa0 < ce i
(see equation (68)). O

The next step is to reappraise the integral equationg,fdr and ®, in the light of the im-
proved regularity ofb;. We proceed in the spirit of Corollaries 2.12, 2.17 and 2.19, which show
how these integral equations, which were originally solvelddfi(R?), Wo?(X) andW 1P (%),
are also solvable if*?(R?), L?(X) andW?%(X); here we give three Lemmata which show that
they are solvable if?(R?), W17 (32) andIW2?(%).

Lemma 2.22 Suppose that

[®1][1pe < ce 572, Bollape < e 57, [[W|yye < e A (71)

The solutiorp = p(V, &, ) to (39) identified in Theorem 2.11 satisfies the estimate

_1 — 1 1
plipe < el @allipete 2 [Pl pete™ (2 @l HIPy 1) (22 [RllyartDyllspe)). (72)

Moreoverp depends smoothly upd, ®;, ®,) with respect to thé!?(R?) and W1 () x
ULP(R?*) x W2P(X) toplogies and in particular its derivatives with respectitaand ®, satisfy
the estimates

e Plipe < e 2[Pllipe,  [pa,Polipe < ce™F 2 Daf|ape.

Proof. We apply our fixed-point theorem to (39), working in the closed subsets

X = {pe VIR : |plipe < ce 572 N {p € VIP(R?) : |plspe < e 172,

Vi = {0 € WH(D): [ W]pe < ce¥ 2} 0 {0 € WD) £ [|0]]5pe < et

Yo = {2 € UMRY) :||@illpr < e ¥ 2 0 {Q1 € UP(R?) 1 [|@lysn < cs™372),
Vs = {® € W2P(R): | ®s]lape < ™5 2} N {Dy € WIHP() || @115 < ™2}

of respectivelyX = VI?(R?), Y, = WIP(X). Yo = ULP(R?), V3 = W2P(X). Our task is to
verify that

|F1(Oalpaq)1aq)2)|1,p,a
_1 AL 1
< c(1®all1pe + 7 2[[¥][1pe + € (e H@HUQ”’ + ([ @y ll1,p,2) (€2 H@HUQP + 1Py llspe))
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and that

N | —

|d1-7:1 [;07 \117 Cbla (1)2] |VQ”’(R2)HVQ”’(R2) S

whenever

1 1 - 1
Plape < ce™i78 1@illyar eI [ Pallispe S ([ T]l5pe <27t (73)

Ug«,P

and (71), (72) hold.
Observe that

1 . 1 1
J—"‘l—@ﬁ'/ Ud +/®$d)}
‘ {1+€+5q2(1 1Iuoy Y 0 2 Y

< (| ®ellpe + [1Poallipe + 72 1pe)

1,pe

and

‘]—“‘1 {;E-U%(o, @)]

1 +¢e+ B¢?

1,p,e

! 1
< 2 c1>2 <1>c1> P, yd, d2 4 d
< gL {30 Tot et enan, gt o
+J—"{ i ]—"[/1@ (I)d”
—_— EI
T+etB8g [Jo = v

+ '.7:1 {—iaék .7:[/1 B L) y® dyH
14+ B¢? 0 s Lpe

< (el @2 ipe + 2 NP2 e + 22 1Py, |1 pe + el ey [l1pe + 1921 e
+ 3| Dy |1 e + 2] Doy Dyl p.c)

< C<51_A‘|(I):1:H5,p,5H(I)x”l,p,s + 52_AHéz,‘é,p,suq)zul,p,s + 5_AH(DyH5,p,EH(I)yHl,pﬁ
+ 672D llspe By llpe + 22 2Py ll5pc | Pl e
+ EI—AH(I)zH&p,6||q)y||Lp,€ + 51_A||q)yH5,p,e||q)Z||1,p,€>

< B ®lyre + 1Ryl pe) 2@ s + [Py ll5pe)-

1Lpe

1pe

where we have estimated for example

1
12211y + 21| 2o Pas |l + 262 [| @0 Daz I,

1
[Paloo(1Pzlp + ([ Pazllp + 2 | Paz )
e Pullopel|Pall1pe.

1231

<
<

The estimate fo[F; (0, U, @4, ®,)|1 - follows directly from the above calculations.
The bound foiid; Fi[p, ¥, @, <I>2]|V€1,p(R2)HVE1,p(R2) is obtained by estimating

e N1 (p, ‘P)ﬁ}

f‘—l
‘ {1+5+ﬁf

1,p,e
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using the assumptions (71), (73) and

|p|1,p,s S CgigiA

(which follows from (71) and (72)), together with the rule

L+eplly,.
Uu Ug 1 z Pz U 3 pU
= + 2 tel|l || +et|| s
’Hspp H1+5Pp L+ep]|, H(1+6p)2 » (1+ep)?],
1 1 1
< PR € || oo €2 zlloo )| 79 1 -~ \o
< of |z _1ehe+ ot + b0 | g | 1)

< cllullipe

(with similar rules for the other denominators). We find for example that

] e
1+¢e+ B¢ o ltep

TR
14+e¢ep

1,pe

Nlw

ce

IN

Lpe

22 |40} 1.

C(€%7AH(I)yH?S,p,e“ﬁx”l,p,e + ||(I)yHLp,€H(I)yH5,p76 H/}x H&p,s)
ez 2P

7_ -
g3 2 pl1pes

IA

ININA

and estimating each term in this fashion one concludes that

< ce3 2 |plipe. (74)

e N1 (p, ‘D)ﬁ}

_1 -
[1+5+5q2

1,p.e

According to our fixed-point theorem, the estimates ot and ps,®, are given by the
formulae

. 1 A~
] L[ i
i} < 2F | —rA—— vd
lpu¥lipe < ‘ l1+5+ﬁq2/o / y}
< e 7| 0|y,

Lpe

~ 1 LIPS N ~
1pa, Pol1pe < 2‘?‘1 [— (i,u/ y®o dy + 10Ny (p, c1>)c1>2>]
2 P 1+ ¢+ B¢? 0

1 ~
S CE?E?AH(I)QHZp,ea

1,pe

where the final inequality is obtained in the same fashion as (74). a

Before proceeding to the equations fbiand®,, let us record some further estimates which
are useful in the analysis of these equations; they are proved using the estimation techniques
developed above.
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Proposition 2.23 The functionp = p(W, &, ®,) discussed in the previous lemma satisfies the
further inequalities

_1 _ 1 1
lollyer < c(ll®ollipete™ 2 1 Wllpete (€2 1Rl 1o+ 1Dy ll1pe) (2 [ @l oo+ Py llspe)) (75)

and
1pe,®allyor < e 572 Dsllope, pwPlyor < e 2 ]|Dolfr e

Lemma 2.24 Suppose that
|@1llpe S e8| @sllape < 75 (76)
The solution = U (d4, d,) to (52) identified in Theorem 2.16 satisfies the estimate
1%l < el 2 Bllgrn + 52112y l1pe) PR 1@l oo, 1By llspe): (77)

Moreover U depends smoothly upai®,, ®,) with respect to théV?(X%) and Ul?(R?) x
W2P(3) topologies and in particular its derivative with respectde satisfies the estimate

[0, @2l < c2572|D2ll2 e
Proof. We obtain this result by applying our fixed-point theorem to (52) with= W1?(%),
V) = UMP(R?), Yo = W2P(X) and

X = {U e W(E): |0]lye < ees 23N {0 € WIP(S) 1 [|¥]l5pe < ce372),
i = {®& e UP(RY: [ @120 < = A N D € U%P(R?) : [Pl ysr < cei A
Yy = {@2 € W2P(D) : [|Ps]lape < e 52} N {@2 € WHP(E) ¢ [ @al1spe < c2 ).

Employing the methods developed in the proofs of Theorem 2.16 and Lemma 2.22 together with
the estimates

IN

— 1

g™ ([ Pallspe + (21 @llyso + 1Py llspe)?),
_ 1 1

™ ([Pallipe + (€2 @ll2e + 1Ryl (2 1@l yr + [1Dyllape)),
— 1 1

g™ (IPalli pe + (€21 Plre + [1Dyll1pe) (€2 1PNy + 19y l5pe)),

’p0|§,p,a

IA

’p0|1,p,5

IN

lpollyo

one finds that

[ F2(0, D1, o) |1 pe
- Hfl{—/o Ci}g Ne(p(®), ®, 0) dé — /ngf @), ®,0) d¢
iuGryle=1
e?(1+e+ f¢%)
(T2l yro + 37Dy 11 ) P (€7Dl s, 1By 15,
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in which pg = p(0, ®). Similarly, using inequalities (73), (76) and

3 3 3_
Plipe See™57% lpllyor <ee™57%, ([ @]lupe < ces™®

(which follow from (72), (75) and (77)), we find that
[daFalp, U, @1, Bo] W] e
—1 ! Gly \ = ! Gly \ T
0
e G
- [ Sosip0.v)pas - / 0, N, @, W) g
0

iNGly‘£:1
e2(1+e+ B¢?)

iMG1y|§:1
e2(1+e+ 6q¢?)

1 ~
g5 AWy pe
1 =~
§H\PHLP7€

alNS(p7(I)7\Ij)ﬁ+ 83N8(p7q)7\p)¢1:|

4,0,

IN

IN

and
Hd3f2[p7 \Ilu q)la q)Q]\IIHLp:E

1 G R ~ 1 G “ ~
< 2”?1{—/ 5—1/301N6(p,<1>,\11)pd§—/ Tlf;OzNa(p,¢,W)¢zd€
0

e
_/O “ s V2 (p, @, W) / 0N (p, @, W) By g

i/JJC:ly|§=1
e2(1+ e+ B¢?)

< €§_A||(i)2||2,p,a;

1NG1y‘§:1
e2(1+¢+ 8¢?)

alNS(p7 (I): \Ij)ﬁ +

8y Ns(p, @, ‘I’)‘fz}

1+4,p,e

herej = pg¥ andp = po, ®, are estimated by
i 1.~ 1.~ _ 1=
|Plope < ce 2| Wllspes  [Plpe < ce2[[¥lipe,  Nollpor < ce™2[[V|1pe,

~ _ = ~ _1., = ~ _1., =
|p|5,p,a S ce A”(I)ZHzS,p,sa |,0|1,p,a S ce SH(I)QHLp,sa HIOHUSW S ce SH(I)Q”Lp,s' U

Lemma 2.25 Suppose that
|21l pe < e (78)

The solution®, = ®,(P,) to (60) identified in Theorem 2.18 satisfies the estimate
|sll2,pe < e 2| Pallro P [ @1 y5)- (79)

Moreoverd, depends smoothly updn with respect to théV’2?(3) andU!»(R?) topologies.
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Proof. This result is established by applying our fixed-point theorem to (60) &ith W27(32),
Y = UM (R?) and

X = {2 € WD) : [[@a]lnpe < e ) 0 {y € WION(E) £ [@aflaspe < e},
Y = {® € UMRY :||[®1]ynr < ce 572} N {1 € UMP(R?) ¢ || ]| o < ce™172)

The methods developed in the proofs of Theorem 2.18 and Corollary 2.22 together with the
estimates (64), (65) and

1_ 1
(T (@1), @1)1pe < clllPrallipe + T3P llyra Pr(eT ]| fla0)),
p(T(@1), @) llpor < elllPrallipe + 72 PallyroPa(EF (1Pl 20)

yield
||f3(q)170)||2717:5
. LGy
:Hf{_/g%M@m@mﬁ%ﬁﬂ@MM
0

1
G ~
‘Aﬁ%mwmwmﬂ%m

G |1 .
e2(1+¢e+ 6q2)N8<p(\p<q)1)’ ©1), @y, \P(@l))}

1_ 1
< et Duf e Pa(e [ D] yan ).

2,p,e

Furthermore, writingy = p, 2, 7 = peV, ¥ = U4, d, and using the estimates (73), (78)
and

Plipe < ee™572 lpllyor < ce™5A, [ @allipe S g2 A (U1 < cesTA

(which follow from (72), (75), (77) and (79)) we find that
G
Hfl[—/ 5/1281N6(p,<1> W) (p+p)d€ - / 5/282N6(p,<1> W)y dg
0
G Gie , -
—/ S0y (p, @, W) g — / SN (9, B, W) (5 + p) e
0

-5/2

G
_/0 85}282N7(p,<1> U)dyde — / 5/263N7(p,c1> U)W de

G ez . inGhle= Y F
O Ns(p, @, O Ng(p, ©, V)P
e2(1+ e+ (3¢?) 1Ns(p >(p+p)+€2(1+6+5q2) 2Nalp )Pz

iMG1’§:1 S =
J3Ns(p, @, U)W

14+4,p,e

1 ~
< e8| D145,
1
5’@2H1+5ps,
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in which the estimates fqig, ., po ¥ and ¥, @, stated in Theorems 2.11 and 2.16 and Lem-
mata 2.22 and 2.24 have also been used. 0

Altogether, the above results show that

1 1 3_
[ ®2[2,pe < cet AH(I)1|’U;’PP1(54H(I)IHU;“’)? [y ll2pe < cet A”q)l

v PL(ET]| @1 | o)
and

1 1
p(@)lipe < cllPrallipe + e[ @allyan PL(ET]|P1l ).

1 1
lp(@)llpor < el Prallipe + ™2 Pillyre + Pr(e[[P1llys0),

wherep(®,) is an abbreviation fop(®,, (P1), ®2(P4), 1) and ¥ has been identified wittb,,,.
Observe thap(®,) is a weak solution of the equation fpr(with &, = &,(®;)) which meets

the additional regularity requirements of a strong solution; a familiar argument asserts that it is
a strong solution. One similarly finds th&t(®,) is a strong solution of the equation fdx

(with p = p(®4)), and that(p(P,), P, + Po(P,)) is a strong solution of the original equations
(26)—(29). Finally, it is possible to repeat the proof of Proposition 2.21 in a ‘bootstrap’ fashion
to conclude thaf, belongs ta/>?(R?) and is therefore a strong solution of equation (67); this
step is however only of academic interest since it does not play a role in the regularity theory for
(26)—(29).

3 Solution of the reduced equation

3.1 Variational structure

The key to finding solutions of the integral form of the reduced equatio®{dequation (67))

lies in its variational structure. This variational structure arises from the fact that the original hy-
drodynamic problem (1)—(4) in the parameter regime (6) itself follows from a formal variational
principle, namely

1+p_ 1o 2 42
A [ ([T cory@edrana
+%(1+e)p2+6(\/1+p§+p§—1)>dxd2}207

where the variation is taken ifp, ¢) (see Luke [28]). In this section we identify the variational
structure of the reduced equation &y by reviewing the steps in its derivation and showing
that the variational structure is preserved at each step of the reduction procedure. In Section
3.2 below we apply the direct methods of the calculus of variations to the relevant variational
functional to confirm the existence of a nonzero weak solution of the reduced equatidn for
which according to Proposition 2.8(i) is also a solution of equation (67).

The first step is to introduce the change of variable

y=u9(l+p(z2),  oxyz2) =27 2)

52



and the scaled coordinates
(p(7, 2), ®(7,y, 2)) = (e plx, 2), e "2 B(x,y, 2)), (#,2) = (e2z,¢2),

which transform the hydrodynamic equations into equations (26)—(29) and the functional in the
above variational principle into

(e eypa®y ]’ o7 g2 eyp.®, ]’
3%~ T, . e, - T ) (14 ep)d
/R{/o (2l 1+6p1 +2(1+€p)2+ 2[ 1+5p} )( tep)dy

1 1
+ 5g(1 +e)p? 4 B W1+ e3p2 +eip2 — 1] + a/ (poy®, — p®.) dy} dz dz,
0

where the tildes have been dropped for notational simplicity.

Proposition 3.1 The weak solutions of equations (26)—(29) are precisely the critical points of
the smooth functionab : [V22(R?) x U%%(X)] N [V2P(R?) x UP(X)] — R.

The Euler-Lagrange equations fidy namely

d1V[,07 (I)] = O? (80)
daVp, @] = 0, (81)

correspond to the weak forms of the equationsffand® and are given explicitly by equations

(30) and (31). Proposition 2.3 asserts that (80) is equivalent to the integral form of the equation
for p, and the second step in the reduction procedure is to solve this equatjpadar function

of ® and inserip = p(®) into the equation fo, whose weak form is therefore

d,V[p(®), ] = 0. (82)

The following proposition shows that this step in the reduction procedure preserves the varia-
tional structure in a natural way.

Proposition 3.2 Define a smooth functionaty : U%?(X) N U?(Z) — R by the formula
W(®) = V(p(P), P). The critical points oV are precisely the solutions of equation (82).

Proof. Observe that

dW[R] = diV[p(®), ®[(dp[®]) + d2V[p(P), V]
= dV[p(?), P]

since the defining property @i ®) is that it solves equation (80). O
The final step is the decomposition
(I)(QZ, Y, Z) = (I)1<I‘, Z) + (I)Z(xv Y, Z)

defined by equations (34), (35); the integral form of the equationbfofwith p = p(®)) is
solved for®, as a function ofb,, and insertingb, = ®,(®;) into the equation fof®; we obtain
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the reduced equation fdr,. This approach (writing a variable as the sum of two compon&nts
andY’, solving one of the equations to yield the functional relationhip Y (X), and inserting
this function into the other equation to obtain a ‘reduced equationXfpis reminiscent of the
classical Lyapunov-Schmidt reduction. There is a variational version of the Lyapunov-Schmidt
reduction which asserts that the variational structure of the original equation is inherited by that
of the reduced equation in a natural fashion (that is, the reduced variational functional is obtained
by substituting” = Y'(X) into the original variational functional), provided that the quadratic
part of the original variational functional contains no mixed term&imandY". The following
argument shows how this strategy can be used to detect the variational structure of our reduced
equation for®,; in effect we show how the quadratic part of the functiondican be replaced
by the sum of a quadratic form fdr, and a quadratic form fob,.

Let us briefly proceed formally. Suppose thiat(®,) solves the strong form (36)—(38) of
the problem ford,. A straightforward calculation shows that this problem is equivalent to the
boundary-value problem

2 1 24

. . P(1+4e) 2/ . ep’ ®oly—1 A
- 2Py + Qody — —L— )| =H 0<y<l1

2yy+q 2+ EQQS (q o 2 dy 1+€+5C]2 ) Yy )

2 2 1 2

- ep” Py (1 +¢)ep 2/ 2 ep® Pofy—1 ;

b, — + Oody — ————= | =h, y=1,

YT e+ 8 2QS(Ute+82)\T Sy Y T Twe+ 5P Y

(i)Qy:O’ ?J:Oa
in which

g, Tl+e) (1 +e)ep?

e2Q e2Q(1 + ¢ + B¢?)
and

H= e tNy(p(®),8),  h=e }Ny(p(®),®) — F* [H;—‘iwmp@), @)] ;

the left-hand sides of these equations constitute a formally self-adjoint operator associated with
the quadratic form

1 b 2 215 (2 5,“2 2 2
Q2(P2) = 3 | (| Doyl + ¢7|P2|") dy — 5[ Pa]y=1]
0

L+e+ (¢
Lt+el, [1a ep?Psfy-r |
Oydy — ——| bdudk.
st ), B T )

(Notice that the quantity vanishes for certain values pfandk; we return to this issue below.)
The weak formulation of the above boundary-value problem is obtained by multiplying it by
a test function, € W!1%(X), integrating over: and using integration by parts to transfer
‘additional’ derivatives tol,.

Similarly, the left-hand side of the strong form of the equationdfprnamely

52

1+e¢

1
[—coe (02 4+ 202)° + (B — 3)(07 +€02)* — (1 + )0 — 02]®1 = /0 Hdy+ h,
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constitutes a formally self-adjoint operator associated with the quadratic=f@pm where
1
2(1+¢)

The weak formulation of this equation is obtained in the usual fashion (see Definition 2.7(i)).
Let us now writeWW(®) = Wy(P) + Whi(P), whereW, denotes the quadratic part o,
and note that

Qu(®1) = (215

1 _ _ _
AW [8](T) = — / { / (o, + D) dy+h1\11|y_1}dudk, (83)
R2 0
where
_1 1 —i/J N
Hy=¢2N, D). P H, =¢2N, D). P = — N D). D).
= ENBL D), Hy = N 8), s = F | (@), 9)

An inspection of the weak form of the equation fbr and the weak form of the reformulated
problem for®, shows that they formally correspond to respectively

2dQ1[D1)(T1) + dWr[@1 + @) (T1) =0, dQs[@o](Ta) + AW [P1 + Po](T2) = 0,
so that the weak form of the reduced equationd#eiformally corresponds to
gdel[(I)l](‘Pl) + dWNL[q)l + @2(@1)](\111) =0. (84)

Repeating the arguments used in Proposition 3.2, one finds that the solutions of (84) are precisely
the critical points of the functional

I(®) = 2Q1(P1) + Qa(Po(P1)) + WaL(P1 + Po(Py)),
since

AdI[®])(¥1) = dQ1[@1](¥1) + AWk [Py + Po(P1)] (V1)
+ (dQ2[Po(P1)] + AWNL[P1 + Do]) (dDo[P4](P1))
= 52d@1[‘b1](‘1’1) + AW [D1 + Po(P1)](¥y),

where the second line follows from the defining propertybef®, ) as a solution of the integral
and hence of the weak form of the equationdar

It remains to treat the difficulty posed by the vanishing denominator in the formul@.for
To this end we use the identity

(2/léd—m)—s(/lﬁd +h) (85)
q02y1+5+6q2— Oly 1]

which is satisfied byb,(®P,); it is obtained by integrating (36) with respect goover (0, 1),

A

substituting forti)zy|y:0, o, |,—1 according to (37), (38) and noting that
1 . . 1 N .
0 0
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Using (85) to eliminates' we obtain the alternative formula

Q@)= | /1<|<i> 24 @) dy — — Lyl
2 2—2]R2 ; 2y q |2 Yy 1+¢+ 8¢ 2|y=1

l+e/ ['. . = e’ bl
H;d h 2 Oy dy — —— = dudk
+82Q (/0 1dy + 1)(Q/0 2 dy [ w
for Qo (P2(P1)).

The above argument, which is formal in nature, delivers a candidate for the variational func-
tional corresponding to the reduced equationdfor Rather than making the argument rigorous,
we proceed by confirming directly that critical points b{which, with the new definition of
Q2(P2(P4))), is a smooth functional oX) are weak solutions of the reduced equationder
This result is stated in Lemma 3.4 below; the following proposition, which asserts that a suitable
version of (85) holds for solutions of the integral form of the problemdigris required for its
proof.

Proposition 3.3 The solution®,(®,) of the integral form of the problem fob, satisfies the

identity
1 2 L. 8/12&)2’?;:1 . S L ~
e O R e ) B LA

Proof. With slightly more generality, we establish the result for the boundary-value problem for
®, obtained by replacingV; by an arbitrary function inL?(%), N, by an arbitrary function of
the form

Ny =ipN}! +ie2kN2?,  NE N? € L*(D)
andN; by an arbitrary function of the form
Ny = N!+iuN? +ie2kN3, N}, N2 N? € L*(R?).

It is a straightforward exercise to show that

F(NT, N2, N? N1 N2, Ny) = —— 2/1<i> dy— el ) S /lfld +h
1> 1> 1> 45 4 5 7@1/2 q 0 2 y 1+€+/8q2 Ql/z 0 1 y 1 )

where®, is the solution of the integral form of the problem, is a continuous fun¢tigiiR?))? x
(L*(%))?* — L*(X) (the Fourier-multiplier operators appearing in this equation are handled us-
ing Parseval’s formula). Now suppose thé, N2, N? belong to the dense subgéf,*(R?)

of L*(R?) and thatN}, N2, N5 belong to the dense subgéf, (%) of L*(X). Using Lemma
2.15 in a ‘bootstrap’ fashion, we find that, belongs tolV??(3); because it is a weak so-
lution of the problem ford, with the required additional regularity it solves the strong form
of the problem inL?(3) and hence the identity (85) ih?(X). It follows that F' vanishes for
(N}, N2, N3 N} N2, N5) € (Wy?(R?))? x (Wy*(%))%; a standard density argument asserts
that it also vanishes for ea¢tV], N2, N3 N}, N2, N;) € (L*(R?))? x (L*(X2))? — L*(X). O
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Lemma 3.4 Each critical point of/ : X — R is a weak solution of the reduced equationdqr

Proof. Observe that

<,52

dI[®q](V,) = = €<(<<I>1, Uyl + dAWNL[P1 + Po(P1)] (V1 + Ws)
L 92 = g,u2 A Z
b, U Py Uy)dy — ————— Py Uy |, p duedk
+/R2{/0( 2yWaoy + q" P2 2) dy 1+c1 3¢ 2 Q‘y_l} u

1 l+e¢ ! 'z 5M2§)2| =1
— FlOH V] dy + Floh V¥ 2/<I>d——y)
’ /R2{52Q </0 O} dy + F10h, ])(q o Y 14+¢e+ fp¢?

14¢ b A b 5#2&/2| =1
+ Hidy+h 2/ U, dy — ——— dpdk, 87
20 (/0 14y 1)(q ; 2dy 1+e+ 8¢ H (87)

where¥, = d®,[®,](¥,) and¥ = ¥, + U,. Differentiation of equation (86) with respectdg
yields

! "2 6ru2\ij2|y:1 S 1 A
QY (/0 Ty m T ) T o /0 FOH, W] dy + F[0h, V]
and eliminatingS between this equation and (86), we find that

b oo 2|,
Hidy+h 2, dy — —H 2=t
Ql/Q(/ 14y + )(/oq o dy e

. . 23,],_
- H, U U 2p _ SR Paly=1 )
g ([ Fomviay+ Fou ) [ b 222 g

It follows from (83) that

AW [P + Do (Dy)](T9)
1 ~ . ) .
= —/ { (/ H, dy + hl)\IH + / (HoWq, + H1 Vo) dy + hl\PQ‘yzl} dp dk, (89)
R2 0 0

and combining equations (87)—(89), one finds that

dI[®q](¥1) = <<<<I>1, 1)

/ / (Boy s, + ¢2Pyl) d —5—“2@&/\

2y ¥2y T G P2¥2)AY 1+€+ﬁq222y:1
: \((1+e)g” /lf (1+€)6u2‘i’2|y:1>)}
+ R Hidy+h —_— W, dy — dp dk
e((/o 1Y 1>( 2Q Jo VT 2QU et i) :
1 _ 1 _ _ _
_/ {(/ Hldy—f—hl)qfl—l—/ (HO\Ifgy+H1\Ifz)dy+h1\Ilg|y:1}dlLLdk
R2 0 0
2

1
£ ~ ~ =
= D, U )) — H v
Ctewwy - [ ([ iy )iauar,
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in which the facts that the quantity whose real part is being taken is already real afd (tha}
is a weak solution of the problem fdr, have been used. O

In our subsequent analysis we replddey the equivalent functional
J(®1) = e 2 (P1) = Q1(P1) + & 2Qa(Pa(P1)) + £ Wi (D1 + Do(Py)),

and we conclude this section by computing a convenient formula/ foldsing the fact that
d,(P,) solves the weak formulation of the problem fby, we find from Definition 2.7(ii) with
Uy = Py that

1

1 _ _ _
QQ(@Q) = 5 /2 { / (HOq)Zy + Hl(I)Q) dy —+ hlq)Z‘y:l} d/,l/ dk. (90)
R 0

Bearing this equation in mind, note that
1 A A~ LN
5_2/ / (HO(I)Qy—f—qu)Q) dyd,udk:
R2 JO

1
= / / {y(q)m + (I)2x>pmq)2y + Ey(q)z + q)2z>pzq)2y
R2 JO

2 ®2 202 22 P2
b, Dy — epb. Dy, — P Y PETy  P Ty }dydmdz (91)
1+ep 1+ep e(1+ep)
and B
/ h1q32|y:1 dudk‘:e_l/ pNLx<I>2|y:1 dz dz. (92)
R2 R2

A suitable formula fonVyy, is obtained by using the expression

1 1
((bla: —I—iu/ yPoy dy+/ (D2x>:| + pni(p, 1, Do)
0 0

—F
p {1+6—|—ﬁq2

in the formula

W(®) =
1 2
£ 15 1 1 ﬁ ﬂ
_®2 _@2 _@2 ., @ . @x d 1 1 ) B 5 5 B 4 o
/RQ{/O (2 IR y T e(ory®y —p >> y+25( +&)p + 5t e
! / | (8_2/@3 g U Ve SO
0 \? 2 2(1+¢ep)  2(1+ep)  2(1+ep)

- €2y(1)yq>xpx - SBQ@yq)sz) dy

—1(.3 2 4 2\2
I il G ) }dxdz;
2(y/1+e%p2 +elp2 + 1)2

one finds that

5_2WNL((I)) =
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1 _ (i)lx g . (i)lz
_f 1y~ q)2 _f’ iy~ @2
/11@{2 [1+6+6q2] 1wty 1+e+p¢2| ¥

N /1 (1 02 4 Sl p®3, A R
o\ T e T o ) T 2 ep) | 2(1 +ep)

- yq)2yq)xpw - €y®2yq)zpz> dy

1 (i)gx‘ =1 [N §)2z| =1 1 £
_F 1 “axiy=1 (I)2 —_F 1|_ Faxiy=1 @2 - (I)Z e @2
3 L—l—a—l—ﬂcf] 13 The+pg|Cr T g/ T o e

N o G
2(y/1+e%p2 +ep2 + 1)

et 1
bavds + ol + gl (99

Combining (90)—(92), (93), we arrive at our final formula fbr X — R, namely

J(D1) = Jo(Py) + J5(Py1) + Ju(Py),

where
Jo(®1) = Q1(Py), (94)
1 - (i)l e &)1
d = —FH — P2 —FM ——— 19?2 Ydxd 95
Ts(®1) /RQ{Z}— [1+5+Bq2} 1‘”+2]: l1+6+ﬁq2] lz} e (95)
e € p®3
Ju (P = —p®? —p®2 — —— 2 yP,p.Poy — cyPip, D
4( 1) /RQ{/OV (2p 2x+2p 2z 25(1+€p) YR12Pz P2y — EYP120, P2y

— p®, Dy, — 5,0(I>Z(I>gz) dy

1 Doy, Doy,
—|——.7:_1|: 2 |y—1 :|®%w+gf—ll 2 |y—1 :|¢%z

2 1+e+ (¢ 1+ e+ [q¢?
1 € et
+ EPNL(I)%QE + ipNL(I)%Z — TPNLx(I)2|y:1

_ Be(Epr +EpR)?
2(\/1+ %2 +etp?2 + 1)

et 1
bavds+ ool + Slols. 9

are respectively its quadratic, cubic and higher-order parts (recakbthamnd pn;, are quadratic
functions of®,). This formula shows thaf; and.J, define smooth functionals dﬂ£v2(R2) N
U%4(R?) N U2P(IR?), and sinceX is continuously embedded %2 (R?) N U%4(R?) N U2P(R?)
one concludes that has a semilinear structure.

3.2 Critical-point theory

In this section we complete our existence theory by showing that the functian&l — R? has

at least one non-trivial critical point. We employ a well-established strategy from the calculus of
variations, namely an application of the mountain-pass lemma (to find a Palais-Smale sequence)
and the concentration-compactness principle (to deduce the existence of a nonzero critical point).
This strategy has been used to obtain solitary-wave solutions to several model equations for water
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waves, in particular by Kichenassamy [22], Groves [14] and Pego & Quintero [32], and here we
follow the theory presented by Groves. The present situation is however complicated by the
presence of non-local terms ihand the fact that it is defined only upon a neighbourhood of
the origin in its function space. We henceforth denote the radius of this neighbourhood by the
distinguished symbal/ and write.J : B,;(0) C X — R; note that althoughd/ may be taken
arbitrarily large, the greatest permissible magnitude @écreases a¥ is increased.

We begin by collecting together several auxiliary results necessary for the subsequent ap-
plication of the calculus of variations. Let us first note two topological facts concetrhing
Examining the formulae (94), (95), we find thatand./; admit natural extensions frot,; (0)
to the whole ofX, and we henceforth consider them as functidhs- R. Recall also that the
cubic and higher-order partg and.J, of J define smooth functionals on (a neighbourhood of
the origin in) U%2(R?) N U%*(R?) N U>?(R?). Turning to an algebraic property of we may
eliminate.J;(®,) between

J(®1) = Jo(Dy) + J5(P1) + J4(P)

and

(S(@1), @)y = (S5(Pr), Do) + (J3(P1), 1) + ((Ja(D1), D))
= 2J5(P1) + 3J5(P1) + ((Ji(D1), 1)),

to obtain the identities

T@1) = Sh(®) + (@) — (), 1) + 5 (@), B1)),

Jo(®1) = 3J(P1) = 3Ju(P1) + (Ji(D1), Pr)) — (S (1), D)

which are exploited repeatedly below.

Observe that
1
O = ——||Py]||? 97
(@) = gyl (97)
[ J3(@1)] < cl| @10 < cll®a]; (98)

the following proposition presents corresponding estimates for the higher-order tefins in
Proposition 3.5 The inequalities

ce APy ([ ), (99)
ce i APy (]| 4 ) (100)

| Ja(®))]
[(T3(21), 1))
hold for each®; € By(0) C X.

VARVAN

Proof. We proceed by estimating each term in the explicit formula (96)farsing the inequal-
ities
1Pallisspe < cs™2Pa([| @4,
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|Poyllspe < 22 Pa(]] ),

Plope < cle™ T2 @]l + A Po([|@4]1)),
onLlspe < e A Py([| @4l

1Bo]l120 < ccT 2Py([| @4,

[Boyllz < ce A Py([| @4,

Ploze < c(|®]l +e2 2Py @4])),
Intlog: < ce' T ER([|4]),

which are obtained by combining the estimates presented in Theorem 2.9 and Proposition 2.13
with the embeddings (24), (25). We find for example that

1 (1)2
‘ / p 2y dy 1Y
o 2¢(1+ep)

2(1+¢p)
e lollooll Payll3

cs_l_A|p|57p,a||(I)2y||g

=™ A eH |y + e A Bl I) (2 Pa(ll @ 1))

3_
cet =2 Py([| ),
123, [l2

=
1+e+ B¢ ]|,
¢t Dol lo| 2 1
ce 1| @2l 2] B
cem 1A Py([|@4]]),
and the remaining terms are estimated in a similar fashion; altogether we have that
PACHIE=y A(TA)
The second estimate is obtained by noting that
(T1(P1), 21 ) (' (@1), @1)) — 2J5(P1) — 3J5(P1)

1
R2 0

where we have used the fact that
y 1 !
(@), TL) = —— (@1, W) / / o dy - b )0, de de.
1 + g RQ 0

An expression fof{.J;(®,), ®,)) is therefore obtained by substituting the explicit formulae for
J3, Hy andh, into the right-hand side of (101). Estimating each term in this expression using
the rules explained above, we arrive at the requisite inequality

[(T5(®1), D1 < e 2 Py([|Bal]). =

Let us now recall the mountain-pass lemma as stated by Brezis & Nirenberg [5, p. 943].

-1

ce 122115

[e.e]

1

IAIA IAIA

— qA)Qx‘ =1
Jq:' 1 Y q)Q
H L+e+ﬁq2] o

IN

1

INIAIA
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Lemma 3.6 Consider a Banach spac¥ and a functional7 € C'(X,R) with the properties
that 7(0) = 0, that0 is a strict local minimum of7 and that there is an elemente X with
J(z) < 0. There exists a Palais-Smale sequeficg} C & suchthat7(z,,) — a, J' () — 0
asm — oo, wWhere

a=inf max J(y(s)), I'={yeC([0,1],X):~(0)=0,T(v(1)) <0}.

vel s€[0,1]

A functional that satisfies the hypotheses of Lemma 3.6 is said to haweuatain-pass
structure.

It is not possible to apply Lemma 3.6 directly to: B,,(0) € X — R since it is not
defined upon the whole of. Notice however that it does meet the geometric requirements of
a mountain-pass functional: it follows from (97)—(99) thas a strict local minimum of/, and
choosing®7 such that/;(®7) # 0, we find that there exists a real numberwhich has the
property that/(\*®*) < 0. We proceed by extending to a smooth functional : X — R in
such a way tha/ andJ coincide on a sufficiently large neighbourhood of the origin; the new
functional therefore inherits the geometric structurg @nd can be treated using Lemma 3.6.

Define

My = sup{J(@y) |4 < 2] x5},

choosell, > max(2[|\*®%||, (24(1+¢)M)z) and lety) : X — R be a smooth ‘cut-off’ function
with the properties that

b(x) =1, ||| < M,

() =0, [lefl = Mz + 1.

The new functional/ : X — R is defined by the formula
J(®1) = Jo(®1) + J5(@1) + (1),

where ) ) .

Jo(P1) = Jo(@1),  J3(P1) = S5(P1),  Ja(P1) = (1) Ju(P1).
B~ecause]~ coincides withJ on By (0) C X, one concludes thaxis a strict local minimum of
J and that/(\*®7) < 0. The functional/ therefore has a mountain-pass structure, and Lemma
3.6 implies the existence of a Palais-Smale sequégigg,} C X such that/(®y,,) — a.,
J' (®1,,) — 0 @asm — oo, where

6. = inf max J(y(s)), T ={yeC([0,1,X):4(0) =0,J(x(1)) < 0}.

vel' s€[0,1]
(Here, and in the remainder of this section, we attach the subsciiptertain quantities as a
reminder of theie-dependence.)

The functional/ clearly satisfies the same identities.ahamely

J@) = SR (@)« (@), £ (T (B), 2, (102

(1) = 3J(P1) = 3Ju(P1) + (J1(P1), P — (S (D1), P1)); (103)

we now use these identities to establish some boundsdod the Palais-Smale sequekds,, }
which are needed later.
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Proposition 3.7
(i) The constant. satisfied) < a. < M.
(i) There exists a positive constaft such that||®,,,|| > C. for all m € N.

(i) The Palais-Smale sequend@;,,} satisfies||®,,,[| < M, for all sufficiently large
values ofm.

Proof. (i) The positivity ofa. follows from the fact thao is a strict local minimum of/, while
the upper bound fad. follows from the calculation

. = inf J
a inf max (v(s))
< J(s\*®*
< max (sA*®7)
< sup{J(®1) : [| 4] < 2[|A 27}
- M.

(if) Suppose that there were no positive lower bound|ffé,,||. It would be possible to
extract a subsequence (still denoted{ld,,, }) such that||®,,,|| — 0 and hence/(®y,,) — 0
asm — oo, which would imply that:. = 0 and contradict part (i).

(iii) The first step is to show thdf®,,, || is bounded above (without loss of generality one
may assume that any upper bound is independetjt &uppose that there were no upper bound
for ||®4,,[|- It would be possible to extract a subsequence (still denotefiihy, }) such that
[P — 00 @asm — oo; in particular||®y,,|| > M, + 1 for all sufficiently large values of,
so thatJ,(®1,,) = 0 and

j2(q)1m) = 3j(q)1m) - <<<j,<q)1m)7 q)1m>>>

(see equation (103)). It would follow that

1

2(1+€)||| 1™ < 31T (Pan )|+ 1T (@ 1) [[[[ 17

and hence that B ~
L _3J@u)l 1T @)l
2(L+2) = [ ®amll? sl
this inequality is a contradiction since its right-hand side tends to zeto-asoco.
The specific upper bound stated in the proposition is obtained using the fagtdthal| is
bounded above. Observe that

L (@1)] 2 312 @u)] — (@) = 1@ 1), a5 1T (1), @1
(see equation (102)) and

¢,<q)lm)<<<<]4(q>1m)> CI)1m>>> + w(q)lm)«(‘]é/l(q)lm)v (I)lm>>>
< (@ Prm) + U (@1))eT APy ([| @1l
< et TAPY (|| @)
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Substituting the second inequality into the first, we find that

|J(P1rm)| 2>

1 1 -
1—cei 2 P,(| P, D l? = 2T (@) NP1
6(1+5)( ce 2 Py([| 1) 1P 11 3||| (P1) 1| P

1

1. =~
> ——— 1Pl = = (D) I Prom
> 12(1+€)||| 17 = S 1T (L1 [P 1|

(becausé||®,,,.[| is bounded). The left-hand side of this expression approachasm — oo
while the second term on its right-hand side vanishesias> oo (because/’(®,,,) — 0 and
P4 [|| is bounded); we conclude that

@ 1ml? < 24(1 + ). < 24(1 4 )M, < M3
for sufficiently large values of». O

Proposition 3.7(iii) implies thaf (®,,,) = J(®,,,) for sufficiently large values af:; hence,
by extracting a subsequence if necessary, one may assuni@thgtis a Palais-Smale sequence
for the original functional/, so thatJ(®y,,) — a. and J'(®y,,) — 0 asm — oo. In the
following discussion we therefore return to the original functiohalB,,(0) C X — R.

Let us now turn to the second element of the variational theory, namely the concentration-
compactness principle (Lions [26, 27]).

Theorem 3.8 Any sequencéu,,} C L'(R?) of non-negative functions with the property that

lim Um(x,z)dedz =€ >0

m—oo Jp2

contains a subsequence for which one of the following phenomena occurs.

Vanishing For eachR > 0 one has that

lim ( sup / um(x,z)dxdz) = 0.
m—oo \ (#,2)eR2 J Br(,%)

Concentration There is a sequencgz,,, z,,)} C R? with the property that for each> 0 there
exists a positive real numbét with

/ U (T + Ty 2 + 2p) dxdz > 0 — €
Br(0,0)

for eachm & N.

Dichotomy There are sequencefz,,, zm)} C R? {R,}, {S.»} C R and a real number
A € (0, ¢) with the properties thaR,,, S,, — oo, R,,/Sy — 0,

/ U (T + Ty 2 + 2 dxdz — A,
Bhr,, (0,0)
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/ U (T + Ty 2 + 2 dxdz — A,
Bs,, (0,0)

asm — oo. Furthermore, for eacld > 0 there is a positive, real numbét such that

/ U (T + Ty 2 + 2p) dxdz > XA — €
Br(0,0)

for eachm & N.

It follows from Proposition 3.7(ii), (iii) that a subsequence of our Palais-Smale sequence (still
denoted by ®,,,,}) satisfieg||®,,,||> — ¢. asm — oo, wherel. # 0. This observation suggests
exploring the convergence properties{df,,, } by applying Theorem 3.8 to the sequereg, }
defined by

Imzzz

o 2
Um = Co (gq)lmx:m:

The consequences of ‘vanishing’, ‘concentration’ and ‘dichotomy’ are investigated in turn below,
where{u,,} is replaced by the subsequence identified by the relevant clause in Theorem 3.8
and we use the notation given there, writifig \. as a reminder of the-dependence of these
guantities. Lemma 3.9 states that ‘vanishing’ does not occur, while Lemma 3.10 asserts that
‘concentration’ leads to the weak convergencd éf,,,} to a nonzero critical point of. The
discussion of ‘dichotomy’ is more involved and requires several steps, the conclusion of which
is again the existence of a nonzero critical point/of

Lemma 3.9 The sequencéu,, } does not have the ‘vanishing’ property.

Proof. Observe that

2
(/ umdxdz) §( sup / umdxdz>/ Uy, do dz
B1(3,2) (2,2)€R? J By (%,7) B1(%,7)

for each(z, z) € R2. CoverR? by unit balls in such a fashion that each poinffis contained
in at most three balls. Summing over all the balls, we find that

1®mll* < cll®mlP sup / s
1

(z,2)eR? z,2)

< ¢ sup / Uy dr dz
(2,2)€R? J B (%,7)

— 0

asm — oo, which contradicts the fact thiid,,,,|| > C. for all m € N. O

Lemma 3.10 Suppose thafu,,} has the ‘concentration’ property. The sequedds,,(x,, +
-, zm + +)} converges weakly to a nonzero critical pointof
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Proof. With a slight abuse of notation, let us abbrevigde,,, (x,, +-, z,, +-)} to {®y,,,}. Clearly
|®1n]|* — ¢ @asm — oo, so that{®,,,} admits a subsequence (still denoted{ldy,,, }) which
is weakly convergent inX; here we denote its weak limit b$; and confirm thatb; # 0,
J' () = 0.

The first step is to show that,,,, — ®; in U>?(R?) N U%%(R?) N U%*(R?). Choose > 0.
The ‘concentration’ property asserts the existencg of 0 such that

N 1m0 =Ry < E

for eachm € N. By replacingR with a larger number if necessary we also have that

NP1 llg(2)=my < €
becausepb; is an element ofX. It follows from the continuity of the embeddingy ., .)>ry C
U2*({|(z, 2)| > R}) that

[ D1 — (I)1HU§*”({\($,Z)\2R}) Cel|®1m — cI)l|||{\(5672)|21‘%}

CellPimlll {2y =Ry + cellPrllfe,z) =Ry

C.E

VAN VAN VAN

for eachm € N. (Here, and in the remainder of this paper, the symbaot used to denote
a general positive constant which may depend updnFurthermore, sinc&p,, () is com-
pactly embedded it/°?(Br(0,0)) and ®;,, — @, in XBg0,0), one has that,,, — @, in
U2?(Bg(0,0)); the inequality

H(I)lm - (I)llef”’(BR(O,O)) =€

therefore holds for all sufficiently large valuesraf The previous two inequalities assert that
||(I)1m - ®1|’§,p75 S C&-é

for all sufficiently large values ofi, so that®,,, — @, in U*?(R?), and a similar argument
yields the strong convergenceli{-?(R?) andU%4(R?) (and in fact in any Sobolev space which
is locally compactly embedded iK).

It follows from the strong convergence b, } in U2?(R?) N U2%(R?) N U%4(R?) and the
fact thatJ;, J, are continuous functionals on (a sufficiently large neighbourhood of the origin
in) this space that

J3(Pim) — J3(P1),  Ju(Pim) — Ja(P1), Jy(Pim) — J3(1),  Jy(Prm) — Ji(P1)

asm — oo, and noting that
(P rm, Ui f) — (1, V1))

asm — oo for each fixedl; € X (by the definition of weak convergence), we find that

1

(7 (@1m)s 0l = o2 U am, W)+ (a(Prm), W) + (a(Prm), i)

1

= 7 {@n T + (Ja(20), i) + ((a(P), )

= <<<J,<CI)1)7 ‘I/1>>>
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asm — oo. On the other hand one has that
(T (®1m), Wi)) — 0
asm — oo, and it follows from the uniqueness of limits that
(7 (®1), W) = 0.

We conclude that’(®;) = 0 since this equation holds for evely; € X.
It remains to confirm thad; # 0. Notice that

(S5(@1), 1)) = =(S5(P1), 1) + (S (D1), D1)) — ((Ja(D1), 1)),

from which it follows that

1 !/
1—+EIH<I>1III2 = —3J3(®1) — (Ju(®1), Po))
< 31J3(R0) + [((Ja(D1), 1)
and hence that X Pyl
— < b + cgzll_A4—1)
oz <e(e AL
(see equations (98), (100)); the right-hand side of this equation would vanigh fer 0 and
contradict the positivity of its left-hand side. O

We now examine the remaining case (‘dichotomy’), again abbrevidiingz,, + -, z,, + )}
and{®y,,(x,, + -, z,m + )} to respectively{ u,, } and{®,,, }. We begin by recalling an argument
due to Groves [1453.3] which shows that this scenario also leads to the existence of a nonzero
critical point of J; it relies upon a convergence result (equation (104) below) whose proof in the
current situation is complicated by the presence of non-local termis in

Let {x} C C5°(R? R) be a sequence of ‘cut-off’ functions with the properties that

Xm(x,2) =1, |(z,2)| < R,
0 < xm(z,2) <1, R, < |(z,2)| < Sp,
Xm (%, 2) =0, |(z,2)| > S,

and |\’ (z, 2)|, |x%(z,2)| < cfor eachm € N and each(z,z) € R (The existence of a
sequence x,, } with these properties is assured by the facts #af S,,,, S, — R, — oo as
m — o0.) Define sequenceh{’}, {02} and{u'}'} by the formulae

(I)(lln)m = D1 X q)gil = cblm(l - Xm)

u) = ¢ <5(<I>(1)

Imxxx

)2 + 330\

Imaxzz

)2 + 322(@l

Imaxxz )2 + €4<(I)Sr)1zzz)2>
(8 = B (@) + 20(@0),) + 2(@0))7) + (@4).)° + (14 ) (@).)2.
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The method described by Groves [14, Proposition 12 and Lemma 14] shows that

ll@fll* = A, mﬁﬁwea—&
asm — oo, that there are positive constaiits”’, C!? such that
@t > C, mﬂamzcﬁ

forallm e N, that[||<1>§2||] andH\d)ﬁf,l\H are bounded above (by replacing with a larger number

if necessary we may assume that the upper bounds do not exégeahd that{u,(n,ll)} has the
‘concentration’ property: for each> 0 there exists a positive numbg&rsuch that

/ Um(z,2z)dexdz > A\, — €
Bg(0,0)

for eachm € N. Suppose that
(7' (@5), wi) — 0 (104)

asm — oo for each¥; € X; repeating the argument used in the proof of Lemma 3.10, we find
that the weak limi{" of {@ﬂ} in X is a nonzero critical point of .
It therefore remains to establish the limit (104). This task is accomplished by showing that

(/@) + @), W) — (@), T ) — 0 (105)

asm — oo for each¥; € C5°(R?) (and hence, by a density argument, for edghe X); the
desired result follows from this limit together with the fact that

(T (P + DI, W) = (T (@1n), W) — 0

asm — oo. Itis a straightforward matter to show th@t7, (®') + &) w, ) — (1)), v, )
vanishes ag — oo. Observe that

(5@ + &) W) — (5D, W)

- 141r (@), + o2 w)) — 1Jlr€<<<<1>§2>‘111>>>
1 2
= (@l v,

and since the integrand in the formula (@b@b, U, )) is calculated by pointwise multiplication of
derivatives ofb,,, by derivatives ofl';, we find that(((fbgn)z, U, )) vanishes whenevek,, exceeds

the radius of support o¥’;, so that in particular the above expression vanishes as> oo.

The same argument shows thgt; + J;)' (1) + &) ) — ((Js + Jo) (@), T — 0

asm — oo provided that the integrand deflnlrQ(g]’( 1), ¥1)) contains onlylocal operations

with respect tqx, z), that is differentiation, integration with respectitopointwise addition and
pointwise multiplication. The presence of the functional relationshipsp(®;), ®; = $o(P;)
however means thaionlocaleffects also have to be taken into account and the simple argument
given above no longer suffices.
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The functional relationshipp = p(®), $o = Po(P,) are constructed using the basic
Fourier-multiplier operatorgj; described in Lemmata 2.10 and 2.15. The next result asserts
that these operators, although nonlocal, enjoy a particular property of local operators, namely
thatH\I/lgi(cbﬂ)||1+(;7,,72g — 0 asm — oo for each¥; € C5°(IR?); its proof is deferred to Section
4.,

Lemma 3.11 ChooseN > 0, suppose thafR,,} is a sequence of positive, real numbers such
that R,, — oo asm — oo and letyy : R* — R, xg, : R* — R be smooth ‘cut-off’ functions
whose support is contained in respectivBly(0) and Bg,, (0). The functions

GV (u) = xnGi((1 = xR, )u), i=1,...,6,8,...,11
satisfy
1G ™ (Wl 1spe < 2 [ullspe

for eachd € [0, 1] and each sufficiently large value pf in which the symbat™ ™ denotes a
guantity that, for each fixed value 6f ande, tends to zero as1 — .

Our final result shows that the ‘local’ property of the basic Fourier-multiplier operators de-
scribed in Lemma 3.11 is sufficient to guarantee the asymptotic behaviour (105) requited of

Theorem 3.12 One has that
(s + Ja) (@0 + @), Wil — (s + Ja) (D)), T1)) — 0
asm — oo for each¥; € C§°(R?).

Proof. Recall thatp(®,) and®,(P,) are constructed by solving fixed-point problems using the
contraction-mapping principle, in other words using an iteration scheme. The key to proving this
theorem is to approximaig ®,) and®,(®P,) by the result of a finite number of iterations in the
scheme. Let us therefore begin by reviewing the four main steps in the constructig@i paind
®o(Py). In the entirety of the discussign ¥, &, and®, are supposed to lie in origin-centred
balls of respective radiD(c=i~2) in V2?(R2), O(c2~2) in WP(R2), O(c~i~2) in U#(R2)
andO(s=2) in W+r(x); all estimates hold uniformly in and suprema are taken over these sets.

(i) One solves a fixed-point problem of the form
P = Z gz-/v’z(q)lu (I)27 \I/’ P)

in Vo?(R?), in whichG; : WoP(R?) — V7(R?) is a Fourier-multiplier operator antf; :
U2P(R?) x WHor(3) x WoP(X) x V2P(R?) — W2P(R?) is a ‘local’ nonlinear function
(that is, a function of its arguments that involves only differentiation, integration with
respect tqy, pointwise addition and pointwise multiplication). This fixed-point problem is
solved using the iteration scheme

po = Y GiNi(®1, 0, 1,0),
Pn+1 = ZgiM(q)laq)Qa‘lj7pn)u n:1727"'7

which converges uniformly i, ®,, ¥ to the unique solutiop.. (P, ®o, V). There are
estimates fop., and its derivatives in terms d@f,, $; and¥ (see Theorem 2.11).
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(i) One solves a fixed-point problem of the form

\Il - Z gz-/v’l(q)la q)27 \117 p00(®17 @2, \Ij>>

in W2P(R?), in which G, : W2P(¥) — W2P(X) is a Fourier-multiplier operator and
N; @ UMP(R?) x WIoP() x WoP(X) x VIP(R?) — WAP(X) is a ‘local’ nonlinear
function. This fixed-point problem is solved using the iteration scheme

U, = Zgz (1, P2, 0, poo (D1, P2, 0)),
Vo = Zgz (1, o, U, poo(P1, D2, W), m=1,2,..,
which converges uniformly i, ®, to the unique solutiow . (®,, ;). There are esti-

mates forl, and its derivatives in terms df; and®, (see Theorem 2.16).

(iif) One solves a fixed-point problem of the form

Zgz (1, Pa, Woo(P1, P2), poo(®1, Pa, Woo (@1, D3)))

in Witor(R2), in which G; : W2P(X) — W+or(X) is a Fourier-multiplier operator and
N; - USP(R?) x WIHor(X) x WoP(%) x VOP(R?) — W2P(X) is a ‘local’ nonlinear
function. This fixed-point problem is solved using the iteration scheme

®yp = Zgz (1,0, Woo (@1, 0), poo (D1, 0, Uee (1, 0)))

(I)2,n+1 = Z gz (b17 @2 TL7 ((I)l7 q)Q,n)? poo(q)h (I)Q,Tw \poo(q)h q)Q,n)))?
n=12...,

which converges uniformly i, to the unique solutio®, .. (P;). There are estimates for
®, -, and its derivatives in terms df, (see Theorem 2.18).

(iv) A supplementary argument shows thiat = 9,®, ,, for eachn € N and¥ , = 9,®; .
Chooses > 0. It follows from the uniform convergence described in step (i) that
’poo(cbb (I)Qa \D) - pn(cbb (I)Qa \D)‘é,p,s S € (106)

for all sufficiently large values of, wherep,, satisfies the same estimatespas Next consider
the fixed-point problem

U = ZQZ (I)laq)%\p pn(q)laq)%q]))

obtained by replacing., with p, in step (ii). Applying the iteration scheme described there to
this modified fixed-point problem, we obtain a solutiég, which satisfies the same estimates
asVv ., and the argument used above fashows that

||‘i’<>o(‘1>1, Dy) — U, (D1, Do)|5pe <€
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for all sufficiently large values ai, whereV,, satisfies the same estimateslas. Moreover, we
find that

W oo (@1, P2) = oo (P, )5
< > sup [|GONI (D1, Ba, U, p)[ls el oo (P1, Po, U) = pu(P, Do, W)[5 e

< CE,
and it follows from the previous two estimates that
H\I]oo(q)ly (I)Q) — \Iln(q)ly @2)“571,75 S Ceg. (107)

Similarly, examining the fixed-point problem

O = Zgz (1, Po, Wi (1, Pa), pu (P, Bo, Wiy (D1, )

obtained by replacing.., ¥, with p,,, ¥, in step (iii), we find that

[@2,00(P1) = Po (1) [146p,e < €8 (108)

for sufficiently large values of, where®, ,, satisfies the same estimateshas,; by construction
we have thatV,, = 9, ,,.

Let K, (P4, V) be the functional obtained by replacing each occurrenge.cind @, ., in
the integrand defining( J5; (®,), ¥, )) with respectivelyp,, and®, ,,. (TheW?2*(X)-norm of the
integrand definind<,,(®,, ¥,) is finite, and, sinc&,; has compact support, the same is true of its
W2P(By(0))-norm, whereN denotes the radius of supportf; its integrability follows from
the embeddingV??(By(0)) C LY(By(0)).) It follows from (106)—(108) that the difference
between the two integrands is bounded in tiér(R?)-norm and hence in thB°?(By(0))-
norm byc.Z, and using the continuity of the embeddiAg?(By(0)) C L'(By(0)), we find
that

[ K (®1, W1) = (I (P1), Wi )] < el

In order to establish that
(s + Ja) (@5 + B2), Wil — (s + Ja) (D)), T1)) — 0
asm — oo it therefore suffices to prove that

K (@Y + 02 w)) - K,(o) w,) -0

1m> 1m>

The integrand defining<,(®\) + & w,) — K, () 1) is a finite sum, each term of

1m> 1m>

which is constructed recursively as follows.lével 0 formulahas the form

GN (D1, 02,

1m>

while alevel s formulas = 1,2, ... has the form

QZNZ( 1m, 1m,IeveIOformuIae levell formulae, ..., levek — 1 formulag;
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here
g { WEER [ wrn(R?)
L Wer(D) WHor (D)
is a Fourier-multiplier operator and

st { V) b { A ) (V) )

is a ‘local’ nonlinear function. Each term in our integrand is the product pfand a levels
formula for somes > 0; the target space of its nonlinearity at lewds W°?(R?), the Fourier-

multiplier operator at levet may be replaced by the identity amﬂ appears in at least one
nonlinearity, that is at least one nonlinearity in the recursion scheme saf\§fie®,...) =

0. We now show that each term in our integrand tends to zed’df(R?) asm — oo for
sufficiently large values op; by replacingiV?(R?) by Wo?(Bx(0)) (see above) and using
the continuity of the embedding’??(By(0)) C L'(By(0)), one concludes thaKn(QJS,)l +
o v)) - K,(@®" 0,) - 0asm — .

Consider the expression

Uy { g; }N (@12, @12, level 0 formulae, levell formulae, ..., levek — 1 formulag.
2 (109)
Suppose first thab( ., appears in the nonlinearity at lewelwhich therefore satisfies
'/\[S<(I)S7)w (I)gi)w 3 ) = Xm'/\/;<q)97)w q)gi)w X ')’
so that
2 m (2
VLGN (@), 02 ) = gV (@) o) ).
It follows that

2 m 2
101G N (@) 0P 5pe < [|T1GN N( O ) lisspe

2
NN, D2 ) s pe

N,m
€

IA NN

c

for sufficiently large values of, in which Lemma 3.11 and the fact that all arguments\of
are bounded i1 +97(R?) or W+°»(3) have been used. (Recall that the symiot* denotes
a quantity that, for each fixed value of ande, tends to zero am — 00.) The same result

clearly holds wherg; is replaced by the identity smoEl/\/( 1m, @L, ...) is identically zero
for sufficiently large values af.
Next suppose th31> . appears in a nonlinearity at level- 1, so that (109) takes the form

vy { g[s }N( 1m> gs 1-/\/; 1((1)%1, (I)gzrzb, .. .), .. .),
whereN;_(-,0,...) = 0. The above expression is clearly equal to

v { G A0 (- G N @ ol .
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+qjl{ g]S }N(q)gmaXngs 1/\/:9 1( 1721,@%31,--.),
(1= xn)Ge N1 (@) @2 ), (110)
in which
Ny @Y v Go N1 (D) 0P ) (1= ) )Ge N1 (@1 @)y
= N( gizngs 1-/\/:971((1)87)1,(1)52,),)
_N< 1m7< XNl)gs—l-/v’s—l(q)(li,)ﬂq)(li)w...),...)

andN; is any positive number greater thah note that/\78(-, 0,...) = 0. The previous argument
shows that

2
X3, Go i No 1 (B @2 ) |1yspe < 1

for sufficiently large values op, and by continuity the second term in (110) tends to zero in
WP (R?) asm — oo for each fixed value ofV,. The previous argument also shows that

< CéV’Nl

e { % hviat (- v

1+4,p,e

uniformly in m for any bounded sequenée,,, } in W2*%P(R?) or W!*oP(%), and in particular
for wm, = Go_No_1 (@) ) ). Taking the limitm — oo followed by the limitN; — oc in

(110), one concludes thatltT]is expression tends to zea’i(R?) asm — oo.

An appearance oiﬁ)q in a levels — 2 nonlinearity is similarly handled using two new ‘cut-
off’ functions x n,, xn, With Ny > N; > N, and proceeding recursively in this fashion we find
that each term in the integrand deflnllf@( 1m + q)ﬁl, U, - K, (@gﬁb, U, ) tends to zero in

WoP(R?) asm — oc for sufficiently large values qf. 0

4 Fourier-multiplier operators

It remains to establish the results stated in Sections 2.2—-2.4 and Section 3.2 concerning Fourier-
multiplier operators, namely their mapping properties (in particular the estimates on their norms
given in Lemmata 2.10, 2.15 and 2.20) and the convergence properties given in Lemma 3.11.

4.1 Basictools

Here we present our basic tools for studying Fourier-multiplier operatofg-nased spaces,
p # 2, beginning with well-known results known as ‘Marcinkiewicz’s theorem’ (Lemma 4.1)
and ‘Mikhlin’s theorem’ (Lemma 4.2); detailed proofs are given by Stein [34, Chapter IV].

Lemma 4.1 Consider the operatof’ defined by

(Tw)(x, 2) = /Z /Z K(x — 21,2 — 21)u(z1, 1) day dzn.
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Suppose that the kernél satisfied K| < c=* and

sup/|8 Kldp < e,

JEZ

Sup/ 0, K|dk < ce”,

JEZL

sup / / 10,0 K| dpudk < e,
J1,J2€Z I,

wherel; is the dyadic interva(2’, 27) or (—2/7! —27). The operatofl’ mapsL*(R?) contin-
uously into itself and
[Tullp < ce®lullp-

Lemma 4.2 Consider the operatof’ defined by

(Tw)(z, 2) = /: /_Z K(x — 21,2 — 20)u(z1, 1) day dzn.

Suppose that the kernél satisfies

K| < e,
A A ce®
](%K] + |0 K| < m,
27 > 27 ce”
|3#K| + 0,0 K|+ |0; K| < m

for each(u, k) # (0,0). The operatofl’ mapsL?(R?) continuously into itself and

[Tullp < ce®lullp-

The next result is a scaled version of Lemma 4.2 which is useful in dealing with scaled
function spaces such &g°7(R?).

Lemma 4.3 Consider the operator’ defined by

(T)(z, 2) = /_Z /_Z K(t— 21,2 — 2)u(zy, 21) day dzy.

Suppose that the kernél satisfies

\K\ < e,
~ 1 A Cga
0, K|+ e 2|0 K] < (24 k)
27 -1 > —192f ce®
|8“K| +e 2 |8,LakK| +e |0 K| < m

for each(p, k) # (0,0). The operatofl’ mapsL*(R?) continuously into itself and

[Tully < ce®[lull,.
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We now turn to Fourier-multiplier operators iif (>)-based function spaces. Our first result
in this direction is obtained by a straightforward application 6fd¢r’s inequality.

Theorem 4.4 Consider the operataf’ defined by

( .I y Y, 2 / / / K ﬂj_mlv — 21 Y, 5) (:E17€7 zl)dgdml le

Suppose the kernd{ (z, z; y, £) satisfies the hypotheses of Lemma 4.1, Lemma 4.2 or Lemma
4.3 uniformly fory, £ € [0, 1]. The operatofl’ mapsL? () continuously into itself and

[Tully < ce®flullp.
A natural tactic in dealing with more general Fourier-multiplier operatorsigix) is to con-
sider them as operators @ (R?, LP(0,1) — LP(0,1)). Unfortunately the multiplier theorems
of Marcinkiewicz and Mikhlin do not generalise to this operator-valued setting in a straightfor-
ward manner. An operator-valued generalisation of a theorem by Stein [34, p. 29], in which the
hypotheses upon derivatives Gfare replaced by hypotheses upon the derivatives aelf, is

however available (see the discussioli®.1 of this reference); the following result is a scaled
version of the appropriate theorem.

Theorem 4.5 Consider the operator’ defined by

(Tu)(x,y, 2 / / / K(z — 1,2 — 2159, §)u(z1, €, 21) d§ dy d2y.

Suppose the kernd{ (z, z; y, €) satisfies
1 A
/ Kwd¢
0
0, !
I{ o, } [ o

for eachw € LP(0,1). The operatofl’ mapsL? (%) continuously into itself and

< ce® (111)
LP(0,1)

and
CSa—l/Q

< ;
o0 (22 4 e 122)3/2

(2.2) #(0,0)  (112)

[Tully < c[lull,.

4.2 Mapping properties

The next step is to use the results stated above to analyse the mapping properties of the operators
Gi, ..., Gig defined in Lemmata 2.10, 2.15 and 2.20. Our first result is the proof of Lemma
2.10(i); parts (ii) and (iii) are proved in a similar fashion.
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Lemma 4.6 Choose € [0, 1] andp € (1, 00). For eachu € W2?(RR?) the function

Gi(u) =F* [HE;W}_M]

belongs to/2?(R?) and satisfies the estimate

G (u)lé,p,s < C”“H&p,@

Proof. Observe that

1
- | <
'1+€+ﬁq2 =
1 3( > | 28 2qu
Nou\1v=+5e)| ~ |Gretpd?| ="
ﬁ( ) B —20eqk
7ok 14 e+ Bq? | (L+e+ 822 7
d ( > B —203¢? N 8% eq* 1’ <.
"5 1+e+ﬁq2 | He+pg)? L+ +5)%
0 ( ) B —283¢> 83%c%q%k? <
|or 1+€+6q2 @ +e+8¢?)?  (L+e+82)% ]~
i > B 8322 ¢k
8u8k ]:+5—F5q (L +e+8¢2)3| —

Lemma 4.3 therefore implies that

-1 1
H]: {1 +e+ ﬂqQ}—[u]}

and repeating this argument with the multlplfer(u + sk:Q) 2(1+ ¢+ 3¢*)~" we find that

=

L+e+ 6

< cllullp,
p

< cflullp-
p

It follows that

)

1+ 3 (2 +ek?)ss ﬂu]}
1 +¢e+ B¢

GWlspe = Hf[

p

1 2 2\ L
ez (pt +ek®)2 5
+Hf 1{—1(+€+ﬁq; (u2+ek2)zf[u]]

et
c(lfully + [ F 7 [(12 + k)5 Flul]||)

cllullspe-

p

IN A
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The next result gives the proof of Lemma 2.20(i); part (i) is proved in a similar fashion. Parts
(ii)-(iv) are deduced from parts (i) and (ii) together with Lemma 2.10. Observe that

10:G14() |2,p.e = |G1(0:G12(w)) [l2p.e < 1G1llzr@)—Lr@)l|Gr2(w)||2p.e < cllullp,

1 1 1
e2(10:G14(u) |2 = 191 (£20:G12(W)|l2p.c < [G1ll o) rr @) €2 |G12 (W) |25, < cllullp,

where the final inequalities in each line follow from Lemma 2.10(i) and Lemma 2.20(i); the
estimates fo;; andG;s are obtained by the same method.

Lemma 4.7 Choosep € (1, ). For eachu € LP(R?) the function

Gua(u) = 7 571

belongs ta/27(R?) and satisfies the estimate

1Gr2(u)l[ 20 < ellullp.

Proof. Using the calculations

0 (1 1
o) = g (2410 - D00 600
0 (1 1 1.2 3 -2 5
7i\5) = |20k +4(B = )¢ 0 + bcoe P Oug
and the estimates 9
Bl =| 2| <t ol = || < s

we find that
g 1 2 2 _ l 3 -1.5
s (G| gt vsion | 5(g)| < G+ etd 4

It follows that

IN

¢,

12
Q
(o)
Q Q Q@

6 ;ﬂ cu o1 3, 15
< _|_ 2 -+ + <

ofs) s a5
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02 + k)8 ('“'m UL <u2+k2>%<|u|+e—3q3+s—3q5>) <e

IN

(12 + k?)?

and similar calculations show that

() =




Lemma 4.2 therefore asserts that

or {3 - o

and repeating this argument with the multiplig? + £4?)1%/Q, one finds that

_ Hf_l [—uz(uz + €k2)}—[u]}

< clullp,
p

< cflullp-
P

Q

The previous two inequalities imply that

e - 2%

102G12(u)l|2.pe < cllullp,

and a similar argument yields the complementary estimate

£2(10.G10 () [a,pe < clullp- O

It is instructive to compare the proofs of Lemmata 4.6 and 4.7. The former uses the scaled
version of Mikhlin’s theorem (Lemma 4.3), while the latter relies upon the standard version
(Lemma 4.2). In general, the scaled version of Mikhlin’s theorem is appropriate for multipliers
which depend upop andk only through the combinatiogpand for multipliers whose support is
bounded away from the origin (e.g. see Lemmata 4.13 and 4.14 below); in all other circumstances
one requires the standard version of Mikhlin’s theorem.

We now turn to the more involved analysis necessary for Lemma 2.15. The first step in the
proof of parts (i) and (ii) of this lemma is to establish the basic estimate that foread (3)
the function

G(u) = F! { / 1 G F[u] dg]

0
belongs tdV*?(%) and satisfies

1G(w)l2pe < cellully;
to this end we show that
1G ()l < cellullp, I1G ()l < cellull,, (113)

where .
Glu)=F* [/D (1% + ek*)G1Flu) dg} :

and
105G ()], < cellull,. (114)

The expansion

¢* — (1+e+ f¢*)gtanh g — 2k = =1 — (1 4+ €)’k* — (ﬁ - %) q" —cog® + O(¢%)
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asq — 0 implies the existence of a constagtsuch that
1> — (1 +¢+ B¢*)gtanh g — £2k?| > c£2Q (115)
whenevel < qo. Lety € C5°(]0, 00), R) be a smooth ‘cut-off’ function with the properties that

X(Q> = 17 q S %/2,
x(@)=0, q¢>q

and consider the decompositiofis= G, + Gy, G = G. + G1,, where
1 1
Galu) = F {/ x(q)G1Fu] dﬁ], Gy(u) = F* {/ (1 —x(q)G1F[u] dg
0 0

andga, G, are defined in the same way. We establish (113) by proving that it hold for, and
Gy, Gy, separately and use an auxiliary argument to deduce (114). The first step in this programme
is accomplished by Lemmata 4.8 and 4.9 below, which present the required estimatearidr

Ga-

Lemma 4.8 Choosep € (1, 00). For eachu € LP(X) the functionG,(u) belongs toL?(3) and
satisfies the estimate
1Ga(u)llp < cellullp.

Proof. We show that the hypotheses of Lemma 4.2, namely
’XG1| < ce,
et l{ Flac| < e
k
O
(W +E) |y 9 ¢ (XG1)
0,0k

are satisfied uniformly fog, ¢ € [0, 1], so that the result follows by an application of Theorem
4.4,

IN

Ce,

Let us write o
5_21 = Gy + Gy + Gs, (116)
where
o (1+¢)G
T (14 ¢+ B¢?)gtanh g — £2k?’
~ 1+¢
Gy = — 2 21.2
¢* — (1 + ¢+ B¢?)qtanh g — €2k
n 1+¢
e2p? + (1 +€)e2k? + (B — (1 +€))g* + cog®’
= 1+¢
DT e 4 (14 e)e2k + (B - $)q* + cogS
1+e¢

S22+ (1+2)22k2 + (B — §(1+2))g* + cog®
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and

(coshqy ( Bq? £t
hq(1 —
cosh q (1—|—£COS al 5)—ir(l—l—g)q
G'=1
cosh ¢ [ Bq? 1
hq(l —
cosh ¢ (1—|—€COS al y)+(1—|—5)q

\

2

sinh ¢(¢§ — 1)) + ok

sinh q(y — 1)> +

cosh qy

coshq(l —¢) —1,
q

D<y<é<l,

cosh g¢

g coshq(l —y) —1,

0<é<y<1.

Using (115) and the fact that = O(¢?) asq — 0 uniformly fory, ¢ € [0, 1], we find that

2 2
= cq —24
|G1| < _€2Q < ce 6 <
8 2
~ cq _o( 49
Gy < < ce —
@l < Gge (Q
4 2
~ q _3(q
G| < < ceg —
Gl < G = (@

for ¢ < gy and hence thai G| < ce.
It follows from the calculations

1
o)
“(qQ — (14 e+ B¢?)gtanhq — €2k2>

(2 — (1 + &+ 303¢°) tanh g — (1 + € + f¢*)gsech’q)

(@ — (1+¢+ Ag%)qtanh q — c2k?)2 Ot
" : )
> — (1 + e+ [Bq¢?)q tanh ¢ — £2k?
(2¢ — (1 + ¢ + 33¢%) tanh ¢ — (1 + £ + Bq?)gsech?q) Bid

(> — (1 + e+ f¢?)qtanh g — €2k2)?

(eq + ¢°)|0,4l,

(eq + ¢*)|Okq| +

N 2e2k
(¢> — (1 4+ & + B¢?)qtanh g — £2k?)?’
that
1 < c
¢ — (1+¢e+ fq¢?)gtanh g — e2k2| — 2Q’
1 c
o, < —
> — (1 + ¢+ fq*)qtanh ¢ — £2k? et()?
5 1 < 1
C
F > — (1 + ¢+ [Bg*)qtanh ¢ — £2k? - e4()?
for ¢ < qo. Furthermore, one has that
9,G = 9,G 9,q
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(wheres2.2 is replaced by2 — £2k2 in the formula forG),
G = 0,G Orq
ando,G = O(q) asq — 0 uniformly fory, £ € [0, 1], so that
10,G| < ce2g, 10,G| < ceq.

Combining the above estimates, we find that

erq  ei  eig !

52@ + 54@2 + 54@2) S ce -,

2.3 5 2.2

2 2\ 1 A 2 nlf &4 eq €q e*q’|k| -1
oG < etk (SE 4 S8 e i) <

(12 + 1)310,61] < c<u2+k2>%(

for ¢ < qo.
Observe that

1
10ux] = X' (¢)0uq| < e, 10kx| = |X'(q)Okq| < ce,
whence

(ep® + k)2 |Gy |
|G| + &7 ¢?Gy|

—1,4
1 € q

cle "+

( €2Q>

ce_l,

(12 + k%)2|Gr,x]

IAIA

IN

IN

(202 + £2k%)3 |Gy |
[EARREEN

—1
e,

(12 + k2)2|Gragy|

IA A CIA

in which g < ¢, on the right-hand side, and altogether we have that

0 ~ 0 ~ ~ 0 _
{8:}(XG1) X{a:}G1+G1{6:}X‘§CS 1

The corresponding estimates for the derivative§ofire obtained using the formula

(1 1)’ _ =1 g -9)f+9)

f g f? f2g2

(1 + k) = (2 + k?)3

with
f=¢—(1+e+pB¢*)qtanhq—’k*, g=—e*p® — (1 +e)e’k* — (B — %(1 +))q* — cod®,
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in which the prime denotes differentiation with respecitor £. One finds that
(12 + k*)218,G|

ScW+m%
(1 + k)2 |9Gs|

7

1(q"|0kgq

< o+ 1 (T @kl + Plonal) 3

for ¢ < qo, in which the inequalities
lg—fI < ed®, 10u(g = NI < eq"10uql,  10k(g — F)] < cq"|Okd]

have been used. Singg,| < ce~' and

10 4 6

2 5 cq q q
< — < —_ [ <
‘qGﬂ—-&Q2—C(§@X§%J =

for ¢ < ¢y the argument given above shows that

o, ~
{ o bacw
f=1+1+e)k+(B—3q" +ad®, g=w+(1+e)e®k”+(B—1(1+¢))g" + cod’,

{0 b

19u] + (211 + ¢l <¥u2+s%9+qﬂ)z;%faaam

4@2 8@4

8

8@4

(e2u® + 2k* + q4)) <c (120)

(14® + K2)? <ce !

Repeating this calculation with

one obtains the estimate

-1

(1 + k?)2 <cs

for Gs.
A similar analysis yields

82
el @ bodolce iz
e+ k°) e (XGi)| < e, i=1,2,3,
0,0,

and the required estimates @1 are obtained from equation (116). O

Lemma 4.9 Choosep € (1, 00). For eachu € L?(X) the functiong, (u) belongs toL? (%) and
satisfies the estimate

IGa(w)lly < czllull,.
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Proof. Here we use the formula

Galu) =~ F! {/01 ¢*x G Fu] dé}

and show that the hypotheses of Lemma 4.1, namely that

*xG1| < c?, (121)
[ 10Gldn < e (122)
I;
/|8k(q2xG1)|dk < e, (123)
I;
/ / 10,0k(*xG1)| dpdk < cg? (124)

uniformly over all dyadic intervalg;, 1, 1,,, hold uniformly fory, ¢ € [0, 1], so that the result
follows by Theorem 4.4. To thls end we again use the decomposition (116), and recall the
estimates

1G5 < «, i=1,2,3

for ¢ < ¢ established in the proof of Lemma 4.8, from which (121) is an immediate conse-
guence. .

Using the fact thatd, (¢*G)| < cq¢® for ¢ < g, together with estimates (117), (118), we find
that

0u(4*Gh))

IA

3
( L0l + o+ ) 4Q2mq|)

_l’_
€2Q €4Q2 54 QQ

e2lul® | etpl’ 54|M|7)

e?lul | ¢t pl  eq |u|>

IA

+
Elplt - etpl®  etful®

IN

4@2 4@2
€2q2|/€! ¢tk e2q0lk| 62|/~f¢|q4>

€2Q + €4Q2 €4Q2 €4Q2
4|]€’3 €7|]€’5 88|]{?’7 86|]{?’5)

< +

2’k’4 86“6’6 88“6’8 86“6’6

!
o
D
||’
~ I 27| 4
) < ( Ohal + (0 + @) Oal + 5'“‘1),
!
(2
<
7]

<

for ¢ < qo (becausé),q = eu/q andd,q = £2k/q). It follows that

27 +1

/ 10,(*C)) du
23
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27+1

/2 (10,(¢*C)| + £ I (@)|2Cu]) du

J

IN

od+1 -3

1 1 [90F
/ —dp+ ce? / du
27 M 0

log2 + ¢

C

IN AN IA

(because is identically zero for > ¢, and in particular fog: > goe~'/2) and similarly
27+1

IR AL
2

J

for j € Ny; the same estimates clearly hold for the dyadic interyaig—! 277), ; € N, and
those in the negative half-line.
Using the estimates (119), (120), we similarly find that

9 10
~ C
9,(¢°C)] < ( Byl + (] + 1)) 2 (emua%ucﬁ)) <<

S Q! ]

10
~ C
0(¢*C)| < ( i el + (€K + l0kal) +52k2+q4)) <

for ¢ < ¢9, whence
/ 10, (*XG2)| dp < ¢, / 0k (*xG)| dk < ¢
I]' Ij

for every dyadic interval;, and the same method yields the corresponding estimaté faxn
analogous argument shows that

/ / 10,0k(¢*xGy)| dp dk < cg?, i=1,2,3

for every pair(I;,, 1;,) of dyadic intervals, and the estimates (122)—(124)Gorfollow from
equation (116). O

To obtain the estimates fgk, andg,, we write
1+e¢
Q

and introduce the further decompositiaghs= G, 1 + Gy 2, Gy, = Q~b,1 + g~b72, where
"14¢

ng(u):gQF_l[/Ol(l—X(q))Glf[u]dS : gb,g(u):f‘l{ s

andg~b,1, ng are defined in the same way. We establish the required estimates for each of these
operators separately, treatigg ;, g~b71 by singular-integral techniques together with Theorem

4.5 andg,, o, C}b,g by the scaled version of Mikhlin’s theorem together with Theorem 4.4. In
order to apply Theorem 4.5 i@, , and ébg it is necessary to verify hypothesis (111) on their
Fourier transforms and hypothesis (112) on their kernels. The first of these tasks is undertaken
in the following proposition.

Gy, =G + (125)

(1=x(q))F[u] d¢
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Proposition 4.10 The estimates
1F (G 1) (W) lr0,1) < c£®[|wl|zo0,), 1FGo 1) (W)l o0,y < cellwll ooy
hold for eachw € L?(0,1).
Proof. A straightforward argument using the differential calculus shows that
¢* — (1 + ¢+ B¢*)gtanh ¢ — %k* < —cpeq? (126)

for ¢ > ¢., wheregq, is any positive real number ang- is a positive constant which depends
only upong,. It follows from (126), the inequality

cosh qy { coshq(1l — &) } < ce—E=y) y<¢

cosh ¢ sinh q(§ — 1)

and the corresponding inequality o y obtained by interchangingand¢ that

c _ Cq*  _qle—
G| < $(1+q2) < ; el g >q.
Using this estimate with = ¢, we find that

Fod @iy = [ | [ #aa-
<[ Za-ve
< c(§)p<1 —Xx)” /0 1 { /0 1 e‘”‘ﬁ'lwldsrd

(iG]

< ce”|lwlf,

p
dy

IN

and the estimate f(ﬁ‘m is obtained by the same method. O

Lemma 4.11 Choosep € (1,00). For eachu € LP(X) the functionG, ; (u) belongs toL?(X)
and satisfies the estimate
1961 ()l < ce|lull,.

Proof. Observe that

cosh qy { cosh (1 —¢) }
-1

coshgq | sinhg(¢ —

)
(e® + =) (£el1—8) 4 g=a(1=€))
2(et 4 €79)
e—4(€-y) e—(&+y) e—4(2=€~y) e—1(1=(6=v))
—~ — =+ —~ —
2(1+e20)  2(1+e20)  2(14e29) 2(e?+e79)
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and using this formula and the corresponding formula obtained by interchangind¢, one
finds that

1+e+ B¢* —en?/q

G = —qlé—y|
2(1+e729)(¢%2 — (1 + ¢ + Bg?)qtanh ¢ — £2k?)
N 1+e+ B¢ —ep®/q )
2(1+e2)(¢* — (1 4+ ¢ + Bg*)gtanh g — €2k?)
+ 1 +e+ ﬁq2 - 8/’L2/q e—q(2—§—y)
2(1+e29)(q%2 — (1 + ¢ + Bg?)qtanh ¢ — £2k?)
L+e+ P —e1’/q oe—a1-lé—yl)

2o+ e (@ — (1+ =+ Bd)qtanhg — 2k?)

We now consider the first of these terms in detail; the others are handled in an analogous fashion.
Define

I — EQf'—l |: (1 + € + ﬁq2 - gluz/q)(l - X(C.I)) e—q‘f—y|
2(1+e729)(¢%2 — (1 + ¢ + fBg?)q tanh ¢ — €2k?)
£’ (1+e+6¢" —ep?/q)(1 — x(q))

o118yl —ine o —ikz dp dk.

o r2 2(1 4+ e729)(¢% — (1 + € + B¢?)q tanh ¢ — £2k?)
Introducing polar coordinatgg, #) and(r, ¢) defined by
5%/1 =qcosf, ek = gsind, T = £27 oS ¢, z = ersin ¢, (127)

we find that
. b /27r /oo q(1+ e+ Bq* — qcos® 0)(1 — x(q)) e~ a(IE=ylHircos(0=0)) 44 49
21 Jo Jo 2(1+e2)(¢? — (1 +¢+ B¢?)qtanhgq — 2k?)

ex [*7 (% q(l+e+ B = qeos* (@ + ) (L= x(@) _ge—yltircos sy
_ et ~ q Y 17" COS d d
27T/0 /O 2Q(1 + e29) e qdi,

wherey = 0 — ¢ andQ = ¢? cos®(¢ + 1) — (1 4 € + G¢?)q tanh q. Our strategy is to show that
C 1 C
|ax]|§7“_37 52’az]|§ﬁ

uniformly over{y, ¢ € [0,1] : y # £}, because

_1 €2 1 _1 . g2
Op =€ 2cosp0, — ——sin ¢y, €20, =¢ 28in¢p 0, — ——cos POy
r r

it suffices to show that )

1
ce2 Cce2

(Here, and in the remainder of this proof, all estimates hold uniformly ¢yef € [0,1] : y #
¢}.) Letus writel = I, + I, + I3, wherel,, I3 are obtained fronT by replacing the range
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of integration fory by respectively(n/2 — £, 7/2 4+ €), (37/2 — £,37/2 + €) andé is a small
positive constant, and consider each integral separately.
Notice that

3711 _ 27T// lq COS’¢ 1 +€+ﬂq — ¢ COS (¢+¢))( X(q))e—q(\f—y\—i-ircosq/;) del/J

2Q(1 + e—29)
_ / —icos
7 (1€ =yl +ir cos )

% /OO 83 <q2<1 te+ ﬁqQ _~q COSQ((b + W)(l _ X(q)))e—q(|£—y|+ircosw) dq d@/%
o 2Q(1 4 e724)

inwhich J = [0,27]\ ([r/2—&,7/2+£]U[37/2 —¢,3m/2+£]) and the second line is obtained

by three integrations by parts with respecyt(ihe requirement that = ¢ is used at this step).

Because

1 . o
= =0(q?), aQ=0(""), i=0,1,2,...

asq — oo, the third derivative of the quantity in large parentheses in the above expression is
O(q™?) asq — oo; it also vanishes near= 0 and is therefore integrable. It follows from these

observations that
2 1 _ 2
( 1+¢e+ 06¢* — qeos®(¢+ 1))( x(q)))’dng < c;:g‘

9L < _// 20(1 + o—24)

The integrallg is dealt with using the substitutian = cos v, so that
i?w(1 +e+ B¢°)(1 = x(0) _q(ie—yl+i
O, I, = e a(€=ylHire) 30 q.
SN v q
/ / igdw(wcos g — /1 —w?sing)?(1 — X(q))e’
_: 20v1 — W2(1 4 e=29)

1

d(le=yl+ire) 4 dw, (128)

whereg = sin € and
Q = (wcosp — V1 —w?sing)? — (1 + ¢ + B¢*)q tanhg.

Examining the first integral on the right-hand side of equation (128), note that

w(l+e+6¢*) (1 = x(9) _ge—ylrirw) 1y g2
o ) dgdw = IL + 12,
/_5 / 20V1 — W (1 +e %) ! S

where

121 _ / / 1 +E+ 6(] )( X(q>>e—q(\£—y|+irw) dg dw,
s 20Q(1 + e~29)

2 _ 3 OO 2(1+€+6q )( (Q>> —q(|—y|+irw)
L= /_50(“’)/0 Ot oy © o dade

- € O(w3) o0 3 (q2(1 + e+ /8q2)(1 — X(Q))) —q(|é—y|+irw) w
/—5 (1€ —y| +irw)? /0 % 20V1 — w2(1 + e~24) ¢ dgd
= O@r®).
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Using the formulae

and

g(w) = —2(wcosp — V1 — w?sin ¢) (cos o+ sin (b) =sin2¢ + O(w),

w
V1— w?
we can integrate by parts with respect.t®o find that

1 > . i 1 q2(1 "‘5"‘6(]2)( X(q)) —q(|¢— —Hrw)} o
b= / K or rQ) 2@(1+e—2‘1) o dq

[T )P e

_ /Ooo K w1 )q (1 +e+ 8451 X(Q))e—q(|§—y+irw):|ws~dq

igr = ¢*r? 2Q(1 +e2) o
0o pE 3(1 (1 - .
+ / @ n2p LUHEFBO)A= X)) —oe-sisina) g, qq
0 _e 1Ir 2Q2(1 + ei2q)
oo g 1 2 1 2 1-— i
_ / — sin 2¢ ¢ (1 +e+Bg°)( X<Q))e—q(|’5—y|+""“’) dw dg
o Joer 2Q*(1 +e729)
/ /E (1t +69°) (1 = X(@) —qe—yi+ine) g, dg
. 2Q%(1 + e~24)
/ / 14+ 69°)(1 = X(@) —qe—yi+ine) g, dg.
2Q2(1 + e~24)

Integrations by parts with respectg@how that the first, fourth and fifth terms on the right-hand

side of this expression a®(r—3); integrating the second and third terms on its right-hand side

by parts with respect to and repeating the above calculation shows that they are&¥lso®).
Turning to the second integral on the right-hand side of equation (128), note that

/ / w(wcosp — V1 —w?sing)?¢*(1 — X(Q))efq(\éfleriW) dgdw
- QQ\/I — w2(1 + e~29)

/ / )e—q(lﬁ—y\+irw) dg dw
_& 2Q 1 —|— 6—2‘1)

A 2@ 1+e—2‘1)
/ / 1= x(@) q(e-ylrirw) dg dw.
i, 1 +e)
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sion areO(r—3

The methods used above show that the first and third terms on the right-hand side of this expres-
). To discuss the second term, we use the formula

. 2 2w 2
2 —igrw dw = — w
/w e w _iqr + _q27"2 + i3
and integrate by parts with respectipthe result is

s

(I€—yl+irw) dg dw
_gq)

L1537

3 w=¢E
+ q~(]‘ - X(Q)) efq(|§fy\+irw) dq
igr — ¢*r*  ig3r? ) 2Q(1 4 e~2) b
¢ w? 2w 2 (1 — .
_/ -4 — + - — q~< X(?)) e—q(|§—y|+1rw) d(] dw
& qr  q°r 19°r 2@2(1 +e 2q)
expression i€)(r~

and integrations by parts with respectg¢@how that each term on the right-hand side of this
3

). Altogether we have that

|87"]2| S g
and the inequality

N\H

|0, 15| < ¢
is obtained by the same argument

Direct calculations yield the formulae
3¢[1 =

//OO 31+6+5q —qcos’(¢ +¢))

_ —q(|é—y|+ir cos )
Q1+ e ) sin2(¢+¢)(1 = x(a))e dq o
q(1 + e+ Bq® — 2qsin2(¢p + v))
27T / / 2@(1 + e~2) (1
Oply =

/ /°° (1 +e+ Bg?)(1

QQ s ) X(q))g(w)e—qﬂﬁ—y\—kirw) dq dw
e <4
aw/ [ Faren

(w cos ¢ — V1 — w?sin ¢)2g(w)e 1Y) qg duw

/ q(1+e+ B¢*)(1

X(Q)) —q(|&—y|+irw
e dg dw
2@\/1 — w2(1 + e24) 1

%/ s

g(w)e—q(lﬁ—y|+i7“w) dgdw
Q 1+ e—2‘1

X(q))e*Q(‘f*yHircosdJ) dgde,

oy m,
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together with a similar expression foy/;, and the methods described above show that each of
these integrals i©®(r—2).
We have therefore proved that

ax _ C cE
H ' }f 1[62G(1—x)]‘ <SS T oaT VES
€20,
from which it follows that

{2} o0 —med

for eachw € L?(0,1). This result, together with Proposition 4.10, shows that the hypotheses of
Theorem 4.5 are met, and we conclude that

Hfl [/015%1(1 — X)udf}

< ——||wllee(on
LP(0,1) (x2 + 8_12‘2)% 1)

< e2?|uf. 0
p

Lemma 4.12 Choosep € (1,00). For eachu € LP(X) the functionGy, , (u) belongs toL?(%)
and satisfies the estimate

IGo. (w)lly < czllull,.

Proof. We again use the formula

PG = (L4 + Bg%) —ep?q =
2(1+e2)(¢> — (1 + ¢ + B¢?)g tanh g — ek?)
n ¢*(1+e+Bg%) —ep’q e 1(E+y)
2(1+e729)(¢?2 — (1 + ¢ + fBg?)qtanh ¢ — £2k?)
N ¢*(1+e+B*) —ep’q o i(2E-)
2(1 4 e20)(¢% — (1 + & + B¢?)g tanh ¢ — £2k2)
¢*(1+¢+Bq°) —ep’q o—a(1-l¢=y)

* 2(e?4+¢e79)(¢?> — (1 + € + B¢?)qtanh g — €2k?)

and consider the first of these terms in detail; the others are handled in an analogous fashion.
Define

L= 25 (1+e)g*(1 - x(9) e
! 12(14+e729)(¢? — (1 4+ ¢ + B¢?)q tanh ¢ — £2k2) |’
I, = 2F! [ Bq* (1 —x(q)) e_q|§_y|_

2(14+e20)(¢> — (1 + ¢+ G¢?
epq(1 — x(q)
12(1+e720)(q2 — (1 + ¢+ f¢?

The method employed in Lemma 4.12 shows that

I gtanh g — e2k?) |

e~ dlé=yl|

~_ | ~—

I — 2;‘—1
s c g tanh g — £2k?)




from which it follows that

3
ce?2

1 8 }
sup ;x I ld < - 129
56[071]/0 { €20, 1Y (:EQ + 57122)3 ( )
'yoo
s o o hldEs ———— . 130
ye[o%]/o { e20, } 1| = (22 4 £7122)3 (130)

and out strategy is to show that (129), (130) also holdf@nd/;.
Using the polar coordinates (127), observe that

IQ = (88323 + 8283)i2
1 1 ~
_ (af + ;ar + ﬁa;) I,
where

2 ﬁqz( x(9)) o—dlE~yl
=F { 2(1 +e—2‘1)( (1 + & + [f¢?)q tanh ¢ — £2k?)

_ SQB/ / —q(|§—y|+ircos¢) dqd@/J
2@ (1+e~ 2‘1

andy =0 — ¢, Q = ¢*cos®(¢ + ) — (1 + £ + B¢*)q tanh q. To show that the estimates (129),
(130) also hold for, it therefore suffices to examine the quantities

- 1 - 1 .- 1 - 1 - 1 ~ 1 ~ 1 ~
3 2 2 2 2 3
a1, 2 0,15, ;@]2, —r38¢12, 32 8r8¢12, ;@&blg, 32 8T8¢12, —T36¢IQ.

In order to deal with the integral

(9?1} _ 52ﬁ 2#/ 1q )) COS ¢ o d(lE—y|+ircos)) dq dip
2Q 1+ e=24)
e2f icos® ¢ /°° ( ¢°(1 — x(g)) cos® %/1) (Ie—yl +ir cos )
= — - a —q yl+ircos¥) 4, d ’
2 Jo (€ —y|+ircosy)’ J, ¢ 2@(1 + e2) qdy

where we have supposed tha# ¢ in the integration by parts, let us write

5 ( ¢°(1 — x(q))

20(1 + e—2q)> SR,

where

s (qﬁu—x(q)))

g—00 2Q(1 + e~29)
andR(q) = O(¢™?) asq — oo, so that

8§j2:[~21+[~227 y#€7
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in which

1 2T : 3 o]
j21 — 525/ ( 1COS_¢ / ge—q(lﬁ—y|+irCOSWdch7
0 0

27 |€ — y| + ir cosp)?

1 27 : 3 0
~ e2f3 icos” ¢ —a(le—yl+i
2 = R a(|€=yl+ircos¥) 4o qa).
B A = A 14

It follows from the fact thafR (¢) is integrable that/2| < ce= /r3 and hence that
b ce?
o [V
ceo,1] Jo r
Furthermore, one has that

/ |Il| d %ﬂ /1 /27r cos® (0 /OO gefq(|§fy\+ircosw) dg dw’ dy
sup y = €203 sup _
€€[0,1] €€[0,1] o ([&—yl+ircosy)® J

; Ly o —{cos® 1
= 23 sup / / ; dy
celo,1] Jo o (|&—y|—ircosy)?

1 2T
_ cig sup/ / —lcos? w<(|§_y| ir cos )" dw‘dy

€€lo,1] € — y|> + 12 cos? ¢

dy

6 — yl* + r*cos'
< ce? sup / / cos |? dv) dy
€€[o,1] | | (1€ = y[* +r2cos? )

1 lw|* + 7% cost ¢
< ce2 3 dy d
: (//'“”“mww%ww4ww
2w 4
. e + 1
= ce? dtd
/ / r3(t 1) v
3 [t +1
< 5 L dt
3 Jo (24 1)%
ce
< e
A similar argument shows that
b ces ces
sup / |0, Io| dy < —, sup / |021,| dy < —5
eelo,1] Jo r €€[o,1] r

Direct calculations yield the formulae

2T 712
83,[; _ 625 / (2q h 5~h¢) 21 - ¢(Q) o a(l&—yl+ir cos ) dq dv,

Q? ) 2(1+e2)
2 7
83I~2 _ 525 6q9h3 6(] ~hh¢ B q55l¢¢ (1 B X(Q)) efq(|§fy\+ircos1/1) dg dy,
? Q3 Q2 /2(1+e7%)
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whereh (¢, 1) = sin 2(¢ + ). Observe that

sup { ¢ } e~ 4([E=y|+ircos ) dgdy|dy
€€(0.1] 1 Q2(1 + e29) | hgo
< / / ) e ™ dgdw
I+e” 2‘1)
< o [TYra x( DI
0 (1 + e—2q)
< ¢
and since : o
q"(1 - x(q)) ¢’ (1 —x(q))
2Q3(1 + e~24)’ 2Q4(1 + e29)

are integrable this result also holds for the remaining terms in the formul@éffgragfg, which
therefore satisfy

1 1
sup/ \8§12|dy§c<€%, sup/ |8§’,[2]dy§c<€%.
eef0,1] Jo gef0,1] Jo

We find from the calculation

2m
00,0 — 525 / —ig° cos ¢ h(1 — x(q ))e*q(|5*y|+ircosw) dg dy

2Q%(1 + e~29)
_ _1525 COS¢ h o 9 ( Qf(l - X(q)) )e¢J(§y+ircosw) dq dw,
2 Jo €=yl +ircosy J 2Q%*(1 + e29)

which is valid fory # &, that

1 2
sup / 10,051, dy < « / / ‘ ( . X(ilz) >’e—‘1w dgdw
¢ef0,1] Jo 2@ 1+ e~29)
< 082 / 1o ( q (1 — X(Q)> )' —quw d(]
rJo 4 202(1 + e~24)

<

and similar arguments show that

1
£2

M\»—\

sup / 0,0 IQ\dy <€

sup / |02 8¢Ig\dy<
¢e0,1]

¢€[0,1]

We have therefore demonstrated tliasatisfies (129), and a similar technique shows that
the same is true af;. Furthermore, we may clearly interchange the roleg ahd¢< in the above
arguments and hence conclude thaand/; also satisfy (130). Altogether we have that

1
sup/ { O }f1[€2q20(1 )}‘dy<—
¢efo,1] Jo €20,

r3’




O _
{ 5 breeca-ves S

1
2

1
sup /
yel0,1] Jo

from which it follows that

1
H{ 5?32 }F‘l[/o 52q20(1—x)wd§}

for eachw € L?(0,1) (e.g. see Hutson & Pym [20, Corollary 2.5.4]); using this result and
Proposition 4.10, we find from Theorem 4.5 that

< ]|
S 3 |W]|Lr(,1
LP(0,1) (x2+5_122)% (0.1

< 052||u||p. O
p

H}"_l [/OIEQqQG(l - X)u df]

The estimates fo@y, o andngg are presented in the next two lemmata, the second of which
is proved in the same way as the first.

Lemma 4.13 Choosep € (1,00). For eachu € LP(X) the functionG, »(u) belongs toL?(X)
and satisfies the estimate

G 2l < c®[lull,-

Proof. Observe that

1 c 9
é S 572q6 S cer,
1 1 ce73g 33 33
€210, 0 < 7(|M|+5 2q° + e 2¢°)
c B _ _
< @(u2+5 P 472 + 72
. C(l'u_Q L 2q12>
QQ Q?
2 2,12
o M € °q
= C(6 2 6‘46112)
< e
—1 1 ce™q 1.3, -1.5
5 8k§ < o (k| +e7 ¢+ ¢°)
c
< @(k2 + e 2@ + 72 + 72¢°)

1k e 212
< ¢l =— + —)
(Q Q Q?

B2 em2g12
2
0(5 L2 + 5_4q12)
ce?

IN

IN
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for ¢ > qo, and similar calculations show that

1 1 3
0? (—)‘ <ce?, e%?|0? (—)‘ <ce?, e
SNV R N/l

for ¢ > qo. Turning to the ‘cut-off’ functiony, note that

5_1(]2

1
@Mﬁk (@) ‘ S 052

Xl < e
_1 _1
e 2ql0ux| = e 2qIX(@)0uq| < X' (9)] < ¢,
e 'qloex] = e 'gX(@)Bug| < q|X(9)] < ¢

and similar calculations show that
_ _ _3
e @0x| <, eP@|0kx| < e, e q?0.0kx| < ¢

these estimates clearly also hold far— y). The multiplier(1 — x)/Q therefore satisfies the
hypotheses of Lemma 4.2 uniformly for¢ € [0, 1], and it follows from Theorem 4.4 that

l= [ 5520 -zt e

Lemma 4.14 Choosep € (1,00). For eachu € L?(X) the functionG, »(u) belongs toL? ()
and satisfies the estimate

< 2|l 0
p

IGo.2 ()l < cellull,.

Lemmata 4.8, 4.9 and 4.11-4.14 show that
Gl < cellully, — 1G@), < cellully,
and we can deduce the remaining estimate)fgt from them.

Corollary 4.15 Choosep € (1, 00). For eachu € L?(X) the functiond;G(u) belongs toL”(3)
and satisfies the estimate
10,6 ()l < ce®|lull,-

Proof. Observe that
r 1 1
8§Ga(u) = F! /8§G1x}"[u}d§]+}"‘1{/ ale(l—X)]-“[u]df]
LJO 0

71 '/1 e2(1+¢)x¢*(G + 1)
- o ¢@®— (14+¢e+ B¢?)gtanh g — 2k?

Flu] dg]

- Uol 2¢°G(1 — x)Flu] dﬁl,
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where we have used (116), (125) and the facts that
2G = ¢*(G+1), 026G = ¢°G.
The assertion therefore follows from the estimate

= /1 e2(1+¢)x¢*(G + 1)
o @*— (1+¢+ Bg¢*)qgtanhq — &2k?

< ce?flull,,
p

Flul dg}

which is obtained by noting thﬁ;(qQ(G +1)) = O(¢*™%),7 = 0,1,2 asq — 0 uniformly for
y,& € [0, 1] and repeating the first part of the proof of Lemma 4.9, and the estimate
< cg?lull,,

‘]—“‘1 {/152(120(1 — x)Fu] dg] )

0
which is obtained in the proof of Lemma 4.12. O

The above theory establishes the basic estimate

1G(u)ll2p.e < cellullp, (131)
and we now complete our analysis by showing how Lemma 2.15(i), (ii) follow from this result.

Corollary 4.16 Choose) € [0,1] andp € (1, 00).
(i) For eachu € W2?(%) the function

1
Gi(u) =F 1 {/ ipnG L Flul dg]
0
belongs toV/1+97(%) and satisfies the estimate

1Ga(w)llspe < cellullspe

(i) For eachu € Wor(X) the function

1
Gs(u) = F* {/ ie2 kG F[u] df]
0
belongs toV/1+97(%) and satisfies the estimate

1G5 (W)ll5p.c < czllullsp.e.

Proof. Observe that

1Ga(W)hpe = 10:G(W)ll1pe < NG(W)ll2pe < llully,

and
1Ga(u)|l2pe = 1G(ua)|2pe < cellully < cgllullipe.

Interpolating between the previous two inequalities, we find that

Hg4(u)||1+5,p,€ < Cg”“”&p,sa

and we similarly find that
1G5 (W) lirap.e < cellullspe- =
Parts (iii)-(viii) of Lemma 2.15 are established in an analogous fashion.
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4.3 Convergence properties

Our final piece of analysis is the proof of Lemma 3.11, which relates to the operators
GN™ = NGl —xr.),  i=1,....6,8, ... 11.

We begin by examining,""", G5, G3"™ : Wo?(R?) — W1tP(R?),

Lemma 4.17 ChooseN > 0, suppose thaf R, } is a sequence of positive, real numbers such
that R,, — oo asm — oo and letyy : R* — R, xg, : R* — R be smooth ‘cut-off’ functions
whose support is contained in respectively(0) and Bg,, (0). The functions

m o 1
GMw) = xnF!

——Fl(1 = xa,)ul|,
e 10 )
N,m —1 [ i ]
9 e 1 R—
M) = o F eI x|
N.m 1 [ 1€%k’ 1
’ f— — 1 J—
satisfy
“gzN’m(u)HH&pﬁ < CN’mHu”é,p,sv 1=1,2,3

for eachd € [0, 1] and each sufficiently large value pf in which the symbat™ ™ denotes a
guantity that, for each fixed value 6f ande, tends to zero as1 — cc.

Proof. Suppose thaf (u, k) is one of

1 ip ie2k —p? —ck? —e2pk
L+e+0¢* 14+e+0¢® 14+e+0¢® 1+e+0¢> 14e+0¢® 1+e+f¢
and define
G () = xnF (s B)FI(L = X ul,
so that

QN’m(u)(x, z) = xn(z, 2) K(x —x1,2 — z1)(1 — xg,, (71, 21))u(z1, 21) dog d2y,
RQ

whereK (x,z) = F [ f(u, k)]. (Note thatf ¢ L'(R?), so thatK is only well-defined as part of
the above convolution.) The?(R?)-norm of G¥™(u) is given by

il = (

where

1

P P
dz dz) ,

/ K(x —x1,2 — z1)u(xy, 21) dey dzy
Nzlvzl

N* = T,z I$2+ZZ§N; NGV = T,z Z.Z‘2+Z22Rm7
1 2
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and using the generalised version dilder’s inequality (Hardy, Littlewood & &lya [19, Theo-
rem 188]), one finds that

1G™™ ()l
1
]2 T » 1
— (/ |z x1’2+\z Zl‘QK([E—$172—21>U($1,Zl)d$1d21 dxdz)
x| g le =Pz =2
1 ‘ﬂd 1 o
< z1dz
> /]nyz /];7;1‘21 |a';_x1|2+ |Z_Zl|2 1 1
P 1
a2 p
X(/ ) 1((|5L’—{E1|2+|Z—21|2)|K(x—:p1,2—zl)’)‘b dxldzl) dxdz) ||u||p’
NyVF
where
1 1 1
-t =1 Il<qg <2, g>2
p @ q2

(choices ofy, g2 in the indicated ranges are possible for sufficiently large valugs. of
A direct calculation shows thak f, 0} f are bounded ag — 0 andO(q~?) asq — oo; they
therefore belong td.*(R?) for all s > 1. Using this fact, we find that

(/mq«m_xﬂﬁﬂz—aﬁﬂxm_xhz_a”dedQYQ
- 1
S B e =)
N 1
= ([l + K ara )
5

1
< |2 K (z, )| dz dz)q2 + ( 122K (2, 2)| dx dz)q2
R? R?

IA

IN

([ 102t uar)® o ([ 102 duar )
R2 R2

< G
whereg; is the conjugate index t@, and we have used the Hausdorff-Young inequality
lullge < [ Flulllg,  1<g2<2

(e.g. see Hardy, Littlewood &dtya [19,558.5, 8.17]). It follows that

1 - a »
Nm < e, dz, d dzd

and this inequality and the calculation

1 q1 ﬁ »
/ (/ ( 5 2) dxy dzl) dz dz)
nes \Jnea \ |z — 21?4+ |z — 21
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Lo N
< — ) dx;dz dxdz
< o U (i) anaa) avcc)
2y3
B b L O T
(—2+2q)n
o (132)

asm — oo, whereN; V™ = {(z, z1) : 23 + 2? > R,, — N}, imply that
1G5 ()l < 2™ ull,-
Clearly
1G ™ (W l1pe < NG @y + 1067 (Wl + 0.6 W)llps i =1,2,3,

and becausé;""(u) = xnF ' [fi(u, k) F[(1 — xg,)u]], i = 1,2,3, wheref;(u, k) is theith
choice forf(u, k), we have that

N,m ,m
16" (@)l < X lull,.
Furthermore, the above argument shows that both terms on the right-hand side of the inequalities

10,6, ()l
< 10X F il K)FIL = X )ullllp + X F = [ipefipe B)F((L = X, )ul] s
=210.6" (Wl
< 2|0 F filpn, K)FI(L = X )ulllp + I F ek fi (1, ) FI(L = X, )l
are bounded byY™||u||,, the first becausé, yx, 0.xn have the same support gs; and the

second because eachipff;(u, k) andieékfi(u, k) is one of the fourth, fifth or sixth choices for
f(u, k). Altogether we have that

1G ™ (W) l1pe < 2™ [lullp, (133)
and a similar argument shows that

HamgiN’m(u)”p
< O x F it B)FI(L = X )ullllp + 2010 x v F s i B)FI(L = X, )ulllp
+ e F i k) FLO((L — xro )W
< e,
l|0..GN" (W)l
< |0 xn F i, ) FIL = Xy ulllp + 22 [ 0ox v F ie2 ki, k) FI(L = X, )l
+ I F ez ki, k) Fle20.((1 — xr,)w)]lllp
< e,

so that
||gz‘N’m(U)||2,p,s < CN’mHUHLp,s- (134)
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Interpolating between (133) and (134), one finds that
1G™ ()l tspe < [l pe- =

The corresponding results fgf"™, G2, G, andGy"™, ...,G"™, are obtained by com-
bining elements of the proof of Lemma 4.17 with the methods used to establish the mapping
properties 0G,, G5, Gg andGg, ..., G in Section 4.2. We give the details féﬁv’m andgé\”m;
the remaining operators are treated in an analogous fashion.

Lemma 4.18 ChooseN > 0, suppose thaf R, } is a sequence of positive, real numbers such
that R,, — oo asm — oo and letyy : R* — R, xg, : R* — R be smooth ‘cut-off’ functions
whose support is contained in respectively(0) and Bg,, (0). The functions

B = | [ -l ae]

27 = | [ G - g

satisfy
Hgi\[’m(u)”l—%é,p,e < CNM””H&%E’ ||gév’m(u)||1+5,p,s < CNm”uH&,p,e

for eachd € [0, 1] and each sufficiently large value pf in which the symbaot™™ denotes a
quantity that, for each fixed value 6f ande, tends to zero as1 — cc.

Proof. The first step is to show that

IG " W)lly < e lully, (135)
N |

G @)l < e llull,.

IG ™ @)lly < e lull,,

WhereGiV ™ and gf ™ are the operators obtained by replacipgwith respectively—u? and
—s%,uk: in the definition ofgiv’m; using the argument given at the end of Lemma 4.17 we imme-
diately deduce that

10:G3"" (W)l < X" lully, €2 0.6 @), < X ull, (136)

and
1020Gs ™ (W)l < X ullipe €l022G0 " (W)l < X1 e (137)

To this end we use the decompositions
Nm _ ~Nm Nm SNom _ AN,m SN,m 5Nom _ ANm 5N,m
g4 - g4a + g4b ’ g4 - g4a + g4b ’ g4 - g4a + g4b

and
]\77 N7 N’
g4b g4b 1 + g4b 2 g4b g4b 1 + g4b 2 g4b g4b 1 _'_ g4b 2

which are defined using respectively the ‘cut-off’ functipiisee the explanation above Lemma
4.8) and the expression (125) (see the explanation above Proposition 4.10).
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Let us write ) . .
Gy = %G1 + 2G4 + 2G5
(see equation (116)). Calculations similar to those presented in Lemma 4.8 show that
0p(inGy), Op(inGy),  i=1,2,3

are bounded at the origin, so th#ft(xinG1) andd; (xiuG:) belong toL*(R?) for eachs > 1.
Noting that all estimates are uniform fgré € [0, 1], we may apply the method explained in
Lemma 4.17 to find that

1G" (Wlp < & [ull,,

and the same argument shows that
7N, ,m AN, ,m
G @l < <™ lullp, NG Wllp < & [full,.

To obtain the corresponding estimates@tﬁlﬁ’ff we use the expression

o 1+¢e+ B¢* —eu?/q o—dlé—y]
2(1+e729)(¢? — (1 + € + fg?)g tanh ¢ — £2k?)
N L+e+ 8¢ —ep’/q o a(E+y)
2(1 4 e24)(¢% — (1 + & + B¢?)g tanh ¢ — £2k2)
+ 1 +e+ ﬁq2 - €,U2/q e—q(?—f—y)
2(1+e729)(q%2 — (1 + ¢ + fBg?)qtanh ¢ — £2k?)
1+e+ 0" —ep?/q o—a(1-16=y))

T et o) (@ — (L +e+t Bgd)qranhq — e2k2)

derived in Lemma 4.11. We consider the first of these terms in detail; the others are handled in
an analogous fashion. Define

in(l+e+ 0" —ep?/q)(1 — x(q)) e~dlE—yl |

I = 2f_1
c 2(1+e729)(¢? — (1 + € + Bg?)g tanh ¢ — £2k?)

In terms of the polar coordinates (127), one has that
[ - [1 + [2 + [3,

where

b= 621/ / LU ZMD) o 4 )omstievitiremi) g ay,
0 0

2Q 1 + e_2‘1)
I Eél /27r o q3( ) S3(¢_'_w>efq(\£fy|+i7‘cosw)d dl/J
- q )
: o Jo 2@( )
% % Bt .
13 _ €21 ( ( )) COS<¢ + w)efq(|£fy|+1rcosw) dq dwu

2r Jo Jo 2@(1+e_2)
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Y =6 —¢andQ = ¢*cos?(¢ + ¥) — (1 + € + $¢*)q tanh ¢, and the method used in the proof
of Lemma 4.11 shows that

nl<5 Bl IBl<=, y#&
The above calculation |nd|cates that
FGN o (s K5y, 6)] ZK$zy§
where each summand (of which there are a finite number) satisfies the inequality
|Ki(z,y39, )| < :75 ni = 2

for y # £. Observe that

(/.

dy dx dz)p

p

T — 21,2 — 2139, §)u(r1, &, 21) d§ dog dzy

T,z

T1,21
N2

0
1 1
/ / (/ ) 1/ !Ki(x—xl,z—zl;y,€)|d€dx1dz1) dy dz dz|ul,
e J0 Ny Jo

’
P ng p
Iy

1 2
¢ dz, dz U
E\/]Vic,z </N;1,z1 <|x — Ptz — Z1|2) 1 1) ][

1
[l

S

IN

IN

c(nN?)» (R, — N) ™" z
p'ni —2

<
— 0

asm — oo, Wherep' is the conjugate index tp and we have usedadtder’s inequality and the
calculation (132). It follows that

1G5 ()l

-

< " ully.

1 P :
ZKi@ —x1,2 — 2139, §)u(r1, €, 21) d§ doy dzy dydxdz)

T,z 1,21
N2

This technigue also yields the estimates@gy’;" andg;,'t'; here we have to estimate

[ g —n (1+e+6¢> —ep?/q)(1 — x(q)) o—dlé—y]
—ezpk ) 2(14+e729)(¢? — (1 + ¢ + B¢?)q tanh ¢ — €2k?)

(and three other terms with slightly different exponential factors), and hence

= X(q>>{ C082(¢+¢) } —q(|§—yl|+ircos)
b= / / 2@ 1 Fo2) | cos(¢+)sin(é ) [© dgdv,

_ e3i cost(¢ + 1) } —q(|€—y|+ir cos )
= / / 2Q +e- 2q) { cos®(¢ + ) sin(¢ + ) ¢ dg dip,

_ * B¢*(1 — x(q)) { cos?(¢ + 1) } —q(|€—y|+ir cos )
b = 27T /0 0 2Q(1+e20) | cos(¢+¢)sin(¢+¢) © dgdy.
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We find that c ‘
Ul’<—§ ’leﬁr—g, ’I3,§r_i7 y#E,

and the argument given above therefore yields the inequalities

.
IGaT @y < e llully, G (@l < X lull,.

Calculations similar to those presented in Lemma 4.13 showdif(at/Q), 05 (in/Q) are
O(q~?) asq — oo, so thatd?((1 — x)ix/Q), 95 ((1 — x)in/Q) belong toL*(R?) for all s > 1.
Noting that all estimates are uniform fgr¢ € [0, 1], we may apply the method used in Lemma
4.17 to find that

1G 175 (@)l < X lull,,

and the same method yields the corresponding es,tlmat@Vf@randg4b 5 - Finally, we obtain
the estimates

10,G:"" (w)ll, =

YnvF ! [/0 ipd,G1F[(1 — xr,, )l df}

< M full,, (138)

Yl = | [ oo~ xnwiag

< M10:((1 = xR, W)l
< Cév’mHqu,p,e (139)

p

using the method given above fgr ™, noting thato?(iu0,G1), 92(i10,G1) and 92(02G,),
8,3(85(}1) are bounded at the origin and the polar-coordinate representation of their kernels differ

from those ofG‘f’m only in the form of the trigonometric factor.
It follows from (135)—(139) that

N,m m N,m m
1G5 (W llipe < 2 llully, 167" (W)llzpe < ™ lulligpe,
and interpolating between these inequalities, we find that
N,m
167" (W ll+5pe < 2™ [llspe.
The same method yields the corresponding estimatéé?d?. O
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