Forecasting the impact of an invasive macrophyte species in the littoral zone through aquatic insect species composition

<div><p>ABSTRACT Invasive macrophytes threaten freshwater ecosystem biodiversity. We analyzed the impact of the invasive white ginger lily (Hedychium coronarium J. König, Zingiberaceae) on aquatic insect assemblages living in the littoral zone of a tropical reservoir. We took aquatic insect samples in the littoral zone on four main vegetal profile banks: white ginger monotypic bank, forest partially invaded, native macrophyte monotypic bank and riparian forest. At each vegetal bank, we measured abiotic variables such as dissolved oxygen, pH, water temperature and depth. We analyzed the aquatic insects through abundance, richness and Simpson diversity. We used the non-Metric Multidimensional Scaling (nMDS) analysis to analyze the spatial distribution of each assemblage, and Analysis of similarities (ANOSIM) to verify differences amongst dissimilarity distances. Additionally, we analyzed the main taxa associated with invasive macrophytes through indicator species analyses using IndVal index. We observed that the invasive macrophyte banks presented higher abundance of associated specimens, as well as lower dissimilarity of aquatic insect assemblages. Additionally, invasive macrophytes shifted the water pH and littoral depth of reservoir banks. The IndVal index indicated eight aquatic insects as indicator species. Labrundinia unicolor Silva, 2013, Ablabesmyia depaulai Neubern, 2013 and Diastatops Rambur, 1842 were indicator species on banks. We concluded that invasion of white ginger lily caused loss of shallow littoral habitat and altered the pH of the surrounding water probably by high decomposition rate and high production of plant biomass. We suggest the use of species of aquatic insects as indicator species to monitor white ginger lily impact in freshwater systems.</p></div>