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ABSTRACT 
Failure Mode and Effect Analysis (FMEA) is a widely used quality improvement and risk assessment tool in 
manufacturing. Design and process failures recorded through FMEA provides valuable knowledge for future 
product and process design. However, the way the knowledge is captured poses considerable difficulties for 
reuse. This research aims to contribute to the reuse of FMEA knowledge through a knowledge modelling 
approach. FMEA activities are shifted to the conceptual design stage to avoid costly and difficult design 
changes at later stages of the design process. An object-oriented approach has been used to create an FMEA 
model. Functional diagrams have been used for the conceptual model. The FMEA model uses functional 
reasoning techniques to enable automatic FMEA generation from historical data. The reasoning technique 
also provides a means for the creation of new knowledge. The automatic generation replaces the traditional 
brainstorming process for FMEA report creation. The sources of the historical data can be from the previous 
FMEA, failure reports or from the individual designers. 
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1 INTRODUCTION 
FMEA is a technique that identifies the potential 
failure modes of a product or a process, the effects 
of the failures, and assesses the criticality of these 
effects. It provides basic information for reliability 
prediction, and product and process design [1]. 
“FMEA is a method of reliability analysis intended 
to identify failures, which have consequences 
affecting the functioning of a system within the 
limits of a given application, thus enabling 
priorities for action to be set.” [2]. FMEA can be 
classified into two main types of design FMEA to 
deal with design activities, such as product design, 
machine or tooling design and process FMEA to 
solve problems due to manufacturing processes. 
FMEA is carried out by a cross-functional team of 
experts from various departments. The team 
analyses each component and subsystem of the 
product for the failure modes and determines the 
potential causes and effects. The risk of each failure 
is prioritised based on the risk priority number 
(RPN). RPN is a decision factor based on the 
product of three ratings: occurrence, severity and 
detection. Any improvement plan would be based 
on the indications from the RPN with the current 
controls (i.e. the solutions) being implemented for 
products/processes with high RPNs.  

2 PROBLEM DEFINITION 
Traditionally, FMEA is used in hard copy or 
spreadsheet format to capture the potential 
problems. Although the knowledge is aimed for 
reuse, as the knowledge grows, it is harder to reuse.  

A highly manual FMEA system is found to be not 
user friendly, hard to understand and not very 
flexible. There is also duplication of information in 
other documents in the factory. As a result, many 
companies use FMEA merely to satisfy contractual 
requirements [3] and users may find FMEA a 
“tedious and time-consuming activity” [4]. FMEA 
is often carried late in the design cycle after the 
design prototype has been built [4]. The changes 
made at later stages will be very costly.  
Much research has been carried out in FMEA for 
example in the electrical design of automobile 
systems [4] and mechanical design [5].  Little of 
this work has reached practical implementation and 
most mechanical, electromechanical and 
manufacturing process designs still rely on 
conventional methods. 
The research described here looks at a knowledge 
modelling approach to overcome the limitations 
discussed above. 

3 FMEA IN CONCEPTUAL DESIGN 
According to Pahl and Beitz [6], the design process 
consists of four phases: design specification, 
conceptual design, embodiment design  and 
detail design.  
Traditional FMEA is suitable for use in the detail 
design phase where the design solutions have been 
firmed up and the information required is easier to 
obtain. To move the FMEA involvement further 
upstream to conceptual design can be a challenge. 
Traditional FMEA will not be able to cope with 
frequent design changes, and conceptual design 
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deals with more abstract and imprecise information. 
However, conceptual design is very important as a 
poor design concept can never be compensated at 
later design stage [7]. Hence, this research attempts 
to implement FMEA within conceptual design and 
this requires autiomation of the FMEA generation 
process. Design changes must be reflected 
automatically in the FMEA without extra effort 
during conceptual design. 

4 FMEA MODEL 
According to Hubka and Eder [8], a transformation 
system is defined as “a sum of all elements and 
influences (and the relationships among them and 
their environment) that participate in a 
transformation”. Briefly, the elements of a 
transformation system consist of an operand, a 
technical process, technical system, human system 
and active environment. Figure 1 shows the 
transformation system for a conveyor system 
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Figure 1 Transformation System for Conveyor  

The transformation system can be used to organise 
the entities in a component library. To completely 
define the transformation system, entities are 
organised in five main classes: Technical System, 
Technical Process, Human System, Active 
Environment and Operand.  
A Technical System represents the class for design 
artifacts and equipment used for manufacturing 
processes. It is further categorised into two main 
classes, Machine and Product. The Machine 
represents machinery involved in the manufacturing 
process, such as the conveyor. The Product deals 
with entities from the design artifacts. A machine or 
a product can be made up of sub-assemblies and 
components. The Machine Component is used to 
represent the sub-assemblies and components for a 
Machine, whereas the Product Component is used 
for sub-assemblies and components of a Product. 
The decision on whether an entity is included as a 
machine or a product is purely based on the users’ 

point of view. A conveyor in a PCB assembly plant 
will be in the machine class, whereas for conveyor 
manufacturer it would be in the product class. 
Technical Process is a class for manufacturing 
processes and contains a series of Function Units 
which define the sub-processes and process steps to 
accomplish a manufacturing objective. For 
example, radio assembly process is included in this 
class.  
Human System is a class for human objects, such as 
users, machine operators and customers who are 
involved in handling machinery, products or 
executing manufacturing processes. 
The Active Environment includes environmental 
elements which affect the other categories, and can 
be physical phenomena such as heat, water or 
interference. 
Operand is the class for entities that are acted upon 
by others. They are usually involved directly in the 
end results of products and processes. The product 
or process functions are achieved by state changes 
to the operands. An object diagram for the 
transformation and components for the conveyor 
system is as shown in Figure 2. 
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Figure 2. Transformation  

Entity is defined as the super class for the elements 
in the transformation system. It is used as the basic 
class of all the physical objects. An Entity is 
characterised by its properties and states. Property 
is a class to represent the properties that define the 
Entity. In turn, State provides the value of a 
Property which defines the condition of the Entity. 
For example, a sensor can have a property 
“functionality” and state “not functioning”.  
Generic Functions are used to represent the generic 
grouping of all functions involved in designs and 
processes and have been developed based on the 
functional basis developed by Hirtz et al [9]. Figure 
3 shows an example for a Generic Function tree. A 
Generic Function can have many associated 
Behaviours. The Behaviour in this context is 
considered as a description to define the status of 
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the Generic Function. For example, a generic 
function “conveys” may have behaviours 
“conveying” and “not conveying”. 
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Figure 3. Generic Function Tree (after [9]) 

A conceptual model can be used to represent the 
interactions among the entities in the transformation 
system. The conceptual model can be illustrated by 
the following examples. 
In a conveyor system, a motor is used to move a 
belt. The motor interacts with the belt through a 
function called “conveys”. The motor is an entity 
known as the operator which acts on another entity, 
the belt. “Conveys” is a generic function term to 
represent the “move” action. The belt, which is the 
receiver of the action “conveys”, is also known as 
the operand of the relationship. The relationship 
among an Operator, an Operand and a Generic 
Function is known as a Function Unit. Operator and 
Operand are instances of Entity. An Operator in one 
instance can become an Operand in another. For 
example, a belt is an operand in the function unit, 
“motor conveys belt”, but it can be an operator for a 
new function unit, “belt conveys PCB”. 
The Functional Units for the conveyor system can 
form a functional diagram which is the graphical 
representation of the conceptual model (figure 4). 
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A cause and effect propagation method can be used 
to simulate the actual behaviour of a design in the 
real world. In a functional model, a state change in 
one entity will affect the status of the inter-related 
entities. The propagation is carried out through the 
Behaviour of a Generic Function. The relationship 
between an entity State and a function Behaviour is 
characterised by preconditions and postconditions.   
The state of the operator will determine the 
Behaviour of the Generic Function within a 

Function Unit. This is the precondition relationship. 
The Behaviour will in turn decide the state of the 
operand within the Function Unit. This is termed 
the postcondition relationship. For example, an inlet 
sensor senses a PCB. The operator is “inlet sensor”, 
the generic function is “senses” and the operand is 
“PCB”. If a state description “sensor failure” is 
introduced to the operator “inlet sensor”, the 
behaviour for the function “senses” is “not 
sensing”, and the operand state is “PCB not 
sensed”. The precondition relationship is “sensor 
failure – not sensing”, and the postcondition 
relationship is “not sensing – PCB not sensed”.  
In a functional model, the interaction between 
Function Units is carried out through the Entity 
itself as, in most cases, an operand of a Function 
Unit is an operator of the next Function Unit. 
Hence, if the state change occurs, the changes will 
be propagated and the series of preconditions and 
postconditions create a causal chain for a particular 
state change event.  
In order to facilitate cause and effect propagation, a 
functional diagram must be able to respond to 
stimulation or changes of state in its components. 
This response is driven by the causal reasoning. 
The causal reasoning knowledge is stored in 
Precondition and Postcondition in the forms of 
“operator failure state – failure behaviour” and 
“failure behaviour – operand failure state”. 
The causal reasoning is based on two basic 
assumptions that (a) there exists a state of an 
operator where if there is a change to that state, it 
will cause its functional behaviour to change 
accordingly and (b) there exists a functional 
behaviour where if there is a change to that 
behaviour, it will cause the corresponding operand 
to change its state accordingly. 
The Precondition and Postcondition gain 
knowledge through historical data extracted from 
failure reports and the FMEA. For a particular 
function unit, the operator state and the behaviour 
of a failure event form a set of preconditions. The 
behaviour and the state of the operand form the 
postcondition of the same event. Hence, with the 
accumulated events being recorded, precondition 
and postcondition tables will be formed. Using this 
approach, the static knowledge is confined to the 
entities and their functions, but not to the function 
units. During the reasoning process, it is possible to 
create new knowledge by matching the 
precondition and postcondition knowledge with 
similar failure behaviour. Using the same conveyor 
example, the function of the motor is to move the 
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conveyor belt. The belt in turn is intended to move 
the PCB laid on top of the belt. At an event when 
the motor fails due to a burnt fuse, the belt will not 
move, and neither does the PCB. Hence the 
knowledge fragment captured in precondition and 
postcondition tables can be arranged as follows: 
Precondition Table 
Operator Generic Func. Precondition   
Motor conveys fuse burnt – not conveying 
Belt conveys belt not moving – not conveying 
Postcondition Table 
Generic Func. Operand Postcondition 
conveys belt not conveying – belt not moving 
conveys PCB not conveying – PCB not moving 
The precondition table defines the behaviour of the 
motor with the blown fuse, and the behaviour of the 
belt when it is not moving. The postcondition table 
provides the knowledge about the response of the 
belt when it receives the behaviour “not 
conveying”. The postcondition table also provides 
the knowledge about the response of the PCB when 
it receives the behaviour “not conveying”. This 
approach provides a modularity for the creation of 
new knowledge. 
In creating a new function unit, the operator, 
operand and the generic function can be used as 
keys to find matching states and behaviours in the 
precondition and postcondition tables. Hence, an 
entity is able respond to the system through its 
distinctive “memory”. When another designer is 
creating a design with the new function unit: 
“motor conveys PCB”, the system will search for 
the operator with the name “motor” with function 
“conveys” and retrieve the likely precondition (fuse 
burnt – not conveying). The same process is carried 
out on the operand “PCB” and function “conveys”, 
and the likely postcondition (not conveying – PCB 
not moving) is retrieved. Combining this 
information will result in a new case: “fuse burnt – 
PCB not moving”. Hence, PCB has the knowledge 
to respond to the motor failure even though the case 
has never previously existed. 

5 CONCLUSION 
The current issues faced by FMEA users and the 
need to migrate FMEA activities to the earlier 
phase of the design process have prompted this 
research. This paper has provided the knowledge 
representation required to build an FMEA model. 
The model and the proposed reasoning technique 
form a framework for automatic FMEA generation. 
The FMEA model is created based on the 
transformation system. Component libraries are 
created and generalised using the object-oriented 
approach. The concepts of function unit and 

functional diagram are introduced. The generic 
function is used as an abstract object to represent 
functions of designs and processes. Cause and 
effect propagation is used in the functional diagram 
with the aid of precondition and postcondition 
relationships, leading to the idea of new knowledge 
generation based on two basic assumptions.  
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