Factors controlling selective abandonment and reactivation in thick-skin orogens: a case study in the Magdalena Valley, Colombia

<p>The initial stages of tectonic inversion and the mechanisms of selective reactivation and abandonment of pre-existing normal faults during contractional orogenesis are explored in a partially buried Cenozoic thrust belt in the Andes of Colombia. A multidisciplinary approach that includes subsurface structural mapping, multimethod thermochronometry and detrital zircon U–Pb geochronology reveals the extent of a Palaeogene thrust belt buried underneath the Cenozoic strata of the Middle Magdalena Valley Basin. A less oblique orientation with respect to compressive stress and shorter traces in faults of the Middle Magdalena Valley Basin with respect to faults in the western part of the Eastern Cordillera, apparently acted as deformation inhibitors of the Magdalena faults in advanced Neogene stages of inversion. Protracted Cenozoic eastwards tilting of the Central Cordillera and the tectonic load from the uplifting Eastern Cordillera favoured the accumulation of a thick Cenozoic sedimentary sequence in an, at least episodically, closed basin. All the above-mentioned conditions helped to block deformation in the Magdalena Basin, favouring deformation to be taken up by structures in the western Eastern Cordillera. These relationships underscore the importance of buried structural records in elevated hinterland basins, in which the low-relief stratigraphic cover overlies a complex subsurface record, potentially including large magnitudes of deformation during early orogenesis. </p>