Facet-Specific Mineralization Behavior of Nano-CaP on Anatase Polyhedral Microcrystals

Biomimetic mineralization of nanocalcium phosphate (CaP) on metal oxide surfaces has gained great interest because of their relevance to osseointegration performance of implant materials. However, precisely controlling the nucleation behavior of mineralized nano-CaP on metal oxide at selective sites still remains a challenge. Here, we demonstrate a phenomenon on facet-specific mineralization on anatase TiO<sub>2</sub> polyhedral microcrystals organized by two facets of {101} and {001} in complete cell culture medium: nano-CaP covers up {101} facets, while there are a few on {001} facets. The comparative experimental results indicate that the preadsorbed fetal bovine serum (FBS) protein on {001} facets might play a barrier role in preventing sequential nucleation of nano-CaP. This work thus provides insight into the understanding of mineralization on metal oxides, and a way to control the mineralization.