figshare
Browse
rstb20160227_si_001.pdf (669.46 kB)

Experimental Methods; Figures S1 and S2 from Measuring the potential energy barrier to lipid bilayer electroporation

Download (669.46 kB)
journal contribution
posted on 2017-05-08, 10:40 authored by Jason T. Sengel, Mark I. Wallace
Electroporation is a common tool for gene transfection, tumour ablation, sterilization and drug delivery. Using experimental methods, we explore the temperature dependence of electropore formation in a model membrane system (droplet-interface bilayers), using optical single-channel recording to image the real-time gating of individual electropores. We investigate the influence of the agarose substrate on electropores formed in this system. Furthermore, by examining the temperature-dependent kinetics of pore opening and closure we are able to estimate a barrier to pore opening in 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) membranes to be 25.0 ± 8.3 kBT, in agreement with previous predictions. Overall these measurements help support the toroidal model of membrane electroporation.This article is part of the themed issue ‘Membrane pores: from structure and assembly, to medicine and technology’.

History

Usage metrics

    Philosophical Transactions of the Royal Society B: Biological Sciences

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC