figshare
Browse
pr700655d_si_002.pdf (214.25 kB)

Enrichment of Phosphopeptides by Fe3+-Immobilized Magnetic Nanoparticles for Phosphoproteome Analysis of the Plasma Membrane of Mouse Liver

Download (214.25 kB)
journal contribution
posted on 2008-03-07, 00:00 authored by Feng Tan, Yangjun Zhang, Wei Mi, Jinglan Wang, Junying Wei, Yun Cai, Xiaohong Qian
Immobilized metal ion affinity chromatography (IMAC) is a commonly used technique for phosphoprotein analysis due to its specific affinity for phosphopeptides. In this study, Fe3+-immobilized magnetic nanoparticles (Fe3+-IMAN) with an average diameter of 15 nm were synthesized and applied to enrich phosphopeptides. Compared with commercial microscale IMAC beads, Fe3+-IMAN has a larger surface area and better dispersibility in buffer solutions which improved the specific interaction with phosphopeptides. Using tryptic digests of the phosphoprotein α-casein as a model sample, the number and signal-to-noise ratios of the phosphopeptides identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) following Fe3+-IMAN enrichment greatly increased relative to results obtained with direct MALDI-TOFMS analysis. The lowest detectable concentration is 5 × 10−11 M for 100 µL of pure standard phosphopeptide (FLTEpYVATR) following Fe3+-IMAN enrichment. We presented a phosphopeptide enrichment scheme using simple Fe3+-IMAN and also a combined approach of strong cation exchange chromatography and Fe3+-IMAN for phosphoproteome analysis of the plasma membrane of mouse liver. In total, 217 unique phosphorylation sites corresponding to 158 phosphoproteins were identified by nano-LC-MS/MS. This efficient approach will be very useful in large-scale phosphoproteome analysis.

History