Supplementary Information for:

Enhanced electrochemical performance of highly porous supercapacitor electrodes based on solution-processed polyaniline thin films

Sunghun Cho,[†] Kyoung-Hwan Shin[†] and Jyongsik Jang*[†]

[†]WCU Program of Chemical Convergence for Energy and Environment (C2E2), School of

Chemical and Biological Engineering, College of Engineering, Seoul National University,

Shinlimdong 56-1, Seoul 151-742, Korea.

*E-mail: jsjang@plaza.snu.ac.kr Tel.: +82-2-880-7069 Fax: +82-2-888-1604

Figure S1. FE-SEM images of PANI powders: PANI ES before secondary-doping (a, b), PANI-CSA after secondary doping (c, d). Magnifications: ×45 (a, c) and ×90 (b, d).

Figure S2. (a) Cyclic voltammograms of PANI thin-film electrodes scanned at 20 mV s⁻¹ and (b) Galvanostatic charge/discharge plots of PANI thin-film electrodes at current density of 0.25 A g^{-1} . The values were measured using a two-electrode system.

Table S1. Specific capacitances, internal resistance drops, and discharging times of PANI thin-film electrodes prepared by different porogens at a current density of 0.25 A g^{-1} . The values were measured using a two-electrode system.

porogen	specific capacitance $(F g^{-1})^e$	initial resistance $(\Omega)^e$	discharging time (sec) ^e
pristine	79	0.50	239
BPO	213	0.72	678
AIBN	194	0.84	618
AB	169	1.00	537

^e0.025 mL of PANI solutions were used for forming thin films, resulting in a thickness of about 10 μ m.

Figure S3. Cycling stability of PANI thin-film electrodes upon charge/discharge at a current density of 0.25 A g⁻¹ (three-electrode cells). 0.25 mL of PANI solutions were used for forming thin films, resulting in a thickness of about 50 μ m.