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Abstract
In the brain, vascular endothelial cells conserve blood viscosity, control blood flow, and form the interface between central nervous
system and circulating blood. Clinical outcome after aneurysmal subarachnoid hemorrhage is linked to early brain injury, cerebral
vasospasm, and other causes of delayed cerebral ischemia. The cerebral vasculature remains a unique target for therapies since it
becomes rapidly disrupted after subarachnoid hemorrhage, and damage to the blood vessels continues into the delayed injury phase.
The current failure of therapies to improve clinical outcome warrants a re-evaluation of current therapeutic approaches. The mecha-
nisms of endothelial cell injury and blood–brain barrier breakdown are critical to the pathway of cerebral injury, and an improved
understanding of these mechanismsmay lead to novel therapeutic targets. This review provides an update on the current understanding
of endothelial cell injury following aneurysmal subarachnoid hemorrhage, including blood–brain barrier dysfunction.

Keywords Endothelial cell . Subarachnoid hemorrhage . Blood–brain barrier . Cerebral vasospasm .Microthrombosis

Introduction

Aneurysmal subarachnoid hemorrhage (aSAH) affects 30,000
people per year in the United States, with mortality rates

estimated to be as high as two-thirds[1, 2]. Most patients with
aSAH are critically ill and require a prolonged intensive care
unit stay resulting in significant public health costs.
Additionally, aSAH carries a disproportionately high toll in
terms of productive life-years lost because it has an earlier
mean age of onset and is associated with higher disability
and morbidity rates when compared to other types of stroke
[3]. Patients who survive the initial bleed are at risk for a
multitude of secondary insults including rebleeding, hydro-
cephalus, and delayed ischemia [4]. Poor outcome after
aSAH occurs in 50 to 75% of patients and is credited to sec-
ondary ischemia in approximately 30% [5]. This delayed ce-
rebral ischemia (DCI) has been attributed to cerebral vaso-
spasm (CV), microthrombosis, and cortical spreading depo-
larizations [6–9]. A meta-analysis of seven randomized, dou-
ble-blind, placebo-controlled trials showed that the L-type
calcium channel blocker nimodipine decreased the risk of
poor outcome in patients with aSAH by 42% [10]. However,
since the adoption of nimodipine, there has been no significant
therapeutic breakthrough likely related to the multiple factors
that mediate the deleterious effects of aSAH (Table 1) [16, 17].
Advances in understanding the mechanisms underlying the
long-term complications of aSAH is a prerequisite for the
development of new therapeutic strategies to follow the initial
life-saving treatments.

Clinical trials for improving aSAH outcome largely target
the cerebral vasculature since it becomes rapidly disrupted,
and damage to the blood vessels continues into the delayed
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injury phase. The brain’s ability to regulate systemic and ce-
rebral function depends on blood vessels to supply oxygen
and nutrients, form a barrier for toxic substances, and clear
waste products [18]. Recent studies recognize that brain en-
dothelial cells (ECs) have additional functions compared to
the peripheral vasculature, such as the facilitation of informa-
tion transfer between neurons and glial cells [19], and main-
tenance of the blood–brain barrier (BBB) [20–23]. The ECs
forming the BBB are distinguished by their lack of fenestra-
tions, minimal pinocytotic activity, and the presence of tight
junctions (TJ) [24]. ECs control vascular tone and blood flow
via a delicate balance between EC secreted vasoconstrictors
such as endothelin-1 (ET-1) and thromboxane (TXA2), and
vasodilators such as nitric oxide (NO), prostacyclin (PGI2),
and endothelium-derived hyperpolarizing factor (EDHF) [25].
Accumulating evidence indicates that EC dysfunction and in-
creased permeability of the BBBmediates brain injury includ-
ing the delayed appearance of neuronal dysfunction and death.

Animal studies have shown that aSAH can induce morpho-
logical and functional changes in vascular endothelium caus-
ing Bendothelial dysfunction^—a referral to the failure of ECs
to effectively perform basal functions, failure to produce suf-
ficient NO leading to vessel constriction, failure to control
coagulation, and failure to control permeability [26–29].
Taken together, we propose that ECs should be considered
as the fundamental cell type affected by aSAH pathology
and EC injury should be a primary target for therapeutic in-
tervention for aSAH. We further highlight the importance of
secondary BBB dysfunction in aSAH during the delayed
phase of SAH pathophysiology.

Endothelial Cell Damage in aSAH

Healthy ECs maintain the BBB, regulate thrombus formation,
and regulate vascular tone [30–32]. However, early events
after aSAH trigger EC dysfunction and apoptosis, which in
turn exacerbates the delayed phase of aSAH pathophysiology.

Early Brain Injury

The evolution of parenchymal lesions after aSAH shows a
bimodal distribution with an early and delayed peak. Early
brain injury (EBI) is the term used to describe the pathophys-
iological events between bleed day 0 and 3/4 which induce an
immediate injury to the brain [33, 34]. Once the aneurysm
ruptures, blood extravasates under arterial pressure, damages
surrounding tissue, and enters into the subarachnoid space
spreading through the CSF around the brain. This acute event
causes physical detriments, including rapid rise in intracranial
pressure (ICP), decreased cerebral blood flow (CBF), cerebral
edema, acute vasospasm, global cerebral ischemia, and dys-
function of autoregulation [35, 36]. These instabilities are
thought to play a vital role in aSAH and add significantly to
morbidity and outcome [37, 38].

Animal models demonstrate that constriction of both large
and small cerebral vessels occurs immediately after aSAH [33,
39, 40]. Large cerebral vessels go through two phases of con-
striction accompanied by reduction in CBF and perfusion def-
icits. The first phase starts as early as 5 min after aSAH and
continues for at least 6 h [40–44]. This is followed by con-
striction of intraparenchymal and pial microvessels (10 to
30μm) for up to 24 h [33, 40, 45–47]. In the rat aSAH and
transient global ischemia models, there is an upregulation of
vasoconstriction-mediating EC receptors endothelin B (ET-B)
and serotonin receptors (5-HT1B), and downregulation of the
vasodilator NO in the cerebral arteries [48, 49]. Arterial sam-
ples from aSAH patients who died within 48 h indicate a
hyper-responsiveness of ECs to contractile agents like norepi-
nephrine and potassium, and a decreased response to dilatory
agents like acetlylcholine, thrombin, and bradykinin [50, 51].
Furthermore, it is reported that these hyper-responsive ECs
increase activation of smooth muscle cells [52, 53]. Cerebral
ischemia post aSAH can induce morphological changes in the
vascular endothelium including corrugation of the endothelial
membrane and appearance of cytoplasmic flaps or microvilli
that extend to the vessel lumen [40, 42, 43]. The underlying
molecular changes leading to EC dysfunction after aSAH are

Table 1 Clinical trials for aSAH

Author Drug Trial target Clinical benefit

Allen et al. [3] Nimodipine Calcium antagonist—improved neurological deficits due to spasm (+) Benefit

Haley et al. [11] Tirilazad Free radical scavenger—targets vasospasm (−)
Siironen et al. [12] Enoxaparin Anti-coagulating agent—target to prevent vasospasm (−)
Van den Bergh [13] Aspirin Anti-platelet agent—prevents thrombus formation, endothelial injury, and

inflammation of the aneurysm wall
(−)

Gomis et al. [14] Methylprednisolone Anti-inflammatory—target to prevent vasospasm (−)
Macdonald et al. [5] Clozasentan Endothelin-A receptor antagonist—targets vasospasm after aSAH;

reduced vasospasm
(−)

Kirkpatrick et al. [15] Simvastatin Attenuates inflammation, oxidation, platelet aggregation, and
excitotoxicity—target to reduces vasospasm after aSAH

(−)
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not completely clear since data from animal models of EC
dysfunction are scarce and molecular data from patients are
difficult to gather.

EC Apoptosis

Apoptotic damage to the endothelium is a critical event since
this compromises BBB integrity, disrupts physiologic
vasoregulation, and increases smoothmuscle cell proliferation
and blood coagulation [54]. Multiple factors can induce EC
apoptosis including oxidative stress, oxyhemoglobin
(OxyHb), and iron overload. EC apoptosis is reported to occur
24 h after aSAH [55]. Following aneurysm rupture, blood
components (and blood breakdown products) lead to patho-
logical events which cause damage to healthy endothelium
[42]. OxyHb, the main component of erythrocytes, exerts a
direct cytotoxic effect in cultured bovine brain ECs via
caspase-8 or -9 [56–58]. Animal studies [59, 60] and postmor-
tem human studies [61] report EC death after aSAH, mediated
via OxyHb [62] elevation of intracellular Ca2+ [63], matrix
metalloproteinase 9 (MMP-9) [59], and generation of free
radicals [64]. In rat models, 10 min after aSAH the apoptosis
marker cleaved-caspase-3 and tunnel staining colocalize with
endothelial staining. Further, the endothelial lining of the pa-
renchymal vessels is disrupted and detaches from the basal
lamina layer within 10 min [26, 55]. Apoptosis of
neurovascular ECs results in increased diffusion of serum
from the vascular lumen into brain causing vasogenic edema.

There are several sources for the excessive generation of
free radicals following SAH, including disrupted mitochondri-
al respiration and extracellular hemoglobin (following RBC
lysis). Oxidative stress in aSAH and secondary EC dysfunction
has been previously reviewed explaining the production of
excessive free radicals in aSAH and their connections to acute
brain injury, as well as the importance of antioxidant treatment
[65, 66]. Hemoglobin breakdown results in iron overload in the
acute phase of aSAH. Iron overload and iron-mediated free
radical production causes loss of TJ proteins and degeneration
of ECs in transient forebrain ischemia rat model [67]. A better
understanding of EC apoptotic pathways after aSAH may fos-
ter the development of new therapies.

SAH Induced Blood–Brain Barrier Dysfunction

The BBB has developed as a complex, dynamic, adaptable
interface that limits entry of potentially neurotoxic plasma com-
ponents, blood cells, and pathogens into the central nervous
system (CNS) [67]. The BBB is primarily formed by brain
microvascular ECs with tight junctions and astrocyte end feet.
A number of factors are unique to ECs forming the BBB in-
cluding endothelial TJ and adherens junction (AJ) proteins,
non-selective fenestrae, pinocytosis, bulk-flow transcytosis,

and suppression of leukocyte adhesion molecules [23].
Intracellularly, TJ proteins are connected to actin filaments
via zona occludens-1 and 2 (ZO-1, ZO-2); adherens junction
proteins are connected via catenins (α, β, , and p120) [68].
During normal physiological conditions, a precise equilibrium
between endothelial cell–cell adhesion and actin–myosin-
based centripetal tension tightly controls the semi-
permeability of microvascular barriers. Actomyosin contrac-
tion andmyosin light chain phosphorylation plays an important
role in maintaining TJ regulation [69].

Studies investigating BBB dysfunction associated with
aSAH are relatively few compared with the variety of studies
on vasospasm. Experimental studies have shown that after
aSAH, significant BBB permeability change occurs beginning
at 36 h, peaking at 48 h, and normalizing on day 3[70], al-
though the exact time course of BBB dysfunction in humans
has not been studied. Doczi et al. has demonstrated BBB
damage occurs as early as 3 h after aSAH in some clinical
studies and animal models [71, 72]. Multiple factors can con-
tribute to BBB breakdown after aSAH including EC apoptosis
(as previously discussed), EC contraction, and disruption of
EC TJ proteins [73–75].

Studies investigating changes in the expression of TJ pro-
teins and BBB permeability show no significant change in
Caveolin-1 and Claudin-5 expression in the basement mem-
brane, but do note a significant decrease in the expression of
ZO-1 and Occludin at 3 and 72 h [76]. The downregulation of
TJ protein ZO-1 and Occludin in ECs facilitates capillary
leakage responsible for the increase in BBB permeability
[35, 77]. The exact mechanism for the disruption of TJ pro-
teins after aSAH is not clear, and the intracellular signaling
events warrant further investigation.

Pro-inflammatory cytokines like tumor necrosis factor al-
pha (TNF-α) and thromboxane A2 cause EC apoptosis and
contribute to BBB dysfunction [78]. Tunnel and immunoflu-
orescence staining in ECs demonstrate that activation of
TNF-α receptor-1 induce caspase-8 and activates caspase-3
leading to DNA fragmentation and apoptosis [79–81].
Moreover, inflammatory cytokines induce MMP production
which disrupts the BBB [82–85]. Accumulating evidence sug-
gests a role forMMP-9 in the early disruption of the BBB after
aSAH [86, 87]. MMP-9 degrades the extracellular matrix of
the cerebral microvessel basal lamina, which includes colla-
gen IV, laminin, fibronectin, and inter-endothelial TJ proteins
such as ZO-1 [88–90]. Tenascin-C (TNC), an extracellular
matrix protein, is strongly induced in the spastic cerebral ar-
tery wall in rat aSAH [91, 92]. In the murine endovascular
perforation model, TNC knockout improves neurological
score and brain edema by reducing BBB disruption and deg-
radation of tight junction protein ZO-1. BBB rescue in TNC
knockout is reported to be via inactivation of three major
MAPKs (JNK, p38, and ERK1/2) in brain capillary ECs,
and inhibition of MMP-9 induction [93, 94].
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Systemic heme-induced BBB damage and permeability
has also been demonstrated in a study on guinea pig exchange
transfusion model [95]. Free intravascular Hb reduced expres-
sion of ZO-1, claudin 5 (small to medium size vessels), and
increased GFAP in astrocytes (marker of BBB disruption)
[95]. Increased iron deposits, oxidative stress, and inflamma-
tion damage ECs with subsequent BBB dysfunction in aSAH
[65, 67, 96, 97] (Table 2). Together, these studies highlight the
critical contribution of endothelial injury in BBB dysfunction,
thereby underscoring the central role of endothelium in vas-
cular protection (Figs. 1 and 2).

Endothelial Cell Pathophysiology
in the Delayed Phase of aSAH

The major components of aSAH, which comprise the delayed
phase of injury, include CV, microthrombosis, and inflamma-
tion. Below, we discuss the role of ECs in correlation with
known delayed pathological events after aSAH.

Cerebral Vasospasm

Delayed CV typically develops 5 to 12 days after aSAH and
continues for approximately 2 weeks; it affects more than one
in five surviving patients [108, 109]. Cerebral ischemia, sec-
ondary to CV, is a major cause of morbidity andmortality after
aSAH [110]. The sequence of events resulting in pathological
CV includes EC dysfunction, smooth muscle contraction, in-
flammation, and changes in vascular responsiveness [27,
111–113]. The risk for development of CV after aSAH is
linked to the amount of blood in the subarachnoid space
[114, 115], with the primary instigator for this cascade thought
to be free hemoglobin within the subarachnoid space [116,
117]. Damage from free heme includes neuronal and EC ap-
optosis, decreased nitric oxide (NO) production, increased ET-
1 levels, lipid peroxidation of cell membranes, and direct ox-
idative stress on smooth muscle cells [28, 29, 65, 116–120].
This damage contributes to vasospasm through the loss of
important vasodilator NO and via increased ET-1, a powerful
vasoconstrictor peptide [121].

Nitric oxide is a major vasodilator produced principally by
ECs. EC dysfunction resulting in decreased availability of NO
may contribute to the development of vasospasm, and several
studies support this finding. Blood products in the subarach-
noid space are shown to reduce NO bioavailability by a vari-
ety of mechanisms including malfunction of NO-generating
enzyme [122]. Reactive oxygen species (ROS) oxidize biliru-
bin to bilirubin oxidation products (BOXes) and inhibit eNOS
[122]. Scavenging of NO by the vast amounts of extracellular
hemoglobin also acts as an NO Bsink^ [123, 124]. Further
supporting these findings, NO-based therapies reverse
aSAH-associated vasospasm [125–127].

ET-1, a major isoform of endothelin molecules, repre-
sents the best-studied class of molecules in aSAH therapy.
ET-1 acts on vascular smooth muscle via receptors on
smooth muscle cells (ET-A and ET-B2) and endothelial
cells (ET-B1) [128, 129] and causes profound and sustained
vasoconstriction. ET-1 concentration is elevated in the CSF
of aSAH patients and correlates with the development of
CV [130]. Subsequent experiments have identified a num-
ber of plausible mechanisms to explain the ET-1 increase
after aSAH. ET-1 production is increased by activated leu-
kocytes in the CSF via IL-1ss, IL-6, and TNF-α [131].
OxyHgb also directly induces ET-1 production in ECs and
smooth muscle cells via protein kinase C (PKC)–cAMP
[130]. Experimentally, the ET-1 concentration required to
induce ischemia is magnitudes higher than those measured
in aSAH patients suggesting other factors are involved in
the development of vasospasm [132, 133].

Nevertheless, ET-1 antagonists or ET-1 inhibitors can at-
tenuate vasoconstriction in the experimental model and in
clinical trials [134–136]. Apart from vasoconstriction, ET-1
can causes inflammation and smooth muscle cell proliferation
in the vessel. The binding of ET-1 to ET-A receptors activates
macrophages, increases neutrophil–vessel wall interactions,
and elevates free radical concentrations, all of which lead to
EC dysfunction [25, 137]. A phase IIa clinical trial using
clazosentan, a selective ET-A receptor antagonist, significant-
ly reduced angiographic vasospasm by 48% compared to pla-
cebo group. A phase IIb clinical trial (CONSCIOUS-1)
showed that intravenous clazosentan significantly and dose-
dependently reduced moderate or severe angiographic vaso-
spasm when compared to placebo with a trend toward reduc-
tion in clinically relevant vasospasm-related events [54].
CONSCIOUS-2, a phase III clinical trial in patients undergo-
ing surgical clipping revealed clazosentan at 5 mg/h reduced
vasospasm but had no significant effect on mortality and
vasospasm-related morbidity or functional outcome [5].

aSAH also contributes to the development of vasospasm
by remodeling of the vascular wall structure. This remodel-
ing is primarily the result of EC apoptosis and smooth mus-
cle proliferation [138–141]. aSAH-induced apoptosis in
ECs leads to destruction of the BBB, eventually exposing
smooth muscle cells to vasoconstrictors in the blood. ET-1
can induce smooth muscle cell proliferation by binding to
endothelin receptors [142] or activating other growth fac-
tors such as platelet-derived growth factor (PDGF) [143].
Smooth muscle proliferation combined with PDGF at the
site of thrombus contributes to vessel wall thickening and
vascular stiffening leading to delayed CV [144]. Prolonged
arterial vasoconstriction also contributes to ultrastructural
damage to the vessel wall layer, including vacuolization of
ECs and loss of tight junctions, breakage of the internal
elastic lamina, and patchy myonecrosis in the tunica media
[61, 145].

Mol Neurobiol

Author's personal copy



Ta
bl
e
2

St
ud
ie
s
on

B
B
B
re
sc
ue

af
te
r
aS
A
H

A
ut
ho
r

SA
H
m
od
el

S
pe
ci
es

T
re
at
m
en
t

L
ev
el
of

re
sc
ue

Pr
op
os
ed

m
ec
ha
ni
sm

E
rs
ah
in

et
al
.[
98
]

B
lo
od

in
je
ct
io
n

M
al
e
W
is
ta
r
al
bi
no

ra
ts

M
el
at
on
in

(1
0
m
g/
kg
)

T
re
at
m
en
tp
ro
te
ct
s
B
B
B
in
te
gr
ity

an
d
re
du
ce
d

br
ai
n
ed
em

a;
im

pr
ov
ed

ne
ur
ol
og
ic
al

sy
m
pt
om

s

M
el
at
on
in

ca
n
ea
si
ly

cr
os
s
B
B
B
,a
nd

au
th
or
s

cl
ai
m
th
e
ne
ur
op
ro
te
ct
io
n
m
ay

be
du
e
to
its

fr
ee

ra
di
ca
ls
ca
ve
ng
in
g
pr
op
er
tie
s

C
he
n
et
al
.[
99
]

E
nd
ov
as
cu
la
r
pe
rf
or
at
io
n

S
pr
ag
ue
–D

aw
le
y
ra
ts

N
or
ri
n
(2
5
ng
)

In
cr
ea
se
d
ex
pr
es
si
on

of
T
Js

oc
cl
ud
in
,

V
E
-c
ad
he
ri
n,
an
d
Z
O
-1
;i
m
pr
ov
ed

ne
ur
o-

lo
gi
ca
lo

ut
co
m
e

N
or
ri
n
vi
a
F
ri
zz
le
d-
4
re
ce
pt
or
s
pr
om

ot
es

β
-c
at
en
in
nu
cl
ea
rt
ra
ns
lo
ca
tio

n
an
d
th
er
eb
y

in
cr
ea
se
d
T
J
pr
ot
ei
n
ex
pr
es
si
on

Y
in
g
et
al
.[
10
0]

E
nd
ov
as
cu
la
r
pe
rf
or
at
io
n

S
pr
ag
ue
–D

aw
le
y
ra
ts

V
al
pr
oi
c
ac
id

(3
00

m
g/
kg
)

P
re
ve
nt
ed

T
J
pr
ot
ei
n
de
gr
ad
at
io
n,
br
ai
n

ed
em

a,
an
d
ne
ur
al
ap
op
to
si
s;
im

pr
ov
ed

ne
ur
ol
og
ic
al
ou
tc
om

e

H
SP

70
/M

M
P-
9
an
d
th
e
H
SP

70
/A
kt

pa
th
w
ay

A
lta
y
et
al
.[
10
1]

E
nd
ov
as
cu
la
r
pe
rf
or
at
io
n

C
D
-1

m
ic
e

2%
Is
of
lu
ra
ne

Im
pr
ov
ed

ne
ur
ol
og
ic
al
sc
or
e,
br
ai
n
ed
em

a,
an
d
B
B
B
pe
rm

ea
bi
lit
y

A
ct
iv
at
e
S
ph
K
1
an
d
S
1P

1
to

in
du
ce

S1
P-
m
ed
ia
te
d
pr
ot
ec
tio

n
of

po
st
-S
A
H

B
B
B

Y
ua
n
et
al
.[
10
2]

E
nd
ov
as
cu
la
r
pe
rf
or
at
io
n

C
57
B
L
/6

m
ic
e

C
ur
cu
m
in

(1
00

m
g/
kg
)

Im
pr
ov
ed

ne
ur
ol
og
ic
al
sc
or
e,
br
ai
n
ed
em

a,
B
B
B
pe
rm

ea
bi
lit
y,
an
d
T
J
pr
ot
ei
n

A
ct
vi
a
su
pp
re
ss
in
g
M
M
P-
9
ex
pr
es
si
on

an
d

ac
tiv

at
in
g
m
ic
ro
gl
ia

Z
uo

et
al
.[
10
3]

E
nd
ov
as
cu
la
r
pe
rf
or
at
io
n

S
pr
ag
ue
–D

aw
le
y
ra
ts

A
rt
es
un
at
e
(2
00

m
g/
kg
)

T
re
at
m
en
ti
m
pr
ov
ed

ne
ur
ol
og
ic
al
sc
or
e,
br
ai
n

ed
em

a,
B
B
B
pe
rm

ea
bi
lit
y,
an
d
T
J
pr
ot
ei
n

V
ia
S1

P1
si
gn
al
ac
tiv

at
e
P
I3
K
/A
kt

pa
th
w
ay

an
d
st
ab
ili
zi
ng

B
-c
at
en
in

vi
a
G
SK

3b
in
hi
-

bi
tio

n

Su
zu
ki

et
al
.[
10
4]

E
nd
ov
as
cu
la
r
pe
rf
or
at
io
n

S
pr
ag
ue
–D

aw
le
y
ra
ts

r-
os
te
op
on
tin

(0
.1

μ
g)

Im
pe
de

lo
ss

in
bo
dy

w
ei
gh
t,
ne
ur
ol
og
ic
al

im
pa
ir
m
en
t,
br
ai
n
ed
em

a,
an
d
B
B
B

di
sr
up
tio

n

V
ia
de
ac
tiv

at
io
n
of

N
F
-κ
B
ac
tiv

ity
,t
he
re
by

im
pr
ov
in
g
th
e
ba
la
nc
e
be
tw
ee
n
pr
ot
eo
ly
tic

(M
M
P-
9)

an
d
m
at
ri
x
st
ab
ili
zi
ng

fa
ct
or
s

(T
IM

P
-1
)

E
nk
hj
ar
ga
le
ta
l.
[1
05
]

E
nd
ov
as
cu
la
r
pe
rf
or
at
io
n

S
pr
ag
ue
–D

aw
le
y
ra
ts

V
ita
m
in

D
30

ng
/k
g

Im
pr
ov
e
B
B
B
pe
rm

ea
bi
lit
y,
br
ai
n
ed
em

a,
an
d

ne
ur
ol
og
ic
al
sc
or
e

T
hr
ou
gh

en
do
ge
no
us

up
re
gu
la
tio

n
of

O
PN

an
d
su
bs
eq
ue
nt

C
D
44

an
d
P
-g
p
gl
yc
os
yl
a-

tio
n
si
gn
al
s
in

br
ai
n
en
do
th
el
ia
lc
el
ls

P
an
g
et
al
.[
10
6]

E
nd
ov
as
cu
la
r
pe
rf
or
at
io
n

C
57
B
L
/6
J
m
ic
e

A
po
lip

op
ro
te
in

E
R
ed
uc
e
B
B
B
pe
rm

ea
bi
lit
y,
ne
ur
on

an
d
E
C

ap
op
to
si
s,
T
J
pr
ot
ei
n
de
gr
ad
at
io
n

In
hi
bi
te
d
pr
oi
nf
la
m
m
at
or
y
ac
tiv

at
or
s
of

M
M
P-
9
in
cl
ud
in
g
C
yp
A
,N

F-
κB

,I
L
-6
,

T
N
F
-α
,a
nd

IL
-1
β

X
ie
et
al
.[
10
7]

E
nd
ov
as
cu
la
r
pe
rf
or
at
io
n

S
pr
ag
ue
–D

aw
le
y
ra
ts

N
et
ri
n-
1

45
μ
g/
kg

R
ed
uc
e
ne
ur
ol
og
ic
al
im

pa
ir
m
en
t,
re
du
ce

br
ai
n
ed
em

a,
pr
es
er
ve

B
B
B
in
te
gr
ity
,a
nd

in
cr
ea
se

ex
pr
es
si
on

of
T
J
pr
ot
ei
n

V
ia
ph
os
ph
or
yl
at
ed

fo
ca
la
dh
es
io
n
ki
na
se

ac
tiv

at
io
n
an
d
in
hi
bi
tio

n
of

R
ho
A
ac
tiv

ity

Mol Neurobiol

Author's personal copy



Inflammation

The first study showing the connection between inflammation
and aSAH was in 1964 [146]. Cerebral arteries from patients
who died after aSAH were examined to find the accumulation
of mononuclear leukocytes below the endothelium of the ar-
teries near the ruptured aneurysm. Subsequently, the presence
of macrophages in the tunica media and adventitia of the ves-
sels were linked to angiographic vasospasm [147]. Later, ad-
ditional studies in aSAH patients showed the existence of
inflammatory cytokines and immunological proteins in the
endothelium of spastic arteries [148, 149]. Clinical trials have
confirmed that inflammation is linked to poor neurological
outcome after aSAH [150–152].

Inflammation in blood vessels is described as the
Bleukocyte–endothelial cell interaction^ and is a root cause
of CV in aSAH [152, 153]. Products from erythrocyte lysis
including methemoglobin, heme, and hemin can activate
microglial toll-like receptor 4 (TLR4), which initiates the in-
flammatory cascade that can damage surrounding tissues in-
cluding neurons and ECs [113, 154]. In murine models,

microglial activation is reported on the first day of aSAH,
which histologically correlates well with the presence of va-
sospasm and behavioral deficits [155, 156]. Following TLR4
binding, microglia release TNF-α, which in turn triggers the
upregulation of specific cell adhesion molecules (CAMs) on
the luminal surface of ECs. Endothelial CAM expression con-
sequently allows macrophages and neutrophils to bind to the
ECs and migrate into the subarachnoid space, where they
phagocytose extravasated RBCs via Hp–Hgb complexes
[153, 157–160]. While these immune cells help in clearing
degraded blood, the immune cells can become trapped in the
subarachnoid space due to alterations in CSF flow and the
restoration of the endothelial tight junction barrier. Inside the
subarachnoid space, the trapped macrophages and neutrophils
degranulate and release a multitude of inflammatory factors
into the CSF including endothelins, oxidative radicals, and
toxic intermediates [161]. These inflammatory factors can
contribute to EC damage, vasoconstriction, arterial narrowing,
chemical meningitis, and cerebritis [162]. The cytokines gen-
erated by macrophages and neutrophils can induce activation
of JAK-STAT [163], NF-κB [164], and Smad [165, 166]

Fig. 1 BBB dysfunction after aSAH. aSAH can damage the BBB and
lead to brain edema. aSAH results in RBC lysis and release of heme in the
CSF and subarachnoid space. The ensuing oxidative stress and
inflammation leads to dysregulation of the neurovascular unit including

impaired vascular tone, swollen astrocyte end feet, loss of TJ integrity,
disruption of the basement membrane, EC apoptosis, and leukocyte
infiltration
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signaling pathways leading to an inflammatory response in-
volving cell adhesion, permeability, and apoptosis in ECs
[167, 168]. Further, these pathways modify the production/
activity of vasodilatory mediators such as NO, PGI2, EDHF,
and bradykinin, as well as vasoconstrictive mediators such as
ET-1 and angiotensin II ([169–171]). In addition, ROS,
TNF-α, and IL-1β produced by activated microglia can dis-
rupt the BBB integrity by altering the expression of ZO-1,
claudin-5, occludin, and P-glycoprotein [172].

Microthrombosis

In 1983, the presence of microthrombi in patients with cere-
bral infarction after aSAH was reported [173]. This was fur-
ther confirmed in patients and animal models [174, 175].
Further clinical evidence suggests that hypercoagulability
and platelet activation may correlate with the development
of DCI and cerebral infarction [176–180]. Investigation of
the microvessel structure in the aSAH animal model demon-
strates intimal convolutions and intraluminal thrombi in the
constricted vessels, along with thickening of endothelial and
sub-endothelial layers [181].

Healthy ECs counteract coagulation via expressing anti-
platelet and anticoagulant agents. Damaged ECs can trigger
fibrin formation in addition to platelet adhesion and aggrega-
tion. Apoptotic ECs become pro-coagulant by increased ex-
pression of phosphatidylserine and loss of anti-coagulant
membrane components [182]. Further, exposure of sub-

endothelial basement membrane collagen by contracted or
desquamated ECs supports the adhesion and activation of
platelets [183]. Cytokines TNF-α and IL-1 also induce the
synthesis of tissue factor, the principal initiator of coagulation
[184]. Apoptotic ECs can release tissue factor into the blood-
stream as a component of microparticles that are shed from the
cell surface and facilitate coagulation [184]. Finally, increase
in the cell adhesion molecule P-selectin in the microvessels
and decreased NO is suggested as a mechanism for
microthrombosis after aSAH [181]. Together, these results
provide substantial evidence on the role of EC injury in
microthrombosis.

Future Directions

New therapeutic targets should mitigate EC and BBB damage/
dysfunction since they are central players mediating aSAH
pathophysiology. However, further understanding of the cell
signaling mechanisms is necessary for novel therapeutics to
have a chance of success in clinical trials. The way forward
for aSAH drug development may lie in new genomic
[185–187] and proteomic [188, 189] technologies that will
contribute to understand the effects of pathological stimuli
and the mechanisms that regulate vascular dysfunction.
Emerging studies on EC formation during brain development
reveal a heterogeneous population of ECs in the brain. ECs of
the periventricular vascular network have molecular identities

Fig. 2 Pathophysiological events in aSAH. Following aneurysm rupture,
EBI occurs due to damage the blood flow irregularities, vasoconstriction,
oxidative stress, and molecular changes. This early response initiates EC

damage and BBB breakdown leading to delayed responses such as CV,
inflammation, microthrombosis, and brain edema leading to poor
outcome
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and functions distinct from those of the pial network, and this
may affect therapeutic strategies [190].

The discovery of erythropoietin in the CNS has directed
research into the neuroprotective effect of endogenous and
recombinant erythropoietin [191]. In ECs, erythropoietin in-
duces expression of ET-1 [192], eNOS expression and NO
production, angiogenesis, and prevents apoptosis [191, 193,
194]. Recombinant erythropoietin administration significantly
reduces vasospasm, prevents brain damage, and improves
neurological outcome in animal aSAH [195, 196]. Clinical
trials of erythropoietin in patients with aSAH show that it
significantly reduced the incidence of vasospasm [197, 198]
and prevents delayed hemodynamic dysfunction [199]. Future
experimental research and clinical studies are warranted in this
area to determine the beneficial effects of erythropoietin in
aSAH patients.

Wnt signaling in EC holds considerable promise for future
vascular research in this area. When Wnt pathway signal
transducer β-catenin is disrupted in the adult mouse EC, it
leads to BBB breakdown, downregulation of TJ proteins
(claudin-1 and claudin-3), neuronal injury, multiple brain pe-
techial hemorrhages, and CNS inflammation [200]. Further
constitutive activation of Wnt–β-catenin signaling attenuates
BBB disruption and hemorrhage defects of G protein coupled
receptor-124-conditional knock out from ECmice by rescuing
the TJ proteins, pericyte coverage, and extracellular-matrix
deficits [201]. In a multiple sclerosis mouse model, Wnt/β-
catenin pathway is upregulated in CNS ECs, and Wnt path-
way inhibition exacerbates BBB dysfunction including in-
creased CD4+ T-cell infiltration and endothelial transcytosis
[202]. These studies indicate that Wnt pathway manipulation
holds a promising target to limit BBB damage and maintain
the vessel integrity in aSAH.

Conclusion

Patients who experience DCI after aSAH have an increased
risk of poor outcome. It has been presumed that CV is the
principal mediator of DCI; however, research now shows that
multiple pathways are involved. Because ECs interact with all
cascades of brain injury following aSAH, they are a potent
target for therapeutic intervention and rescue. In the acute
phase, stabilizing EC function may mitigate cerebral edema
by minimizing BBB dysfunction. Protection in the delayed
phase has the potential to reduce EC apoptosis along with
microthrombosis and CV. Research into mechanisms that spe-
cifically affect ECs as well as the outcome of those mecha-
nisms remains limited. As a result, EC pathophysiology after
aSAH serves as fertile area for knowledge growth in the field.
We encourage the development of therapeutic approaches that
directly focus on vascular EC dysfunction, as this seems to be
a central mediator of both early and delayed pathology.
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