figshare
Browse
rspb20160996_si_001.pdf (3.41 MB)

Electronic supplementary materials from An aquatic vertebrate can use amino acids from environmental water

Download (3.41 MB)
journal contribution
posted on 2016-09-21, 06:05 authored by Noboru Katayama, Kobayashi Makoto, Osamu Kishida
Conventional food-web theory assumes that nutrients from dissolved organic matter are transferred to aquatic vertebrates via long nutrient pathways involving multiple eukaryotic species as intermediary nutrient transporters. Here, using larvae of the salamander Hynobius retardatus as a model system, we provide experimental evidence of a shortcut nutrient pathway by showing that H. retardatus larvae can use dissolved amino acids for their growth without eukaryotic mediation. First, to explore which amino acids can promote larval growth, we kept individual salamander larvae in one of eight different high-concentration amino acid solutions, or in control water from which all other eukaryotic organisms had been removed. We thus identified five amino acids (lysine, threonine, serine, phenylalanine and tyrosine) as having the potential to promote larval growth. Next, using 15N-labelled amino acid solutions, we demonstrated that nitrogen from dissolved amino acids was found in larval tissues. These results suggest that salamander larvae can take up dissolved amino acids from environmental water to use as an energy source or a growth-promoting factor. Thus, aquatic vertebrates as well as aquatic invertebrates may be able to use dissolved organic matter as a nutrient source.

History

Usage metrics

    Proceedings of the Royal Society B: Biological Sciences

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC