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Abstract

In a recent paper to this journal, the authors developed a methodology that allows the
incorporation of ratio inputs and outputs in the variable and constant returns-to-scale DEA
models. Practical evaluation of efficiency of decision making units (DMUs) in such models
generally goes beyond the application of standard linear programming techniques. In this
paper we discuss how the DEA models with ratio measures can be solved. We also introduce
a new type of potential ratio (PR) inefficiency. It characterizes DMUs that are strongly
efficient in the model of technology with ratio measures but become inefficient if the volume
data used to calculate ratio measures become available. Potential ratio inefficiency can be
tested by the programming approaches developed in this paper.

Keywords: data envelopment analysis, ratio measures, efficiency

1. Introduction

The two conventional models of data envelopment analysis (DEA) are stated under the
assumptions of variable and constant (VRS and CRS) returns-to-scale (Charnes et al. 1978,
Banker et al. 1984). In both models the underlying production technology is assumed to
satisfy several known axioms (Banker et al. 1984).

In a recent paper to this journal (Olesen et al. 2015) we showed that the use of ratio
inputs and outputs (such as percentages or various rates) in the VRS and CRS models
generally violates the stated production assumptions. In particular, if ratio measures are
used, the underlying technology generally becomes nonconvex. Therefore, the standard DEA
models are generally not suitable if at least one input or output is a ratio.

In the same paper, we introduced new Ratio-VRS (R-VRS) and Ratio-CRS (R-CRS)
production technologies that can be regarded as extensions to the standard DEA models that
allow the incorporation of ratio inputs and outputs. The R-VRS model is also an extension
of the approach developed by Ruggiero (1996) to the treatment of exogenous inputs that
are used to control for environmental factors. Applications of the latter approach have been
reported, for example, in Blackburn et al. (2014), Haelermans and Ruggiero (2013), and
Johnson and Ruggiero (2014). The R-CRS model provides a further extension assuming the
scalability of volume inputs and outputs, like in the standards CRS model, while excluding
ratio measures from this assumption.
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In the above paper (Olesen et al. 2015), we also outlined a computational procedure that
could be used to assess the efficiency of decision making units (DMUs) in the R-VRS and
R-CRS technologies.1 Depending on the measures to be improved (e.g., only volume or ratio
inputs, or both) and also on the assumption of returns to scale (VRS or CRS), the solution
procedure requires the use of linear programming, mixed integer linear programming or
nonlinear optimization techniques.

Since the publication of the above paper, it has been brought to our attention that it
would be useful to clarify the suggested solution procedures. This paper addresses this gap
and provides a more detailed discussion important for practical application of the R-VRS
and R-CRS DEA models.

In particular, we discuss solution approaches for the assessment of radial and nonradial
efficiency in the R-VRS technology, and also in the practically important case of R-CRS
technology with fixed ratio inputs and outputs. As in the case of standard VRS and CRS
models, all such efficiency measures usually result in a weakly efficient projection of the DMU
under the assessment on the boundary of technology. We show how the second optimization
stage of Ali and Seiford (1993) maximizing the sum of input and output slacks, and resulting
in a strongly efficient target DMU, can be implemented in technologies with ratio inputs
and outputs.

In this paper we also identify a new type of inefficiency that has no direct analogue in
the standard VRS and CRS technologies, referred to as potential ratio (PR) inefficiency.
A PR-inefficient DMU is strongly efficient in technology with ratio measures but becomes
inefficient if the volume data (numerator and denominator) used in the calculation of ratio
inputs and outputs become available. We illustrate this new type of inefficiency by simple
examples and develop computational approaches for its testing.

We complete our development by a numerical example that illustrates the computational
approaches developed in this paper, and demonstrates the usefulness of the new notion of PR
efficiency in interpreting optimal solutions to DEA models with ratio inputs and outputs.

2. Preliminaries

Let T be a production technology with m inputs and s outputs. Denote IV and OV the
subsets of volume (V) inputs and outputs, respectively. Similarly, let IR and OR be the
subsets of ratio (R) inputs and outputs.

Following Olesen et al. (2015), each DMU (X,Y ) in technology T is stated in the form

(X, Y ) = (XV , XR, Y V , Y R),

where X = (XV , XR) ∈ Rm
+ and Y = (Y V , Y R) ∈ Rs

+ are the vectors of volume and ratio
inputs and outputs, respectively. Denote observed DMUs (Xj, Yj), where j ∈ J = {1, ..., n}.

Olesen et al. (2015) show that, if some inputs or outputs are ratio measures, the standard
axioms of Banker et al. (1984), on which the VRS technology is based, need modifying. In
particular, the axiom of convexity is replaced by the axiom of selective convexity (Podinovski
2005). This axiom assumes that convex combinations of DMUs are possible provided these
DMUs have identical vectors of ratio inputs and outputs.

If the vectors of ratio inputs and outputs of the combined DMUs are not identical, their
aggregation is still possible but requires a different treatment of volume and ratio measures.

1Any feasible combination of inputs and outputs within the given technology is referred to as a DMU.
Where specifically indicated, we distinguish between observed and unobserved DMUs.
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While the volume inputs and outputs are aggregated exactly as in the standard convex
combination, each ratio input is taken at the highest level across all DMUs forming such
combination, and each ratio output is taken at the lowest level.2

The reason for this special treatment of ratio inputs and outputs is that such measures
cannot be aggregated with the same weights as the volume measures. For the correct
aggregation we need to know the numerator and denominator of each ratio input and output,
e.g., as assumed in Emrouznejad and Amin (2009). Olesen et al. (2015) do not assume that
such information is available and, in aggregating ratio inputs and output, allow for the most
conservative worst-case scenario that may arise if the volume numerators and denominators
become known.

The described treatment means that, in models with ratio measures, the standard notion
of a convex combination of DMUs is replaced by the notion of ratio-convex combination of
DMUs introduced next.

Consider any finite number of DMUs (X̃k, Ỹk) ∈ T , k ∈ K = {1, . . . , K}, and any vector
λ ∈ RK such that λk > 0, ∀k, and

∑
k∈K λk = 1. Define DMU (X̂, Ŷ ) = (X̂V , X̂R, Ŷ V , Ŷ R)

as follows:

Ŷ V =
∑
k∈K

λkỸ
V
k , (1.1)

X̂V =
∑
k∈K

λkX̃
V
k , (1.2)

Ŷ R
r = min

k∈K

{
Ỹ R
kr

}
, ∀r ∈ OR, (1.3)

X̂R
i = max

k∈K

{
X̃R

ki

}
, ∀i ∈ IR. (1.4)

Definition 1. DMU (X̂, Ŷ ) is referred to as a ratio-convex (R-convex) combination of
DMUs (X̃k, Ỹk), k ∈ K.3

Note that, in the above definition, we assume that λk > 0, for all k. Of course, we
can assume a more general condition λk ≥ 0, for all k, in which case the minimum in
equality (1.3) and the maximum in (1.4) should be taken over all k ∈ K such that λk > 0.

Based on the new set of production axioms that allows R-convex combinations of DMUs,
Olesen et al. (2015) develop the R-VRS technology TR

VRS with volume and ratio inputs and
outputs. This technology coincides with the set of all DMUs (X,Y ) ∈ Rm

+ × Rs
+ for which

2This type of aggregation of volume and ratio inputs and outputs is valid in any technology T that
satisfies the axioms of selective convexity and free disposability of ratio inputs and outputs (Podinovski
2005, Axiom A3′ and Lemma 2).

3DMUs (X̃k, Ỹk) may be observed or unobserved. A R-convex combination of DMUs is introduced in
Axiom A3′ of Podinovski (2005), without using this specific term.
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there exists a vector λ ∈ Rn such that4∑
j∈J

λjY
V
j ≥ Y V ,∑

j∈J

λjX
V
j ≤ XV ,

λj

(
Y R
j − Y R

)
≥ 0, ∀j ∈ J,

λj

(
XR

j −XR
)
≤ 0, ∀j ∈ J,

1⊤λ = 1,

λ ≥ 0.

(2)

In situations where there are natural upper bounds on some ratio inputs and outputs
(e.g., 1 or 100%), these are also incorporated in the definition of technology TR

VRS. However,
as proved in Proposition 7 in Olesen et al. (2015), any such bounds would be automatically
satisfied in any practical assessment of efficiency discussed below and are therefore omitted
in our development.

Furthermore, Olesen et al. (2015) develop the R-CRS technology TR
CRS assuming that the

volume inputs and outputs can be changed proportionally with an arbitrary scaling factor
α ≥ 0, as in the standard CRS technology. At the same time, the ratio inputs and outputs
may respond to this scaling in different ways. Olesen et al. (2015) identify different types of
ratio measures: fixed, proportional, downward-proportional and upward-proportional. In a
formal statement of technology TR

CRS, each of these types of ratio measure requires a different
treatment and is expressed by different mathematical conditions. A formal statement of
technology TR

CRS is given by Olesen et al. (2015) and is not reproduced in this paper.

3. Solving R-VRS models

3.1. Assessing the input radial efficiency

Consider assessing the input radial efficiency of some DMU (Xo, Yo) ∈ TR
VRS.

5 To simplify
the exposition and at the same time provide an illustration to the general case, suppose we
wish to measure the efficiency with respect to all volume and ratio inputs. In practice,
however, we may wish to measure the input radial efficiency with respect to a subset of
inputs, e.g., volume inputs only, while keeping the environmental ratio inputs fixed. The
latter case is well-known in the literature. It corresponds to the model proposed in Ruggiero
(1996) and has a clear economic interpretation.6

Using conditions (2), the input radial efficiency of DMU (Xo, Yo) ∈ TR
VRS, also stated as

4The conditions for ratio inputs and outputs in (2) can equivalently be restated as follows: if λj > 0 then
Y R
j ≥ Y R and XR

j ≤ XR, for all j ∈ J .
5DMU (Xo, Yo) may be observed or unobserved. Throughout the paper we assume that Xo ̸= 0 and

Yo ̸= 0 without further mention.
6As highlighted in Olesen et al. (2015, p. 455) in some situations “we may also be interested in possible

improvements to ratio measures. In such cases θ may not have the conventional meaning of input radial
efficiency, but it is still a measure of input improvement”. The two examples in footnote 19 in Olesen et al.
(2015) outline such situations.
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(XV
o , X

R
o , Y

V
o , Y R

o ), is the optimal value θ∗ of the following program:

θ∗ = min θ (3.1)

s.t.
∑
j∈J

λjY
V
j ≥ Y V

o , (3.2)∑
j∈J

λjX
V
j ≤ θXV

0 , (3.3)

λj

(
Y R
j − Y R

o

)
≥ 0, ∀j ∈ J, (3.4)

λj

(
XR

j − θXR
o

)
≤ 0, ∀j ∈ J, (3.5)

1⊤λ = 1, (3.6)

λ ≥ 0, θ sign free. (3.7)

In the above program the vector inequalities (3.5) are nonlinear. However, these inequal-
ities are easy to linearize. Indeed, we first restate (3.5) in the equivalent form:

either λj = 0 or XR
j − θXR

o ≤ 0, ∀j ∈ J, (4)

and introduce a variable vector δ ∈ {0, 1}n with binary components. The “either-or” condi-
tion (4) is linearized by restating it as the two inequalities:

λj ≤ δj, ∀j ∈ J, (5.1)

XR
j − θXR

o ≤ L1(1− δj), ∀j ∈ J, (5.2)

where L1 is a constant vector of dimension |IR| with sufficiently large positive components.7

This transforms model (3) to a mixed integer linear program.
A practical way to define a suitable vector L1 (and similar vectors for the other programs

stated below) is discussed in Appendix B.

3.2. Assessing the output radial efficiency

The output radial efficiency of DMU (Xo, Yo) is the inverse of the optimal value η∗ in
the following program:

η∗ = max η (6.1)

s.t.
∑
j∈J

λjY
V
j ≥ ηY V

o , (6.2)∑
j∈J

λjX
V
j ≤ XV

0 , (6.3)

λj

(
Y R
j − ηY R

o

)
≥ 0, ∀j ∈ J, (6.4)

λj

(
XR

j −XR
o

)
≤ 0, ∀j ∈ J, (6.5)

1⊤λ = 1, (6.6)

λ ≥ 0, η sign free. (6.7)

7Theoretically, components of vector L1 may be very large. However, using an arbitrary excessively large
vector L1 may create well-known computational problems (see Appendix A for details). It would therefore
be advisable to choose vector L1, and the other “large” vectors in this paper, close to the reasonably
conservative theoretical estimates obtained in Appendix B.
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The nonlinear constraints (6.4) of this program can be linearized using the same technique
as in the case of input minimization. Indeed, restate the inequality (6.4) in the equivalent
form:

either λj = 0 or ηY R
o − Y R

j ≤ 0, ∀j ∈ J.

We now replace the above ”either-or” condition by the linear inequalities

λj ≤ δj, ∀j ∈ J, (7.1)

ηY R
o − Y R

j ≤ L2(1− δj), ∀j ∈ J, (7.2)

where δ ∈ {0, 1}n is a variable vector, and L2 is a constant vector of dimension |OR| with
sufficiently large components. This transforms model (6) to a mixed integer linear program.

3.3. Nonradial measures

The described approach extends to a more general case in which, for example, the inputs
are improved in a nonradial direction gX = (gVX , g

R
X) ≥ 0, gX ̸= 0 (Chambers et al. 1996,

1998). In this case the improved DMU is described parametrically as

(X(β), Yo) = (XV
o − βgVX , X

R
o − βgRX , Y

V
o , Y R

o ), (8)

where β ≥ 0 is a scalar variable, and program (3) is replaced by

β∗ = max β (9.1)

s.t.
∑
j∈J

λjY
V
j ≥ Y V

o , (9.2)∑
j∈J

λjX
V
j ≤ XV

o − βgVX , (9.3)

λj

(
Y R
j − Y R

o

)
≥ 0, ∀j ∈ J, (9.4)

λj

(
XR

j − (XR
o − βgRX)

)
≤ 0, ∀j ∈ J, (9.5)

1⊤λ = 1, (9.6)

λ ≥ 0, β ≥ 0. (9.7)

Similar to the above treatment, the nonlinear constraints (9.5) can be restated in the
equivalent form:

either λj = 0 or XR
j − (XR

o − βgRX) ≤ 0, ∀j ∈ J.

These conditions are further linearized as

λj ≤ δj, ∀j ∈ J, (10.1)

XR
j − (XR

o − βgRX) ≤ L3(1− δj), ∀j ∈ J, (10.2)

where δ ∈ {0, 1}n is a variable vector, and L3 is a sufficiently large constant vector of
dimension |IR|.
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4. Solving R-CRS models

Olesen et al. (2015) show that assessing the input or output radial efficiency of DMU
(Xo, Yo) in technology TR

CRS generally requires solving a nonlinear program, and suggest
a simple line search algorithm for this purpose. Below we comment on a special case of
technology TR

CRS which is important from a practical point of view and for which a simpler
solution method can be identified.

Suppose that all ratio inputs and outputs are of the fixed type. These measures can
be assumed to remain constant when the volume measures are scaled with some factor α.
Examples of this type include contextual measures such as non-discretionary socio-economic
factors, and also quality factors that should not change with the volume of production.

Following Olesen et al. (2015), let TF
CRS denote the R-CRS technology in which all ratio

inputs and outputs are of the fixed type.8 According to Proposition 4 in Olesen et al.
(2015), the mathematical statement of this technology is obtained from the statement (2)
of technology TR

VRS by removing the normalizing condition 1⊤λ = 1.9

To be specific, consider assessing the input radial efficiency DMU (Xo, Yo) ∈ TF
CRS. For

this we solve program (3) from which the normalizing equality (3.6) is removed.
As in the case of model (3), we restate the nonlinear constraints (3.5) by the “either-

or” condition (4). Note, however, that the latter cannot be linearized by conditions (5)
because variables λj are no longer bounded above by 1, and the inequality (5.1) is generally
unsuitable.

We overcome this difficulty by an additional step. First note that we can limit the feasible
values of θ by the condition θ ≤ 1. Then for all j ∈ J , from (3.3) we have λj ≤ Λj, where

Λj = min{XV
oi/X

V
ji | i ∈ IV : XV

ji > 0}, ∀j ∈ J.

Define Λ = maxj∈J Λj. Note that no λj in a feasible solution can exceed Λ. We now
replace inequality (5.1) by the following condition:

λj ≤ Λδj, ∀j ∈ J. (11)

The nonlinear inequality (3.5) is now replaced by the two linear inequalities (5.2) and (11),
using the same constant vector L1 as above. This transforms the original nonlinear program
to a mixed integer linear form.

The cases of output radial efficiency and nonradial efficiency improvements with a chosen
directional vector are treated in a similar way.

5. The second optimization stage

It is well known that assessing the input or output radial efficiency of DMU (Xo, Yo) in
the standard VRS or CRS technology projects it on the boundary of the technology, but
the projection may not be (strongly) efficient. To test if a DMU is strongly or only weakly
efficient, the second optimization stage of Ali and Seiford (1993) is usually performed.10

8Olesen et al. (2015) note that technology TF
CRS may be seen as the partial cone extension of technology

TR
VRS.

9As stated in Proposition 4 in Olesen et al. (2015), conditions (2) without the normalizing condition
1⊤λ = 1 describe all DMUs (X,Y ) ∈ TF

CRS whose vectors of volume outputs are nonzero, i.e., Y V ̸= 0. This
assumption should not be restrictive in most practical applications. The general statement of technology
TF
CRS, without the assumption Y V ̸= 0, is more complex and is given by Theorem 3 in Olesen et al. (2015).
10Often the two optimization stages are combined in one. In this approach the input and output slacks

are incorporated in the objective function with a very small positive multiplier ε.
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A similar second optimization stage is applicable to the R-VRS and R-CRS models of
Olesen et al. (2015). To be specific, below we first consider the R-VRS model, and comment
on the R-CRS model at the end of this section.

We start with two general definitions applicable to any production technology T .

Definition 2. DMU (X, Y ) ∈ T is (strongly) efficient if there does not exist a DMU
(X ′, Y ′) ∈ T , such that X ′ ≤ X, Y ′ ≥ Y , and (X ′, Y ′) ̸= (X,Y ).

Restating Definition 2, DMU (X,Y ) is strongly efficient if

{(X ′, Y ′) ∈ T | X ′ ≤ X,Y ′ ≥ Y } ∩ T = {(X, Y )} .

Definition 3. A DMU (X,Y ) ∈ T is weakly efficient if there does not exist a DMU
(X ′, Y ′) ∈ T , such that X ′ < X and Y ′ > Y .11

Obviously, a strongly efficient DMU is weakly efficient but the converse is not true.
Let (X̂, Ŷ ) be the projection of DMU (Xo, Yo) on the boundary of the R-VRS technology

TR
VRS. Namely, in the input oriented model (3), we have (X̂, Ŷ ) = (θ∗Xo, Yo). In the output

oriented model (6), (X̂, Ŷ ) = (Xo, η
∗Yo). For the nonradial model (9), DMU (X̂, Ŷ ) is

defined by formula (8), where we take β = β∗.12

It is clear that the projection (X̂, Ŷ ) is weakly efficient in TR
VRS.

13 To test if the projected
DMU (X̂, Ŷ ) is strongly efficient, we apply the second optimization stage of Ali and Seiford
(1993) and solve the following program that maximizes the sum of input and output slacks,
i.e., components of vectors ξ ∈ Rm

+ and ζ ∈ Rs
+:

14

∆∗ = max
m∑
i=1

ξi +
s∑

r=1

ζr

s.t. (X̂ − ξ, Ŷ + ζ) ∈ TR
VRS,

ξ, ζ ≥ 0.

(12)

Let (ξ̂, ζ̂) be an optimal solution to program (12). Define DMU

(X∗, Y ∗) = (X̂ − ξ̂, Ŷ + ζ̂). (13)

DMU (X∗, Y ∗) is often referred to as an efficient target of DMU (Xo, Yo).
15

Proposition 1. DMU (X∗, Y ∗) is strongly efficient in technology TR
VRS.

Proposition 2. DMU (Xo, Yo) is strongly efficient in technology TR
VRS if and only if the two

conditions are satisfied:
(i) The first-stage projection (X̂, Ŷ ) coincides with DMU (Xo, Yo), i.e., θ

∗ = 1 in the input-
oriented model (3), or η∗ = 1 in the output-oriented model (6), or β∗ = 0 in the nonradial
model (9).
(ii) The maximum sum of slacks ∆∗ in program (12) is equal to zero.

11The strict inequality between vectors means that this inequality is true for each component. Thus,
X ′ < X means X ′

i < Xi, ∀i = 1, . . . ,m.
12The DMU (X̂, Ŷ ) is a boundary point of technology TR

VRS because any further improvement of DMU
(Xo, Yo) in the chosen direction (e.g., any radial improvement of the input vector Xo with θ < θ∗ in the
input oriented model (3)) leads outside technology TR

VRS.
13Otherwise, by Definition 3, there exists a DMU (X ′, Y ′) ∈ TR

VRS, such that X ′ < X∗ and Y ′ > Y ∗,
which contradicts the definition of projection and optimality of the improvement factor θ∗, η∗ or β∗ in the
corresponding model.

14Note that we account for all input and output slacks of both volume and ratio measures.
15Because program (12), or its extended analogue (14), may have alternative optimal values (ξ̂, ζ̂), the

efficient target defined by formula (13) may not be unique.
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The proofs of the above propositions and the other results are given in Appendix C.

Using the statement of technology TR
VRS by conditions (2), for practical computations

program (12) takes on the form:16

∆∗ = max
m∑
i=1

ξi +
s∑

r=1

ζr (14.1)

s.t.
∑
j∈J

λjY
V
j − ζV ≥ Ŷ V , (14.2)∑

j∈J

λjX
V
j + ξV ≤ X̂V , (14.3)

λj

(
Y R
j −

[
Ŷ R + ζR

])
≥ 0, ∀j ∈ J, (14.4)

λj

(
XR

j −
[
X̂R − ξR

])
≤ 0, ∀j ∈ J, (14.5)

1⊤λ = 1, (14.6)

ξ =
(
ξV , ξR

)
, ζ =

(
ζV , ζR

)
≥ 0, λ ≥ 0. (14.7)

The two nonlinear constraints (14.4) and (14.5) of the above program can be linearized
using a similar approach to the method described above. We first state them as the “either-
or” conditions

either λj = 0

or
{
Ŷ R + ζR − Y R

j ≤ 0

and XR
j −

[
X̂R − ξR

]
≤ 0

}
, ∀j ∈ J.

These conditions are restated in a linear form using the variable vector δ ∈ {0, 1}n:

λj ≤ δj, ∀j ∈ J, (15.1)

Ŷ R + ζR − Y R
j ≤ L4(1− δj), ∀j ∈ J, (15.2)

XR
j −

[
X̂R − ξR

]
≤ L5(1− δj), ∀j ∈ J, (15.3)

where vectors L4 and L5 have sufficiently large components.
Extending the above results to the case of R-CRS is straightforward. Thus, the R-CRS

analogue of program (14) is obtained by removing the normalizing condition (14.6). As a
result, the linearizing conditions (15) need modifying, because the components of vector λ
are no longer bounded above by 1. As shown in Section 4, in this case the inequality (15.1)
should be replaced by (11).

6. Alternative calculations of efficient targets

According to formula (13), the efficient target (X∗, Y ∗) of DMU (Xo, Yo) in the R-VRS
technology is obtained by adjusting its projection (X̂, Ŷ ) by the vectors of optimal slacks ξ̂

16The inequality signs in constraints (14.2) and (14.3) can obviously be changed to equalities. However,
constraints (14.4) and (14.5) cannot be changed to equalities. It is straightforward to prove that, at opti-
mality, each (scalar) component inequality in (14.4) and (14.5) is satisfied as equality for at least one j ∈ J ,
where such j is generally different for each component inequality.
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and ζ̂ in program (14). A similar definition applies in the case of R-CRS technology. Below
we show that the efficient target (X∗, Y ∗) of DMU (Xo, Yo) can alternatively be calculated
using an optimal vector λ in program (14) (or its R-CRS analogue). This alternative ap-
proach is useful in understanding the notion of PR-inefficiency introduced below, which is
further illustrated by a numerical example in Section 10.

First, consider the case of R-VRS. Let (λ̂, ξ̂, ζ̂) be an optimal solution to program (14),
and let DMU (X∗, Y ∗) be the corresponding efficient target of DMU (Xo, Yo) defined by
formula (13). Define the set J0 = {j ∈ J | λ̂j > 0}. The next statement shows that the
efficient target (X∗, Y ∗) can be calculated in an alternative way, using the notion of R-convex
combination introduced by Definition 1.

Proposition 3. In the case of R-VRS, DMU (X∗, Y ∗) is the R-convex combination of
observed DMUs (Xj, Yj), j ∈ J0, taken with the corresponding weights λ̂j.

Now consider the case of R-CRS. Let (λ̂, ξ̂, ζ̂) be an optimal solution to the R-CRS
analogue of program (14). (As discussed above, this program is obtained by removing the
normalizing condition (14.6).)

As in the case of R-VRS, the efficient target (X∗, Y ∗) of DMU (Xo, Yo) can be defined by
formula (13). An alternative approach based on the optimal vector λ̂ requires the following
definition.

Definition 4. DMU (X̂, Ŷ ) is the ratio-conical (R-conical) combination of DMUs (X̃k, Ỹk),
k ∈ K = {1, . . . , K}, K ≥ 1, taken with the weights λk > 0, if the four conditions (1) are
satisfied.

Note that the only difference between Definition 1 of R-convex combinations and Def-
inition 4 of R-conical combinations is that the former assumes the normalizing condition∑

k∈K λk = 1 on the weights λk, which is omitted in the latter.
It is straightforward to verify that R-conical combinations of DMUs in technology TF

CRS

are also members of this technology. Indeed, in Definition 4, denote λ∗ =
∑

k∈K λk > 0. The

R-conical combination of DMUs (X̃k, Ỹk) may be viewed as the result of two consecutive
actions: taking the R-convex combination of such DMUs with the weights λ̂k = λk/λ

∗

(which add up to 1), and subsequent proportional scaling of the volume inputs and outputs
of the resulting R-convex combination by the factor λ∗, while keeping its ratio measures
fixed. Both actions are postulated as feasible in technology TF

CRS, and the resulting DMU is
a member of this technology (Olesen et al. 2015).

Proposition 4. In the case of R-CRS, DMU (X∗, Y ∗) is the R-conical combination of
observed DMUs (Xj, Yj), j ∈ J0, taken with the corresponding weights λ̂j.

It is worth highlighting the similarity between the above results and the known fact about
efficient targets in the standard VRS and CRS models of Banker et al. (1984) and Charnes
et al. (1978). In the VRS model, an efficient target of DMU (Xo, Yo) can be calculated as
the convex combination of observed DMUs (Xj, Yj), j ∈ J , taken with the corresponding

optimal weights λ̂j. Because in the R-VRS model ratio inputs and outputs do not form
convex combinations, the calculation of efficient targets requires construction of R-convex
combinations of observed DMUs.

In the CRS model, the efficient target is obtained by calculating the conical (nonnega-
tive linear) combination of observed DMUs with the optimal vector λ̂. In the R-CRS model,
this is replaced by the R-conical combination of observed DMUs. This excludes ratio in-
puts and outputs from forming conical combinations and requires taking them at the most
conservative level across the combined observed DMUs.
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Table 1: Hospitals in Example 1.

Hospital Costs Inpatients Outpatients Success rate

A 1 1 3 0.8
B 1 3 1 0.9
C 1 2 2 0.8

7. Potential ratio efficiency

Let TR be any technology with ratio inputs and outputs that satisfies the axioms of
selective convexity and free disposability stated in Olesen et al. (2015). As noted above,
any such technology necessarily includes all R-convex combinations that can be formed by
its DMUs. The R-VRS and R-CRS technologies considered in this paper are two examples
of such technology TR.

While a DMU (X̂, Ŷ ) may be strongly efficient in technology TR in the sense of Defini-
tion 2, from a practical perspective it might be useful to further explore if some of its ratio
inputs or outputs have a potential for improvement if information about the numerators
and denominators used for the calculation of ratio measures becomes available. The need
for such investigation is highlighted by the following example in which TR is the R-VRS
technology TR

VRS.

Example 1. Consider hospitals A, B and C in Table 1. Their single input represents costs,
and the three outputs are inpatients, outpatients and success rate of a certain treatment.
The input and the first two outputs are volume measures. (The exact units of measurement
are not important for this example.) The last output is the ratio of successful treatments to
all treatments undertaken by a hospital, and the underlying data are not available.

Let TR
VRS be the R-VRS technology generated by the three hospitals. It is straightforward

to verify that all three hospitals are strongly efficient.
Consider hospital C. It is clear that neither A nor B performs better than C. Suppose

we want to combine hospitals A and B in a convex combination with the equal weights 0.5.
This would not be problematic if all inputs and outputs were volume measures. However,
output 3 is a ratio. According to the axiom of selective convexity discussed above, the
volume measures are combined in the standard way, while ratio output 3 (success rate) is,
to reflect the worst-case scenario, taken at the minimum level 0.8. The resulting aggregated
DMU is the R-convex combination of hospitals A and B, which is identical to hospital C.

Although hospital C is strongly efficient in technology TR
VRS and therefore there exists

no DMU in this technology that dominates C (even in the weak sense), we can still argue
that the ratio output of hospital C could be improved. Indeed, if the volume data about the
number of all and successful treatments (instead of their ratio) were available, then the true
success rate of hospital C would be strictly between the success rates of hospitals A and B,
i.e., strictly between 0.8 and 0.9.

Using the provided information in the ratio form, we cannot estimate the exact improve-
ments on the ratio output 3 available to hospital C. However, we can at least highlight a
potential for such improvements that in practice may justify further research or a requirement
of better (volume) data.

Taking into consideration this argument, we can say that hospital C exhibits potential
ratio (PR) inefficiency, or that C is PR-inefficient. We define this formally, by using the
notion of R-convex combination introduced by Definition 1.

11



Definition 5. A strongly efficient DMU (X̂, Ŷ ) ∈ TR is potentially ratio inefficient (PR-
inefficient) if the following two conditions are satisfied:

(i) (X̂, Ŷ ) is a R-convex combination of a finite number of DMUs (X̃k, Ỹk) ∈ TR, k ∈
K = {1, . . . , K};

(ii) there exists a ratio input i′ ∈ IR such that X̂R
i′ > mink∈K{X̃R

ki′}, or there exists a

ratio output r′ ∈ OR such that Ŷ R
r′ < maxk∈K{Ỹ R

kr′}.
Otherwise, DMU (X̂, Ŷ ) is PR-efficient.

Note that Definition 5 does not require that the DMUs (X̃k, Ỹk), k ∈ K, be observed.
The reason for this is that all DMUs in technology TR are assumed producible and can be
used to test for PR inefficiency. If in Example 1 hospitals A and B are not observed, we can
still argue that hospital C should be able to increase its success rate, i.e., we still consider
it as PR-inefficient.

Also note that the notion of PR inefficiency equally applies to the technology of Ruggiero
(1996), which is a special case of the R-VRS technology of Olesen et al. (2015).

8. PR efficiency in the R-VRS technology

8.1. Properties of PR efficiency in the R-VRS technology

Assume that technology TR is the R-VRS technology TR
VRS. The following result shows

that we can verify PR efficiency of DMU (X̂, Ŷ ) by benchmarking it against R-convex
combinations of observed DMUs only. This result simplifies computational procedures for
testing PR efficiency developed below.

Proposition 5. A strongly efficient DMU (X̂, Ŷ ) ∈ TR
VRS is PR-inefficient if and only it is

a R-convex combination of a finite number of observed DMUs (X̃k, Ỹk), k ∈ K ⊆ J , for
which condition (ii) of Definition 5 is true.

The next result shows that the notion of PR efficiency can in principle be derived from
properties of optimal solutions of program (14) used to test for strong efficiency of DMU
(X̂, Ŷ ).

Proposition 6. A strongly efficient DMU (X̂, Ŷ ) ∈ TR
VRS is PR-efficient if and only if, at

each optimal solution to program (14) (whose optimal value in this case is ∆∗ = 0), the
vector inequalities (14.4) and (14.5) are satisfied as equalities, for all j ∈ J .

8.2. Testing for PR efficiency

Below we develop a test that allows us to identify whether a strongly efficient DMU
(X̂, Ŷ ) = (X̂V , X̂R, Ŷ V , Ŷ R) ∈ TR

VRS is PR-efficient.17 Because DMU (X̂, Ŷ ) is strongly
efficient, the optimal value ∆∗ in program (14) is zero. This implies that that the following

17DMU (X̂, Ŷ ) may be observed or unobserved.
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program is feasible and has an optimal solution.

∆1 = max
∑
j∈J

∑
i∈IR

ξRji +
∑
j∈J

∑
r∈OR

ζRjr (16.1)

s.t.
∑
j∈J

λjY
V
j = Ŷ V , (16.2)∑

j∈J

λjX
V
j = X̂V , (16.3)

λj

(
Y R
j −

[
Ŷ R + ζRj

])
= 0, ∀j ∈ J, (16.4)

λj

(
XR

j −
[
X̂R − ξRj

])
= 0, ∀j ∈ J, (16.5)

if λj = 0 then ζRj = 0 and ξRj = 0, ∀j ∈ J, (16.6)

1⊤λ = 1, (16.7)

ξRj , ζ
R
j ≥ 0, ∀j ∈ J, λ ≥ 0, (16.8)

where ξRj ∈ R|IR| and ζRj ∈ R|OR|, j ∈ J , are DMU-specific vectors of slacks.

Let λ̂, ζ̂Rj , ξ̂Rj , j ∈ J , be an optimal solution to program (16), and assume that its

optimal value ∆1 > 0. Let J∗ be the corresponding reference set of DMU (X̂, Ŷ ), i.e.,
J∗ = {j | λ̂j > 0, j ∈ J}.18

By constraints (16.4) and (16.5), and because ζ̂Rj , ξ̂
R
j ≥ 0, ∀j, none of the DMUs in

the reference set J∗ performs worse than DMU (X̂, Ŷ ) on each individual ratio input and
output. Moreover, because ∆1 > 0, there exists a DMU j ∈ J∗ that performs better than
DMU (X̂, Ŷ ) on at least one ratio input or output. Therefore, DMU (X̂, Ŷ ) exhibits PR
inefficiency.

The following result establishes this observation formally.

Proposition 7. A strongly efficient DMU (X̂, Ŷ ) ∈ TR
VRS is PR-efficient if and only if the

optimal value ∆1 of program (16) is equal to zero.

It is useful to compare the test of strong efficiency based on program (14) with the test
of PR efficiency based on program (16). The former program uses slack vectors ξR and ζR

that are not DMU-specific (these slack vectors do not depend on j ∈ J). As a result, for
each ratio measure (input and output) the objective function of program (14) accounts for
the smallest of all deviations between DMU (X̂, Ŷ ) and the DMUs from its reference set.19

In contrast, program (16) uses DMU-specific slack vectors ξRj and ζRj , j ∈ J∗. Therefore,

it identifies possible improvements on each ratio measure when DMU (X̂, Ŷ ) is compared
to each observed DMU in the reference set J∗. In summary, only the minima of such
improvements enter the objective function of program (14), while all improvements enter
the objective function of program (16).

Another difference between programs (14) and (16) is that the former program, looking
for evidence of weak inefficiency, also accounts for possible slack variables in the volume
constraints (14.2) and (14.3). In contrast, in program (16) we assume that DMU (X̂, Ŷ )
is strongly efficient and, therefore, no slack in the volume inputs and outputs is possible.

18Program (16) may have multiple optimal solutions, and the reference set J∗ may not be unique.
19This reference set includes all observed DMUs j ∈ J with a positive λj in the optimal solution to

program (14).
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Therefore, no slack vectors in the volume dimensions are included in the objective func-
tion (16.1) and in the constraints (16.2) and (16.3).

In practical applications, program (16) can be restated and solved as a mixed integer
linear program. Below we show that a simpler linear program can be solved instead.

8.3. An alternative test of PR efficiency

Let, as above, DMU (X̂, Ŷ ) be strongly efficient. Introduce the set J0 ⊆ J of all observed
DMUs that are not worse than DMU (X̂, Ŷ ) on all individual ratio inputs and outputs, i.e.,

J0 =
{
j ∈ J | XR

j ≤ X̂R, Y R
j ≥ Ŷ R

}
.

It is clear that DMUs j ∈ J \ J0 cannot enter (with λj > 0) any R-convex combination

of observed DMUs that leads to classifying DMU (X̂, Ŷ ) as PR-inefficient by Definition 5.
The following linear program uses this fact and restricts the set of observed DMUs, against
which DMU (X̂, Ŷ ) is benchmarked, to J0:

∆2 = max
∑
i∈IR

ξRi +
∑
r∈OR

ζRr (17.1)

s.t.
∑
j∈J0

λjY
V
j = Ŷ V , (17.2)∑

j∈J0

λjX
V
j = X̂V , (17.3)∑

j∈J0

λjY
R
j − ζR = Ŷ R, (17.4)∑

j∈J0

λjX
R
j + ξR = X̂R, (17.5)∑

j∈J0

λj = 1, (17.6)

ξR, ζR ≥ 0, λ ≥ 0. (17.7)

Program (17) may be viewed as the additive model based on the VRS technology that
treats ratio inputs and outputs in the same way as volume measures, and which accounts
only for the slack vectors on the ratio inputs and outputs. Furthermore, this program
employs a restricted set J0 of observed DMUs against which DMU (X̂, Ŷ ) is benchmarked.

In practical computations we may replace the summation by j ∈ Jo in constraints (17.2)–
(17.6) by the summation by j ∈ J . In this case, to make sure that λj = 0, for all j ∈ J \ J0,
we should additionally specify two groups of linear constraints similar to those specified
in the statement (2) of technology TR

VRS. These additional constraints take on the form:

λj

(
Y R
j − Ŷ R

)
≥ 0 and λj

(
XR

j − X̂R
)
≤ 0, for all j ∈ J .

Proposition 8. A strongly efficient DMU (X̂, Ŷ ) ∈ TR
VRS is PR-efficient if and only if the

optimal value ∆2 of program (17) is equal to zero.

Solving linear program (17) provides a simple practical method for testing PR efficiency
of DMUs in technology TR

VRS.
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Table 2: Hospitals in Example 2.

Hospital Costs Inpatients Outpatients Success rate

A∗ 0.5 0.5 1.5 0.8
B∗ 2 6 2 0.9
C 1 2 2 0.8

9. PR efficiency in the R-CRS technology

The notion of PR efficiency applies to any freely disposable technology that satisfies the
assumption of selective convexity. In particular, it applies to the general R-CRS technology
of Olesen et al. (2015) that allows for different types of ratio inputs and outputs. However,
a full development of testing procedures for PR efficiency in a general R-CRS technology,
although straightforward in principle, would require a lengthy technical exposition and, for
this reason, is left outside the scope of this paper.

Below we consider such testing procedures only for a special but practically important
case of R-CRS technology in which all ratio measures are of the fixed type. The meaning of
this technology, also denoted TF

CRS, was discussed in Section 4.

Example 2. Consider a modification of Example 1 in which hospitals A∗, B∗ and C have
inputs and outputs as in Table 2. (Hospital C is the same as in Example 1.) Suppose that
costs, inpatients and outpatients are assumed to be fully scalable (proportional), while the
success rate for treatments is fixed and independent of any such scaling.

If the volume input and two outputs of hospitals A∗ and B∗ are scaled by factors 2 and
0.5, respectively, while keeping the success rate fixed, the resulting hospitals are hospitals A
and B in Example 1, although these two hospitals are no longer observed.

As noted in Example 1, hospital C is the R-convex combination of hospitals A and B
taken with equal weights 0.5. Because the success rate 0.9 of hospital B is higher than the
success rate of 0.8 of hospital C, by Definition 5, the latter hospital is PR-inefficient.

Note that, in contrast with Example 1, the fact that hospital C is PR-inefficient is now
established by benchmarking it against unobserved DMUs A and B. This is allowed by
Definition 5 which, as discussed, does not require that the DMUs used in the R-convex
combination be necessarily observed.

Importantly, in contrast with Example 1, hospital C is not a R-convex combination of
observed hospitals A∗ and B∗. Therefore, its PR inefficiency cannot be established if it is
benchmarked only against R-convex combinations of observed DMUs.

It is clear that, if we wish to test PR efficiency of any DMU (X̂, Ŷ ) ∈ TF
CRS by benchmark-

ing it against observed DMUs only, we need to allow their R-conical combinations introduced
by Definition 4, instead of the more restrictive R-convex combinations. For example, the
volume measures of hospital C are obtained as the conical combination of the input and
two volume outputs of observed hospitals A∗ and B∗ taken with the weights λA = 1 and
λB = 0.25, while the success rate is kept at the minimum level of 0.8.

Below we generalize this example and state formally that, instead of testing PR efficiency
of DMU (X̂, Ŷ ) ∈ TF

CRS by Definition 5, requiring that we consider R-convex combinations of
all (observed and unobserved) DMUs in technology TF

CRS, we can benchmark DMU (X̂, Ŷ )
against R-conical combinations of observed DMUs only.

Let DMU (X̂, Ŷ ) ∈ TF
CRS be strongly efficient in technology TF

CRS, which can be tested
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in two stages, as outlined in Sections 4 and 5.20 The following statement is an analogue of
Proposition 5.

Proposition 9. A strongly efficient DMU (X̂, Ŷ ) ∈ TF
CRS is PR-inefficient if and only if it

is a R-conical combination of a finite number of observed DMUs (X̃k, Ỹk), k ∈ K ⊆ J , for
which condition (ii) of Definition 5 is true.

Note that Example 2 provides an illustration to the above statement. The proof of
Proposition 9 is similar to the proof of Proposition 5, and is not given.

In practical computations, verifying PR efficiency in technology TF
CRS is facilitated by

the analogues of Propositions 6–8 discussed below.
Restating Propositions 6 and 7 requires removal of the normalizing conditions (14.6)

and (16.7) in programs (14) and (16), respectively. The proof of these statements requires
only a minor adjustment to the proof in the case of R-VRS, and is not given.

Consider the following modification of program (17):21

∆3 = max
∑
i∈IR

ξRi +
∑
r∈OR

ζRr (18.1)

s.t.
∑
j∈J0

λjY
V
j = Ŷ V , (18.2)∑

j∈J0

λjX
V
j = X̂V , (18.3)

∑
j∈J0

λj

(
Y R
j − Ŷ R

)
− ζR = 0, (18.4)

∑
j∈J0

λj

(
XR

j − X̂R
)
+ ξR = 0, (18.5)

ξR, ζR ≥ 0, λ ≥ 0. (18.6)

Similar to program (17), we can replace condition j ∈ Jo in constraints (18.2)–(18.5) by
the more operational condition j ∈ J , accompanied by the incorporation of additional linear
constraints that imply λj = 0, for all j ∈ J \ J0.

The following statement is an analogue of Proposition 8. It provides a straightforward
linear programming approach for testing PR efficiency in technology TF

CRS, by solving pro-
gram (18).

Proposition 10. A strongly efficient DMU (X̂, Ŷ ) ∈ TF
CRS is PR-efficient if and only if the

optimal value ∆3 of program (18) is equal to zero.

10. Numerical example and discussion

Below we consider a numerical example that demonstrates different efficiency measures
and computational procedures outlined in this paper.

Table 3 shows eight hypothetical observed DMUs evaluated on three inputs and two
outputs. In this data set, Inputs 1 and 2, and Output 1 are volume measures, while Input 3
and Output 2 are ratio measures.

Our analysis includes the following three main steps.

20In line with footnote 9, below we assume without further mention that the vector of volume outputs
Ŷ V ̸= 0. This allows us to state technology TF

CRS in the form (2) from which the normalizing condition
1⊤λ = 1 is removed.

21Program (17) is obtained from program (18) by incorporating the normalizing condition (17.6). Then
a simple rearrangement of the terms in constraints (18.4) and (18.5) transforms them to (17.4) and (17.5).
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Table 3: The data set.

DMU Input 1 Input 2 Input 3 Output 1 Output 2

A 15 13 0.2 10 0.7
B 27 25 0.5 16 0.4
C 62 30 0.5 20 0.6
D 25 15 0.4 20 0.5
E 50 35 0.8 16 0.6
F 79 50 0.3 23 0.4
G 25 18 0.6 18 0.3
H 15 25 0.5 20 0.4

1. We evaluate the input radial efficiency of the eight observed DMUs in the R-VRS and
R-CRS models, with respect to the volume inputs only. For comparison purposes, we
also evaluate the efficiency of these DMUs in the free disposal hull (FDH) technology
of Deprins et al. (1984), and in the standard CRS and VRS technologies of Charnes
et al. (1978) and Banker et al. (1984). Because the input improvement factor θ is
attached only to the volume inputs, the R-VRS model becomes the known model of
Ruggiero (1996), and the VRS model becomes the model of Banker and Morey (1996)
developed for treating exogenously fixed inputs or outputs.

2. Limiting our analysis to the R-VRS and R-CRS models, we test whether the radial
efficient DMUs and input radial projections of inefficient DMUs are strongly or only
weakly efficient. This illustrates the use of the second optimization stage for the R-
VRS and R-CRS models developed above. This step identifies the set of strongly
efficient observed DMUs and also efficient targets for the remaining inefficient DMUs.

3. We test whether the strongly efficient observed DMUs and efficient targets (of ineffi-
cient DMUs) are PR-efficient, in both the R-VRS and R-CRS models. We find that,
in our example, all strongly efficient observed DMUs, and some of the efficient target
DMUs, are PR-efficient. The remaining efficient target DMUs are PR-inefficient. We
discuss the meaning of these results from a practical perspective.

At the end, we consider an additional scenario in which the input radial efficiency is
evaluated with respect to all volume and ratio inputs. Our findings are similar, but not
identical, to those discussed within the above main scenario.

10.1. Input radial efficiency in different models

Table 4 shows the input radial efficiency of all DMUs in five different technologies, where
the input improvement factor θ is attached only to the volume Inputs 1 and 2.22 This
corresponds to a common practical situation in which, for example, ratio inputs and outputs
are considered exogenous and nondiscretionary, e.g., reflecting the quality of environment in
which the DMUs operate (Banker and Morey 1986, Ruggiero 1996, Haelermans and Ruggiero
2013, Johnson and Ruggiero 2014).

The five models employed in this example are based on different assumptions about the
production technology, in particular, about the convexity and scalability of the volume and
ratio inputs and outputs.

22All models in this example were programmed and solved in a common spreadsheet linear optimizer.
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Table 4: Input radial efficiency with respect to the two volume inputs in different models.

DMU FDH R-VRS R-CRS VRS CRS

A 1 1 1 1 1
B 0.926 0.677 0.615 0.677 0.627
C 1 1 0.867 1 0.541
D 1 1 1 1 1
E 1 0.864 0.594 0.568 0.419
F 1 1 0.598 1 1
G 1 0.874 0.837 0.874 0.837
H 1 1 1 1 1

Free disposal hull (FDH). The FDH technology TFDH (Deprins et al. 1984) does not
employ any convexity or scalability (proportionality) assumptions about the inputs and
outputs, and is the smallest of the five technologies used in this example. Consequently, the
FDH model is the least discriminating among the five models shown in Table 4, in terms of
input radial efficiency.

R-VRS technology. The R-VRS technology TR
VRS (Olesen et al. 2015) is specifically de-

veloped for use with a combination of volume and ratio measures, as in the current example.
This approach assumes that DMUs can be combined in R-convex combinations. As dis-
cussed above, this means that the volume inputs and outputs of the combined DMUs can
form the conventional convex combinations, while the ratio inputs and outputs should be
taken at their least demanding levels across the combined DMUs.

To evaluate the input radial efficiency in the R-VRS model with respect to the two
volume inputs, for each of the eight DMUs, we solve program (3) in which we remove the
factor θ from the constraints (3.5). This makes program (3) a linear program. Since the
input improvement factor θ is attached only to the volume inputs, the R-VRS model used
here is simply the model of Ruggiero (1996).

As seen from Table 4, the R-VRS model provides a better discrimination on efficiency
than the FDH model.

R-CRS technology. The R-CRS technology introduced by Olesen et al. (2015) is a generic
term for a class of technologies. In this example we employ the practically important R-
CRS technology TF

CRS discussed in Section 4. It assumes that DMUs can be combined in
R-convex combinations (as in the R-VRS technology) and that, additionally, volume inputs
and outputs can be scaled proportionally with an arbitrary factor α ≥ 0, while keeping
the ratio inputs and outputs fixed. This corresponds to a practical scenario in which the
volume of operations can be scaled while keeping exogenous environmental or quality factors
(represented by ratio inputs and outputs) fixed.

Assessing the input radial efficiency in technology TF
CRS was discussed in Section 4. Fol-

lowing this discussion, for each DMU we solve program (3) from which we remove the
normalizing equation (3.6). We also remove the input improvement factor θ from the ratio
input constraints (3.5), which results in a linear program.

The results of computation in the R-CRS technology TF
CRS shown in Table 4 illustrate a

significant improvement on efficiency discrimination compared to the first two models.

VRS and CRS technologies. Table 4 also shows the input radial efficiency of all DMUs in
the standard CRS and VRS technologies TCRS and TVRS of Charnes et al. (1978) and Banker
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et al. (1984), evaluated with respect to the volume inputs. Since the input improvement
factor θ is attached only to the volume inputs, the VRS model is simply the model proposed
by Banker and Morey (1996).

Olesen et al. (2015) argue that the VRS and CRS technologies should not be used if
at least one input or output is a ratio measure (and that appropriate substitutes are the
R-VRS and R-CRS technologies). This is because both technologies assume the convexity
property which is generally violated by the ratio measures. In the case of CRS, a further
consideration is that it is generally incorrect to allow proportional scaling of DMUs if their
input and output vectors include both volume and ratio measures.

Following these arguments, it may appear meaningless to compare the results of efficiency
computations using the R-VRS and R-CRS models, with the results obtained from the VRS
and CRS models. However, in our opinion, it is interesting, from a purely mathematical point
of view, to illustrate the impact of the different sets of axioms underlying different models,
on the resulting efficiency scores. We also find it interesting to explore the mathematical
relationship between the different technologies, which is the topic for the next section.

10.2. Relationship between different technologies

The efficiency scores in Table 4 reflect a theoretical relationship between the five different
technologies used in our example.

As proved by Proposition 3 in Olesen et al. (2015), the R-VRS technology TR
VRS is a

subset of any R-CRS technology (based on the same set of inputs and outputs), including
technology TF

CRS. It is also clear that the FDH technology TFDH is a subset of technology
TR
VRS. This can be expressed a follows:

TFDH ⊆ TR
VRS ⊆ TF

CRS. (19)

It is also straightforward to prove the following embedding:

TFDH ⊆ TR
VRS ⊆ TVRS ⊆ TCRS. (20)

Note that the efficiency scores in Table 4 are consistent with the embeddings (19)
and (20).

It is worth noting that neither of the two technologies TF
CRS nor TCRS is a subset of the

other.23 This fact can also be observed from Table 4. Indeed, the input radial efficiency of
DMUs B and F in technology TF

CRS is lower than in technology TCRS, while the opposite is
true for DMUs C and E.

10.3. Testing for strong efficiency

Below we illustrate the testing of strong efficiency in the R-VRS and R-CRS models,
following the discussion in Sections 5 and 6.

R-VRS model. According to the results in Table 4, five of the eight DMUs, A, C, D, F
and H, are input radial efficient in this model (with respect to the two volume inputs only),
and three are input radial inefficient. The input radial projections of the three inefficient
DMUs, B, E and G, are calculated by multiplying their volume inputs by their input radial
efficiency.

23Indeed, consider technologies TF
CRS and TCRS generated by the single DMU W = (1; 0.2; 1; 0.2), where

the four components, from left to right, represent the volume input, ratio input, volume output and ratio
output. Then DMU W1 = (2; 0.4; 2; 0.4) obtained by full proportional scaling of DMU W by a factor α = 2,
is in technology TCRS, but not in TF

CRS. However, keeping the ratio input and output of DMU W fixed, and
scaling only the volume measures by α = 2, we obtain DMU W2 = (2; 0.2; 2; 0.2). DMU W2 is in technology
TF
CRS but not in TCRS. Therefore, neither technology TF

CRS and TCRS is generally a subset of the other.
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Table 5: Optimal solutions of the second optimization stage of the R-VRS model: vectors λ = (λA, . . . , λH),
and input and output slack vectors ξ = (ξ1, ξ2, ξ3) and ζ = (ζ1, ζ2).

DMU λA λB λC λD λE λF λG λH ξ1 ξ2 ξ3 ζ1 ζ2

A 1 0 0 0 0 0 0 0 0 0 0 0 0
B 0.4 0 0 0.328 0 0 0 0.272 0 0 0 0 0
C 0 0 1 0 0 0 0 0 0 0 0 0 0
D 0 0 0 1 0 0 0 0 0 0 0 0 0
E 0.4 0 0 0.6 0 0 0 0 0 7.04 0.3 0 0
F 0 0 0 0 0 1 0 0 0 0 0 0 0
G 0.2 0 0 0.686 0 0 0 0.114 0 0 0.1 0 0.1
H 0 0 0 0 0 0 0 1 0 0 0 0 0

Table 6: Efficient targets of inefficient DMUs B, E and G in the R-VRS model.

DMU Input 1 Input 2 Input 3 Output 1 Output 2

B∗ 18.277 16.923 0.5 16 0.4
E∗ 43.2 23.2 0.5 16 0.6
G∗ 21.86 15.74 0.5 18 0.4

To test if the projected DMUs (or the actual DMUs, if these are input radial efficient)
are strongly, or only weakly, efficient, we employ program (14). For example, in the case
of DMU A, which is radial efficient, we replace the DMU under the assessment (X̂, Ŷ ) in
program (14) by DMU A. In the case of radial inefficient DMU B, we replace (X̂, Ŷ ) by the
projection of B, by applying the input improvement factor 0.677 to its two volume inputs.

Solving program (14) requires assessing vectors L4 and L5 for conditions (15). Based on
the discussion in Appendix B, we take all components of vectors L4 and L5 equal to 1.

Table 5 shows the optimal solutions of the second stage R-VRS program (14) for each
DMU. The results of the two evaluation stages shown in Tables 4 and 5 can now be combined
and summarized as follows.

Five DMUs, A, C, D, F and H, are strongly efficient in technology TR
VRS. For each of

them, the input radial efficiency (with respect to the volume inputs) is equal to 1, and the
optimal input and output slacks calculated by the second optimization stage (shown in the
last five columns of Table 5) are all equal to zero.

The input radial efficiency of DMU B in technology TR
VRS is equal to 0.677. Its radial

projection on the boundary of this technology is obtained by scaling its two volume inputs
by 0.677. According to Table 5, this projection cannot be further improved by maximizing
the sum of input and output slacks (all optimal slacks for this DMU are equal to zero).
Therefore, the input radial projection of DMU B is located on the efficient part of the frontier
of technology TR

VRS and is strongly efficient. Consequently, DMU B is input radial inefficient
but, using the terminology of Cooper et al. (2007), does not exhibit mix inefficiency.

DMUs E and G are both input radial and mix inefficient. Their radial projections
on the boundary of technology TR

VRS, obtained by multiplying their volume inputs by the
corresponding efficiency scores 0.864 and 0.874, are only weakly efficient. The latter is
observed from the positive optimal input and output slacks shown in Table 5.
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Table 7: Optimal solutions of the second optimization stage of the R-CRS model: vectors λ = (λA, . . . , λH),
and input and output slack vectors ξ = (ξ1, ξ2, ξ3) and ζ = (ζ1, ζ2).

DMU λA λB λC λD λE λF λG λH ξ1 ξ2 ξ3 ζ1 ζ2

A 1 0 0 0 0 0 0 0 0 0 0 0 0
B 0 0 0 0.462 0 0 0 0.338 0 0 0 0 0
C 2 0 0 0 0 0 0 0 23.733 0 0.3 0 0.1
D 0 0 0 1 0 0 0 0 0 0 0 0 0
E 1.6 0 0 0 0 0 0 0 5.714 0 0.6 0 0.1
F 2.3 0 0 0 0 0 0 0 12.742 0 0.1 0 0.3
G 0 0 0 0.743 0 0 0 0.157 0 0 0.1 0 0.1
H 0 0 0 0 0 0 0 1 0 0 0 0 0

Table 8: Efficient targets of inefficient DMUs B, C, E, F and G in the R-CRS model.

DMU Input 1 Input 2 Input 3 Output 1 Output 2

B∗ 16.615 15.385 0.5 16 0.4
C∗ 30 26 0.2 20 0.7
E∗ 24 20.8 0.2 16 0.7
F ∗ 34.5 29.9 0.2 23 0.7
G∗ 20.93 15.07 0.5 18 0.4

Table 6 shows the efficient targets B∗, E∗ and G∗, for the three inefficient DMUs, B, E
and G, calculated using the results shown in Tables 4 and 5. According to Proposition 3, we
can calculate the efficient targets in two different ways, but the result is always the same.

For example, consider DMU E. Its efficient target E∗ shown in Table 6 is obtained as
the R-convex combination of the reference DMUs A and D taken with the weights λA = 0.4
and λD = 0.6 shown in Table 5. Alternatively, we obtain the same target DMU E∗ by
formula (13), i.e., by first calculating the input radial projection of DMU E on the boundary
of the technology, and subsequently adjusting this target by the optimal slacks ξ2 = 7.04
and ξ3 = 0.3 from Table 5.

R-CRS model. In the case of R-CRS technology TF
CRS, we use the same program (14) from

which we remove the normalizing condition (14.6). We further specify the same vectors L4

and L5 for the linearized conditions (15.2) and (15.3), as in the R-VRS model. We also
replace condition (15.1) by condition (11) in which we take all components of vector Λ equal
to the sufficiently large and “round” value 10.

Table 7 shows the optimal solutions of the second stage R-CRS program. Based on the
results in both Tables 4 and 7, DMUs A, D and H are strongly efficient in technology TF

CRS.
DMU B is input radial inefficient and does not exhibit mix inefficiency (all optimal slacks
in the second stage solution for this DMU, as shown in Table 7, are equal to zero). The
remaining four DMUs C, E, F and G are both input radial inefficient and mix inefficient.

Table 8 shows the corresponding efficient targets for the inefficient DMUs. As in the
case of R-VRS, these efficient targets can be calculated in two equivalent ways, i.e., by
formula (13) or, according to Proposition 4, by taking the R-conical combinations of observed
DMUs with the corresponding optimal weights λ.
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Table 9: Testing PR efficiency of the efficient target DMUs.

Model A B C D E F G H

∆2 in R-VRS program (17) 0 0.306 0 0 0.16 0 0.257 0
∆3 in R-CRS program (18) 0 0.092 0 0 0 0 0.149 0

10.4. Testing for PR efficiency

Conventional applications of DEA typically involve computations in two optimization
stages, leading to the identification of efficient targets of the inefficient DMUs. Because the
efficient targets are strongly efficient, they are often regarded as the ultimate goals for the
inefficient DMUs seeking to improve their operations.

In this paper we argued that, in technologies TR
VRS and TF

CRS, incorporating ratio measures
that in practical scenarios would often represent environmental or quality factors, there may
still be evidence that a strongly efficient DMU could be improved further. This leads to the
development of the notion of PR inefficiency that applies only to strongly efficient DMUs.
If a strongly efficient DMU is PR-inefficient, it will be considered inefficient if the volume
numerators and denominators of the ratio inputs and outputs become available.

Below we show that the notion of PR efficiency is useful for further analysis of efficient
targets of all DMUs, in both R-VRS and R-CRS models.

R-VRS model. We test PR efficiency of the five strongly efficient DMUs, A, C, D, F and
H, and the efficient targets B∗, E∗ and G∗ of the inefficient DMUs, by solving appropriately
specified linear programs (17). The optimal vectors λ for each of the eight tested DMUs are
the same as obtained in the second optimization stage and shown in Table 5, and are not
reproduced.24 However, the optimal input and output slacks are generally different (because
of their different use in the two models). The optimal sum of these slacks is the value ∆2

shown in Table 9.
According to these results, by Proposition 8, all five strongly efficient DMUs are also

PR-efficient, and the three efficient targets of the inefficient DMUs are PR-inefficient.
Let us explore in detail the meaning of PR inefficiency. Consider, for example, DMU B.

Its efficient target is DMU B∗ shown in Table 6. According to Proposition 3, and using the
optimal solution shown in Table 5, DMU B∗ is obtained by taking the R-convex combination
of the strongly efficient DMUs A, D and H with the weights λA = 0.4, λD = 0.328 and
λH = 0.272, respectively. This fact is also straightforward to verify by direct computations
confirming that DMU B∗ indeed satisfies all conditions of Definition 1:

• The two volume inputs and the volume output of DMU B∗ are equal to the weighted
sums of these inputs and outputs of the DMUs A, D and H taken with the optimal
weights λA, λD and λH .

• The ratio input of DMU B∗ is equal to 0.5, which is the maximum of the ratio inputs
0.2, 0.4 and 0.5 of DMUs A, D and H.

• The ratio output of DMU B∗ is equal to 0.4, which is the minimum of the ratio outputs
0.7, 0.5 and 0.4 of DMUs A, D and H.

24If the second-stage program (14) has alternative optimal vectors λ, it is theoretically possible that some
of them may not be optimal in program (17) for testing PR efficiency.
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As argued in Olesen et al. (2015), the ratio input and output of the target DMU B∗

represent the most conservative estimates that have to be assumed because the underlying
volume data (used in the numerator and denominator of the ratios) are not available. Re-
peating the argument used in Example 1, observe that if the volume data become available,
and the true ratio inputs and outputs are calculated (and not conservatively assessed as
in the R-VRS model), the ratio input of DMU B∗ will be strictly smaller than 0.5. More
precisely, it will be in the range (0.2; 0.5) defined by the minimum and maximum values of
this ratio input among DMUs A, D and H. Similarly, the ratio output of DMU B∗ will be
strictly larger than 0.4 and, more more precisely, be located in the range (0.4; 0.7).

Based on the available ratio data, the efficient target DMU B∗ is strongly efficient and
represents an utmost feasible goal for improvement for the inefficient DMU B. However, if
the volume measures become available, the ratio input 0.5 and output 0.4 of DMU B∗ would
no longer represent the best feasible benchmarks for DMU B.

R-CRS model. We use program (18) to test PR efficiency of the three strongly efficient
observed DMUs, A, D and H, and the efficient targets B∗, C∗, E∗, F ∗ and G∗ of the five
inefficient DMUs, as shown in Table 8. As in the case of R-VRS, in our example, the optimal
vectors λ of program (18) are the same as those obtained in the second optimization stage
and shown in Table 7.

The optimal values of program (18) calculated for each DMU and denoted ∆3 are shown
in Table 9. By Proposition 10, all strongly efficient observed DMUs, A, D and H, and
the efficient targets C∗, E∗ and F ∗ are PR-efficient. The efficient targets B∗ and G∗ are
PR-inefficient.

To explain the meaning of PR-inefficiency in the R-CRS model, we again refer to DMU
B as an example. Its efficient target B∗ is shown in Table 8. By Proposition 4, and using
the optimal vector λ shown in Table 7, DMU B∗ is the R-conical combination of the two
efficient DMUs D and H, taken with the weights λD = 0.462 and λH = 0.338, respectively.
In line with Definition 4, this implies the following:

• The volume inputs and output of DMU B∗ are equal to the weighted sums of these
inputs and outputs of DMUs D and H taken with the weights λD and λH .

• The ratio input of DMU B∗ is equal to 0.5 , which is the maximum of the ratio inputs
0.4 and 0.5 of DMUs D and H.

• The ratio output of DMU B∗ is equal to 0.4, which is the minimum of the ratio outputs
0.5 and 0.4 of DMUs D and H.

As in the case of R-VRS, the efficient target B∗ represents an utmost feasible goal for
improving the inefficient DMU B, based on the available data. However, if the underlying
volume data used in the calculation of ratio inputs and outputs become available, the cor-
rectly calculated (and not based on the most conservative assumption used in the R-CRS
model) ratio input and output of DMU B∗ will both be strictly in the range (0.4; 0.5), span-
ning the minimum and maximum values of the ratio input and output of DMUs D and H.
Therefore, the current efficient target B∗ will no longer be regarded as a benchmark for the
inefficient DMU B.

It is also interesting to comment on the fact that the efficient targets of DMUs C, E
and F are PR-efficient. This is because each of these DMUs has a single reference DMU
identified by the positive component of the optimal vector λ in program (18), as shown in
Table 7.
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Table 10: Input radial efficiency with respect to all inputs in different models.

DMU FDH R-VRS R-CRS VRS CRS

A 1 1 1 1 1
B 0.926 0.8 0.8 0.688 0.677
C 1 1 0.867 1 0.744
D 1 1 1 1 1
E 1 0.864 0.594 0.568 0.419
F 1 1 0.667 1 1
G 1 0.874 0.837 0.874 0.837
H 1 1 1 1 1

For example, for DMU C, the only positive component is λA = 2. Therefore, its efficient
target C∗ (shown in Table 8) is obtained by multiplying the volume inputs and output of
DMU A by a factor 2, while keeping the ratio input and output of DMU A fixed. Therefore,
DMU C∗ is the trivial R-conical combination of the single DMU A, which does not generate
a range of potential ratio values as in the cases discussed above, in which several components
of vector λ were positive.25

10.5. Input radial efficiency with respect to all inputs

In this scenario we attach the input improvement factor θ to all three (volume and ratio)
inputs, and follow the same three steps as above. In the first step, we assess the input radial
efficiency of each DMU in the five different technologies used in the main example above.

We evaluate the efficiency of DMUs in technology TR
VRS by solving an appropriately spec-

ified program (3), in which the nonlinear inequalities (3.5) are replaced by inequalities (5).
Similarly, in the case of technology TF

CRS, we solve program (3), in which the normaliz-
ing equality 1⊤λ = 1 is omitted, and the inequality (5.1) is replaced by (11) in which all
components of vector Λ are taken equal to 10.26

It is clear that attaching the radial input improvement factor θ to all inputs would
generally result in the same or higher efficiency scores compared to our main example in
which θ is attached only to a subset of inputs. This is confirmed by the computational
results shown in Table 10.

As in the main example above, we focus next on the R-VRS and R-CRS models. The
second optimization stage testing for strong efficiency of the input radial projections, and the
third stage testing for PR efficiency of the efficient targets do not require any modification
and are performed exactly as above.

In the R-VRS model, DMUs B, E and G are input radial inefficient. Performing the
second optimization stage shows that the radial projections of these three DMUs also exhibit
mix inefficiency.27 The remaining five DMUs, A, C, D, F and H, are strongly efficient. We
test these five DMUs and the efficient targets of the three inefficient DMUs for PR efficiency
(the efficient targets are not shown). Computations show that all five strongly efficient
DMUs are PR-efficient, while the efficient targets of DMUs B, E and G are PR-inefficient.

25By Proposition 9, the R-conical combination of DMUs in the set K must satisfy condition (ii) of Defi-
nition 5, which is obviously impossible if K consists of a single DMU.

26This is the same vector Λ as used in our main example for testing strong efficiency in the R-CRS model.
27The optimal sum of slacks in the appropriately specified program (14) is strictly positive.
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In the R-CRS model, only three DMUs, A, D and H, are input radial efficient. The sec-
ond optimization stage shows that these DMUs are strongly efficient. The radial projections
of all five input radial inefficient DMUs B, C, E, F and G, exhibit mix inefficiency and are
therefore only weakly efficient. Further testing shows that, in the R-CRS model, the three
strongly efficient DMUs and the efficient targets of all inefficient DMUs, except DMU G,
are PR-efficient. The efficient target of DMU G is PR-inefficient.

Interpretation of PR inefficiency in the R-VRS and R-CRS models is similar to our main
scenario and is not given.

11. Conclusion

In this paper we consider practical approaches to solving DEA models with ratio inputs
and outputs recently introduced by Olesen et al. (2015). The computational complexity of
these models depends on several factors:

• the assumption of returns to scale, i.e., whether we use the ratio variable or constant
returns-to-scale (R-VRS or R-CRS) technology;

• the set of inputs and outputs with respect to which the efficiency is evaluated, e.g.,
whether the improvements involve only volume measures or both volume and ratio
measures;

• the specific efficiency measure used and the orientation of the model, e.g., whether we
employ an input or output radial efficiency measure, or a nonradial efficiency measure
based on a specified direction.

If a radial or nonradial efficiency measure involves assessing improvements only with
respect to volume inputs or outputs, the R-VRS and R-CRS DEA models are straightforward
linear programs. However, if the efficiency measure includes ratio inputs or outputs, the R-
VRS and R-CRS models become nonlinear.

In this paper we show how all nonlinear R-VRS models and a practically important
class of R-CRS models with fixed (e.g., environmental) ratio inputs and outputs could be
linearized by transformation to a mixed integer linear program. This transformation offers
obvious computational advantages in practical applications.

We also consider the second optimization stage seeking to determine if a DMU is strongly
or only weakly efficient. This is achieved by maximising the sum of input and output slacks,
similar to the standard DEA models. The new second-stage models with ratio inputs and
outputs are nonlinear but can be linearized in a way similar to our main development.

As in the case of standard VRS and CRS models of Banker et al. (1984) and Charnes et al.
(1978), we show that the second optimization stage for the R-VRS and R-CRS models leads
to the identification of efficient targets of inefficient DMUs. However, while in the standard
VRS and CRS models the efficient targets are equal to the convex and, respectively, conical
(nonnegative linear) combinations of reference DMUs, in the R-VRS and R-CRS models
these targets are calculated as the ratio-convex (R-convex) and, respectively, ratio-conical
(R-conical) combinations of the reference DMUs. The notions of R-convex and R-conical
combinations are defined in our paper and reflect the distinctly different treatment of the
volume and ratio measures when constructing composite DMUs.

In a new conceptual development, we also introduce the notion of potential ratio (PR)
efficiency in a arbitrary technology with ratio measures that satisfies the axiom of selective
convexity and is freely disposable in all inputs and outputs. This notion applies to strongly
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efficient DMUs that can be shown to become inefficient if the volume data used to calculate
ratio measures become available. We develop computational approaches for testing PR
efficiency in the R-VRS technology and in the practically important R-CRS technology with
fixed ratio inputs and outputs.

We conclude our paper by a numerical example that illustrates different efficiency con-
cepts (radial efficiency, strong and weak efficiency, PR efficiency) and computational ap-
proaches for their evaluation. In particular, we show that the notion of PR efficiency is
useful for analysis of efficient target DMUs in both the R-VRS and R-CRS models. If the
volume data used in the calculation of ratio inputs and outputs become available, the ra-
tio inputs and outputs of all PR-inefficient target DMUs will become more demanding and
located within the particular ranges that are straightforward to calculate.

In practical terms this means that PR-inefficient target DMUs may be considered only as
intermediate benchmarks for the inefficient DMUs, or the most conservative estimates of the
“true” benchmarks, that we use in the R-VRS and R-CRS models because we do not have
access to the volume data underlying the available ratios. These intermediate benchmarks
will no longer represent the best feasible goals for ratio inputs and outputs if the volume
data become available.
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Appendix A. Computational problems related to the use of big M in linear
programming

The known linearization methods of “either-or” conditions require that the vectors Lk,
k = 1, . . . , 5, employed in this paper, be sufficiently large. In Appendix B we estimate lower
bounds for these vectors that satisfy theoretical requirements for the linearization methods.
Unfortunately, for some data sets, choosing vectors Lk at or above these bounds, as required
by the theory, may lead to well-known computational problems.

As illustrated in Sections 1–4, the large vectors Lk are used to model logical conditions
of the type: either condition A must hold or condition B must hold. The vector inequalities
containing vectors Lk, such as (5.2), consist of similar scalar inequalities that can be stated
in the following generic form:

f(x) ≤ Mb, (A.1)

where M is a component of the “large” vector Lk provided by the analyst, b ∈ {0, 1} is a
binary variable, and f(x) is a generic scalar function of some variable x.

Because b is binary, the single inequality (A.1) is theoretically equivalent to the following:

either i) b = 0 ⇒ f(x) ≤ 0

or ii) b = 1 ⇒ f(x) ≤ M.

The idea of choosing a large constant M is to make inequality f(x) ≤ M redundant, if b = 1.
The generic numerical instability of inequality (A.1) arises from the fact that the opti-

mization software uses a floating point representation of the binary variable b. Hence, b is
not necessarily 0 or 1. Assume that the integer tolerance of the solver is 1e−5, and that
b = 0.5e−5 in a current basic feasible solution to a linear program.28 Then b is regarded by
the software as being zero. Hence, no further branching or iterating procedure will occur
to try to bring b closer to zero. If the user specifies an M larger than the inverse integer
tolerance, e.g., if M = 1e6, then the “either-or” constraint modelled by (A.1) may not work
properly. The solver will regard b = 0.5e−5 as a zero, but (A.1) no longer implies that
f(x) ≤ 0. Indeed, in this case we obtain f(x) ≤ 106 × 0.5e−5 = 5 ̸= 0.

Note that the software used to solve a linear program with constraint (A.1) will not
provide any warning message if the specified constant M is too large.

Appendix B. Estimation of large vectors L

Below we suggest some approaches to defining “large” vectors from L1 to L5 used for the
linearization of different models discussed above.

Vector L1. The constant vector L1 is used in condition (5.2). Its role is to make this
condition redundant for any j ∈ J such that δj = 0 and, therefore, λj = 0. Define vector
X̃R of dimension |IR| as follows:

X̃R
i = max

j∈J
XR

ji , ∀i ∈ IR. (B.1)

We can now take L1 as any vector that satisfies the inequality

L1 ≥ X̃R.

28The default integer tolerance of industry standard CPLEX solver is currently 1e−5.
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Suppose we have replaced the nonlinear constraints (3.5) by linear conditions (5). By (5.1),
if λj > 0 then δj = 1, and (5.2) implies XR

j − θXR
o ≤ 0, which is consistent with (3.5). If

λj = 0 then δj = 0 becomes feasible and (5.2) becomes XR
j −θXR

o ≤ L1. By the definition of
vector L1, this inequality is true for any value of θ ≥ 0. Therefore, if λj = 0, constraints (5)
are redundant, exactly as the constraint (3.5).

Vector L2. Let P1 be program (6) whose nonlinear constraints (6.4) are replaced by two
inequalities (7). The components of vector L2 should be so large that, for every j such that
δj = 0 (possible only if the corresponding λj = 0), the inequality (7.2) becomes redundant
and does not limit the feasible set of program P1. We achieve this by requiring that the
inequality ηY R

o − Y R
j ≤ L2 be true for all j ∈ J and for all feasible solutions of program P1.

Because vectors Y R
j are nonnegative, it suffices to require that ηY R

o ≤ L2, for all feasible
values η.

Let M ≥ 1 be an upper bound on η, i.e., η ≤ M for all feasible values η in program P1.
Then L2 can be defined as any vector that satisfies the following inequality:

L2 ≥ MY R
o .

In program (6) we consider radial expansion of both volume and ratio outputs. This
allows us to obtain two independent upper bounds on η. First, define vector Ỹ ∈ Rs

+ as
follows:

Ỹr = max
j∈J

Yjr, ∀r = 1, . . . , s. (B.2)

In the case of volume outputs, the inequalities (6.2) imply Ỹ V ≥ ηY V
o . Assuming that

at least for one output r we have Y V
or ̸= 0, for any feasible η we have η ≤ M1, where

M1 = min{Ỹ V
r / Y V

or | r ∈ OV : Y V
or ̸= 0}.

Considering the ratio outputs, we can derive an upper bound on η from inequalities (6.4).
Indeed, in program P1, there exists a j ∈ J such that λj > 0. Therefore, ηY R

o − Y R
j ≤ 0.

This implies η ≤ M
(j)
2 , where M

(j)
2 = min{Y R

jr /Y
R
or | r ∈ OR : Y R

or ̸= 0}, provided Y R
or ̸= 0 for

at least one r. Because j is unknown a priori, we use the conservative upper bound

M2 = max
j∈J

M
(j)
2 .

Because from a computational point of view it is important to have L2 as small as possible
(see Appendix A), we can choose M = min{M1,M2} and L2 = MY R

o . On the other hand, if
the model in use considers radial expansion of only volume outputs (or only ratio outputs),
we have to accept the possibly larger M = M1 (respectively, M = M2).

Finally, the above constants M , M1 and M2 are specific to the DMU (Xo, Yo) under the
evaluation. In practice we may prefer to assess the efficiency of all observed DMUs j ∈ J
using the same large constant M∗. In this case we may first assess an appropriate constant
M(j) for each observed DMU j, and then define M∗ = maxj∈J{M(j)}.
Vector L3. Let P2 be program (9) whose nonlinear constraints (9.5) are replaced by in-
equalities (10). In program P2, there exists a j∗ ∈ J such that λj∗ > 0 and hence, by (10.1),
δj∗ = 1. Then from (10.2), we have

XR
o − βgRX ≥ XR

j∗ ≥ 0, (B.3)

for all values β feasible in program P2.
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Consider any j ∈ J . If λj > 0, then by (10.1), δj = 1 and the inequality (10.2) implies
XR

j − (XR
o − βgRX) ≤ 0, as required. If λj = 0 then δj = 0 becomes feasible and the

corresponding inequality (10.2) takes on the form

XR
j − (XR

o − βgRX) ≤ L3. (B.4)

We need to define vector L3 sufficiently large so that the inequality (B.4) is redundant
for all j ∈ J and all β feasible in program P2. Because, by (B.3), XR

o − βgRX ≥ 0, to
satisfy (B.4), it suffices to define L3 as any vector such that

L3 ≥ X̃R,

where the vector X̃R is as defined in (B.1). Therefore L3 can be the same vector as L1.

Vectors L4 and L5. The components of vectors L4 and L5 should be sufficiently large
to render inequalities (15.2) and (15.3) redundant for all j such that δj = 0. Let P3 de-
note program (14) whose nonlinear constraints (14.4) and (14.5) are replaced by the three
inequalities (15).

Note that in program P3, there exists a j∗ ∈ J such that λj∗ > 0 and therefore, by (15.1),
δj∗ = 1. Then (15.2) implies

Ŷ R + ζR ≤ Y R
j∗ ≤ Ỹ R, (B.5)

where Ỹ R is the subvector of ratio outputs of the vector Ỹ defined by (B.2). For any feasible
solution of P3 and for any j ∈ J , for the left-hand side of inequality (15.2) we have:

Ŷ R + ζR − Y R
j ≤ Ỹ R − Y R

j ≤ Ỹ R,

where the left inequality follows from (B.5). Define L4 as any vector that satisfies the
inequality

L4 ≥ Ỹ R.

Then, for any j ∈ J such that λj = 0, the value δj = 0 is feasible. The corresponding
inequality (15.2), which takes on the form

Ŷ R + ζR − Y R
j ≤ L4,

is redundant in program P3, as required.
Consider inequalities (15.3). As noted, there exists a j∗ such that δj∗ = 1. Then (15.3)

implies
X̂R − ξR ≥ XR

j∗ ≥ 0. (B.6)

Let us show that we can take any vector L5 such that

L5 ≥ X̃R,

where vector X̃R is as defined by (B.1). (We can therefore take L5 = L1, where L1 is defined
above.) Indeed, for any j ∈ J such that λj = 0, the value δj = 0 is feasible and, for the
left-hand side of inequality (15.3), we have

XR
j −

[
X̂R − ξR

]
≤ XR

j ≤ X̃R ≤ L5,

where the left inequality follows from (B.6). Therefore, for any j such that δj = 0, the
inequality (15.3) is true for all feasible solutions to program P3 and is therefore redundant,
as required.
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Appendix C. Proofs

Proof of Proposition 1. By the statement of program (12), DMU (X∗, Y ∗) ∈ TR
VRS. As-

sume that (X∗, Y ∗) is inefficient. Then there exists a DMU (X ′, Y ′) ∈ TR
VRS such that

(X ′, Y ′) = (X∗ − ξ′, Y ∗ + ζ ′), where at least one of the two vectors ξ′ ∈ Rm
+ and ζ ′ ∈ Rs

+ is
not a zero vector. Taking into account (13), we have

(X̂ − ξ̂ − ξ′, Ŷ + ζ̂ + ζ ′) ∈ TR
VRS. (C.1)

Denote ξ̃ = ξ̂ + ξ′ and ζ̃ = ζ̂ + ζ ′. Because at least one component of vectors ξ′ and ζ ′ is
strictly positive, we have

m∑
i=1

ξ̃i +
s∑

r=1

ζ̃r >
m∑
i=1

ξ̂i +
s∑

r=1

ζ̂r.

The latter inequality, together with condition (C.1), implies that (ξ̂, ζ̂) is not an optimal
solution to program (12). Therefore, DMU (X∗, Y ∗) is efficient.

Proof of Proposition 2. If either of the two conditions (i) or (ii) is not true, then DMU
(Xo, Yo) is obviously dominated and inefficient. Conversely, if (i) is true then (Xo, Yo) =
(X̂, Ŷ ). If (ii) is true then (X̂, Ŷ ) = (X∗, Y ∗), and therefore (Xo, Yo) = (X∗, Y ∗). By
Proposition 1, (Xo, Yo) is efficient.

Proofs of Propositions 3 and 4 . Let (λ̂, ξ̂, ζ̂) be an optimal solution to program (14),
and let (X∗, Y ∗) be defined by (13). Then equalities (1.1) and (1.2) are true. If for at least
one r ∈ OR or i ∈ IR the equalities (1.3) and (1.4) are not satisfied, then the corresponding
slacks ζRr and ξRi can be increased, and the solution (λ̂, ξ̂, ζ̂) is not optimal.

The proof of Proposition 4 is similar and is omitted.

Proof of Proposition 5. Let DMU (X̂, Ŷ ) be PR-inefficient. By Definition 5, (X̂, Ŷ ) is
the R-convex combination of a finite number of DMUs (X̃k, Ỹk) ∈ TR

VRS, k ∈ K, taken with
weights λk, such that condition (ii) of Definition 5 is true. Each DMU (X̃k, Ỹk) satisfies
conditions (2) with some vector µk ∈ Rn. (We use notation µk to avoid confusion with the
weights λk.) Therefore, for each k ∈ K, we have∑

j∈J

µk
jY

V
j ≥ Ỹ V

k , (C.2.1)∑
j∈J

µk
jX

V
j ≤ X̃V

k , (C.2.2)

µk
j

(
Y R
j − Ỹ R

k

)
≥ 0, ∀j ∈ J, (C.2.3)

µk
j

(
XR

j − X̃R
k

)
≤ 0, ∀j ∈ J, (C.2.4)

1⊤µk = 1, µk ≥ 0, (C.2.5)

where (Xj, Yj), j ∈ J , are the observed DMUs.
Define vector λ̄ ∈ Rn

+ as follows: λ̄j =
∑

k∈K λkµ
k
j , ∀j ∈ J . Then 1⊤λ̄ = 1 and λ̄ ≥ 0.

For each k ∈ K, denote Jk = {j ∈ J | µk
j > 0}. Let j ∈ J∗ =

∪
k∈K Jk. Then λ̄j > 0 if and

only if j ∈ J∗.
The idea of the proof is to show that DMU (X̂, Ŷ ) is the R-convex combination (X̄, Ȳ ) of

observed DMUs (Xj, Yj), j ∈ J∗, taken with the weights λ̄j. The proof is finalized by showing
that this R-convex combination also satisfies condition (ii) of Definition 5. Components of
the R-convex combination (X̄, Ȳ ) = (X̄V , X̄R, Ȳ V , Ȳ R) are calculated below.
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For each k ∈ K, multiply constraints (C.2.1) and (C.2.2) by λk > 0. Summing by k,
restricting j to the set J∗, and noting condition (i) in Definition 5, we have

Ȳ V =
∑
j∈J∗

λ̄jY
V
j ≥

∑
k∈K

λkỸ
V
j = Ŷ V ,

X̄V =
∑
j∈J∗

λ̄jX
V
j ≤

∑
k∈K

λkX̃
V
k = X̂V .

(C.3)

Let j ∈ J∗. Because λ̄j > 0, there exists a k ∈ K such that µk
j > 0. By (C.2.3), we

have Y R
jr ≥ Ỹ R

kr , ∀r ∈ OR. By (1.3), Ỹ R
kr ≥ Ŷ R

r . Therefore, Y R
jr ≥ Ŷ R

r . Similarly, XR
ji ≤ X̂R

i ,
∀i ∈ IR. Then, by definition of Ȳ R and X̄R, we have

Ȳ R
r = min

j∈J∗

{
Y R
jr

}
≥ Ŷ R

r , ∀r ∈ OR.

X̄R
i = max

j∈J∗

{
XR

ji

}
≤ X̂R

i , ∀i ∈ IR.
(C.4)

By Definition 1, DMU (X̄, Ȳ ) = (X̄V , X̄R, Ȳ V , Ȳ R), whose components are calculated
in (C.3) and (C.4), is the R-convex combination of observed DMUs j ∈ J∗ taken with
weights λ̄j > 0. Because DMU (X̂, Ŷ ) is strongly efficient, all non-strict inequalities in (C.3)
and (C.4) are satisfied as equalities, as otherwise it would be dominated by DMU (X̄, Ȳ ).
Therefore, (X̂, Ŷ ) = (X̄, Ȳ ), and condition (i) of Definition 5 is satisfied.

To prove condition (ii), and to be specific, let X̂R
i′ > mink∈K

{
X̃R

ki′

}
, for some i′ ∈ IR.

Let the minimum be attained at some k′. Then

X̂R
i′ > X̃R

k′i′ . (C.5)

Consider inequalities (C.2) for k = k′. By (C.2.5), there exists a j′ ∈ J such that µk′

j′ > 0.
Hence j′ ∈ J∗. From (C.2.4),

X̃R
k′ ≥ XR

j . (C.6)

The inequalities (C.5) and (C.6) imply X̂R
i′ > XR

ji′ ≥ minj∈J∗
{
XR

ji′

}
= X̄R

i′ , and condition

(ii) of Definition 5 for the R-convex combination (X̄, Ȳ ) follows.

Proof of Proposition 6. Assume DMU (X̂, Ŷ ) is PR-inefficient. We need to show that
there exists an optimal solution λ̂, ξ̂ and ζ̂ to program (14) such that at least one inequality
in the group of constraints (14.4) and (14.5) is strict.

By Proposition 5, DMU (X̂, Ŷ ) is the R-convex combination of a finite number of ob-
served DMUs (Xj, Yj), j ∈ J∗ ⊆ J , taken with some weights λ̂j > 0, j ∈ J∗, such that
condition (ii) of Definition 5 is also satisfied. (In Proposition 5, the set J∗ is denoted K.)

Furthermore, for all j ∈ J \ J∗, define λ̂j = 0. Also let ζ̂ = 0 and ξ̂ = 0. It is

straightforward to verify that vectors λ̂, ζ̂ and ξ̂ are feasible in program (14). Indeed,
inequalities (14.2) and (14.3) are satisfied as equalities, which follows from the fact that
(X̂, Ŷ ) is the R-convex combination of observed DMUs j ∈ J∗.

To prove (14.4) and (14.5), let j ∈ J∗. (For j ∈ J \ J∗, λ̂j = 0, and these conditions are

also true.) Then, taking into account that ζ̂R = 0 and ξ̂R = 0,

Y R
jr −

[
Ŷ R
r + ζ̂Rr

]
≥ min

j∈J∗

{
Y R
jr

}
− Ŷ R

r = 0, ∀r ∈ OR,

XR
ji −

[
X̂R

i − ξ̂Ri

]
≤ max

j∈J∗

{
XR

ji

}
− X̂R

i = 0, ∀i ∈ IR,
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where the right equalities in both cases follow from the definition of R-convex combination.
We have shown that λ̂, ζ̂ and ξ̂ is a feasible solution to program (14). Because ζ̂ = 0

and ξ̂ = 0, the corresponding objective function of (14) is equal to zero. Therefore, λ̂, ζ̂ and
ξ̂ is an optimal solution to (14). By condition (ii) of Definition 5, there exists a j′ ∈ J∗ (for
which λ̂j′ > 0) such that either Y R

j′r′ > Ŷ R
r′ for some r′ ∈ OR, or XR

j′i′ > X̂R
i′ for some i′ ∈ IR.

For this j′, the corresponding inequality for output r′ in the group of constraints (14.4), or
the corresponding inequality for input i′ in (14.5) is strict.

Conversely, assume there exists an optimal solution λ̂, ζ̂ and ξ̂ to program (14) such
that, at least for one j, the corresponding inequality in (14.4) or (14.5) is strict. Because
(X̂, Ŷ ) is strongly efficient, ∆∗ = 0 and, therefore, ζ = 0 and ξ = 0. We need to prove that
(X̂, Ŷ ) is PR-inefficient.

Define J∗ = {j ∈ J | λ̂j > 0}. Let (X̄, Ȳ ) be the R-convex combination of observed

DMUs (Xj, Yj), j ∈ J∗, taken with the weights λ̂j. Because ζV = 0 and ξV = 0, equali-

ties (14.2) and (14.3) imply Ȳ V = Ŷ V and X̄V = X̂V . Furthermore, let j ∈ J∗. Because
λ̂j > 0, inequalities (14.4) and (14.5), in which ζR = 0 and ξR = 0, imply Y R

jr ≥ Ŷ R
r ,

∀r ∈ OR, and XR
ji ≤ X̂R

i , ∀i ∈ IR. By definition, X̄R and Ȳ R satisfy (C.4). Then (X̄, Ȳ )

weakly dominates (X̂, Ŷ ). Because, by assumption, the latter is strongly efficient, we have
(X̄, Ȳ ) = (X̂, Ŷ ), and condition (i) of Definition 5 follows.

As assumed, at least one inequality in (14.4) and (14.5) is strict. Then there exists a
j′ ∈ J∗ and an r′ ∈ OR such that Y R

j′r′ > Ŷ R
r′ , or there exists a j′ ∈ J∗ and an i′ ∈ IR such

that XR
j′i′ < X̂R

i′ . In both cases condition (ii) of Definition 5 follows.

Proof of Proposition 7. Assume DMU (X̂, Ŷ ) is PR-inefficient. We need to show that
∆1 > 0. By Proposition 5, DMU (X̂, Ŷ ) is the R-convex combination of a finite number
of observed DMUs (Xj, Yj), j ∈ J∗ ⊆ J , taken with some weights λ̂j > 0, j ∈ J∗, which
satisfies condition (ii) of Definition 5. (In Proposition 5, the set J∗ is denoted K.)

Define λ̂j = 0, for all j ∈ J \ J∗, and substitute vector λ̂ in (16). Because (X̂, Ŷ ) is the
R-convex combination of observed DMUs (Xj, Yj), j ∈ J∗, equations (16.2) and (16.3) are

true. To define vectors ζ̂Rj and ξ̂Rj , consider two cases. If j ∈ J \ J∗, we let ζ̂Rj = 0 and

ξ̂Rj = 0, as required by (16.6). Let j ∈ J∗. Then λ̂j > 0 and, to satisfy equations (16.4)

and (16.5), we define vectors ζ̂j and ξ̂j as follows:

ζ̂Rjr = Y R
jr − Ŷ R

r ≥ 0, ∀r ∈ OR,

ξ̂Rji = X̂R
i −XR

ji ≤ 0, ∀i ∈ IR.
(C.7)

Vectors λ̂, ζ̂R and ξ̂R represent a feasible solution to program (16). By condition (ii) of
Definition 5, for at least one r ∈ OR or i ∈ IR, at least one of the inequalities in (C.7) is
strict. Then the objective function in (16) is strictly positive, and the optimal ∆1 > 0.

Conversely, let λ̂, ζ̂Rj , ξ̂
R
j , j ∈ J , be an optimal solution to program (16), and let ∆1 > 0.

We need to show that (X̂, Ŷ ) is PR-inefficient. Define J∗ = {j | λ̂j > 0, j ∈ J}. Let (X̄, Ȳ )

be the R-convex combination of observed DMUs (Xj, Yj), j ∈ J∗, taken with the weights λ̂j.

Then equalities (16.2) and (16.3) imply Ȳ V = Ŷ V and X̄V = X̂V . Because λ̂j > 0, ∀j ∈ J∗,
(16.4) and (16.5) imply that X̄R and Ȳ R satisfy (C.4). Therefore, (X̄, Ȳ ) weakly dominates
(X̂, Ŷ ). By assumption, the latter is strongly efficient. Therefore, we have (X̄, Ȳ ) = (X̂, Ŷ ),
and condition (i) of Definition 5 follows.

Because ∆1 > 0, there exist a j′ ∈ J∗ and r′ ∈ OR such that ζ̂Rj′r′ > 0, or there exist a

j′ ∈ J∗ and an i′ ∈ IR such that ξ̂Rj′i′ > 0. In the former case, (16.4) implies that Y R
j′r′ > Ŷ R

r′ .

In the latter case, by (16.5), XR
j′i′ < X̂R

i′ , and condition (ii) of Definition 5 follows.
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Proof of Proposition 8. Assume DMU (X̂, Ŷ ) is PR-inefficient. We need to show that
∆2 > 0. By Proposition 5, DMU (X̂, Ŷ ) is the R-convex combination of a finite number
of observed DMUs (Xj, Yj), j ∈ J∗ ⊆ J , taken with some weights λ̂j > 0, j ∈ J∗, which
satisfies condition (ii) of Definition 5. (In Proposition 5, the set J∗ is denoted K.) Clearly,
J∗ ⊆ J0.

Define λ̂j = 0, for all j ∈ J \ J∗, and substitute vector λ̂ in (17). Because (X̂, Ŷ ) is the
R-convex combination of observed DMUs (Xj, Yj), j ∈ J∗, equations (17.2) and (17.3) are
true. Furthermore, define

ζ̂Rr ,
∑
j∈J0

λ̂jY
R
jr − Ŷ R

r ≥ min
j∈J0

{
Y R
jr

}
− Ŷ R

r = 0, ∀r ∈ OR,

ξ̂Ri , X̂R
i −

∑
j∈J0

λ̂jX
R
ji ≤ X̂R

i −max
j∈J0

{
XR

ji

}
= 0, ∀i ∈ IR,

(C.8)

where the right equalities in the two cases follow from the definition of R-convex combination.
Therefore, vectors λ̂, ζ̂R and ξ̂R represent a feasible solution to program (17). By con-

dition (ii) of Definition 5, for at least one r ∈ OR or i ∈ IR, the inequality in (C.8) is strict.
Then the objective function in (17) is strictly positive, and the optimal ∆2 > 0.

Conversely, let λ̂, ζ̂R, ξ̂R be an optimal solution to program (17), and let ∆2 > 0. We
need to prove that (X̂, Ŷ ) is PR-inefficient.

Define J∗ = {j ∈ J0 | λ̂j > 0}. Let (X̄, Ȳ ) be the R-convex combination of observed

DMUs (Xj, Yj), j ∈ J∗, taken with the weights λ̂j.

First note that equalities (17.2) and (17.3) imply Ȳ V = Ŷ V and X̄V = X̂V . By definition
of the set J0, X̄

R and Ȳ R satisfy (C.4). Then (X̄, Ȳ ) weakly dominates (X̂, Ŷ ). Because,
by assumption, the latter is strongly efficient, we have (X̄, Ȳ ) = (X̂, Ŷ ), and condition (i)
of Definition 5 follows.

Because ∆2 > 0, there exists an r′ ∈ OR such that ζ̂Rr′ > 0, or there exists an i′ ∈ IR

such that ξ̂Ri′ > 0. In the former case, (17.4) implies that there exists a j′ ∈ J∗ such that

Y R
j′r′ > Ŷ R

r′ . In the latter case, by (17.5), there exists a j′ ∈ J∗ such that XR
j′i′ < X̂R

i′ , and
condition (ii) of Definition 5 follows.

Proof of Proposition 10. The proof follows closely the proof of Proposition 8. Assume
DMU (X̂, Ŷ ) is PR-inefficient. We need to show that ∆3 > 0.

By Proposition 9, DMU (X̂, Ŷ ) is the R-conical combination of a finite number of ob-
served DMUs (Xj, Yj), j ∈ J∗ ⊆ J , taken with some weights λ̂j > 0, j ∈ J∗, which satisfies
condition (ii) of Definition 5. Note that, in Proposition 5, the set J∗ is denoted K. Clearly,
J∗ ⊆ J0.

Define λ̂j = 0, for all j ∈ J \ J∗. Denote

Λ0 =
∑
j∈J0

λ̂j > 0. (C.9)

Substitute vector λ̂ in (17). Because (X̂, Ŷ ) is the R-conical combination of observed
DMUs (Xj, Yj), j ∈ J∗, equations (18.2) and (18.3) are true. Furthermore, define

ζ̂Rr ,
∑
j∈J0

λ̂j

(
Y R
jr − Ŷ R

r

)
≥ Λ0

(
min
j∈J0

{
Y R
jr

}
− Ŷ R

r

)
= 0, ∀r ∈ OR,

ξ̂Ri ,
∑
j∈J0

λ̂j

(
X̂R

i −XR
ji

)
≤ Λ0

(
X̂R

i −max
j∈J0

{
XR

ji

})
= 0, ∀i ∈ IR,

(C.10)
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where the right equalities in the two cases follow from Definition 4 of R-conical combination
and, in particular, from conditions (1.3) and (1.4).

By construction, vectors λ̂, ζ̂R and ξ̂R represent a feasible solution to program (18). By
condition (ii) of Definition 5, for at least one r ∈ OR or i ∈ IR, the inequality in (C.10)
is strict. Taking into account (C.9), the corresponding slack ζ̂Rr or ξ̂Ri defined by (C.10)
is positive. Therefore, the objective function in (18) is strictly positive, and the optimal
∆3 > 0.

Conversely, let λ̂, ζ̂R, ξ̂R be an optimal solution to program (18), and let ∆3 > 0. We
need to show that (X̂, Ŷ ) is PR-inefficient.

Define J∗ = {j ∈ J0 | λ̂j > 0}. By the assumption that Ŷ V ̸= 0 (see footnote 20),
constraints (18.2) imply (C.9), and the set J∗ ̸= ∅. Let (X̄, Ȳ ) be the R-conical combination
of observed DMUs (Xj, Yj), j ∈ J∗, taken with the weights λ̂j.

First note that equalities (18.2) and (18.3) imply Ȳ V = Ŷ V and X̄V = X̂V . Also, by
definition of the set J0, X̄

R and Ȳ R satisfy (C.4). Then (X̄, Ȳ ) weakly dominates (X̂, Ŷ ).
Because, by assumption, the latter is strongly efficient, we have (X̄, Ȳ ) = (X̂, Ŷ ), i.e., DMU
(X̂, Ŷ ) is a conical combination (X̄, Ȳ ) of observed DMUs (Xj, Yj), j ∈ J∗, and condition
(i) of Definition 5 follows.

Furthermore, because ∆3 > 0, there exists an r′ ∈ OR such that ζ̂Rr′ > 0, or there exists

an i′ ∈ IR such that ξ̂Ri′ > 0. In the former case, (18.4) implies that there exists a j′ ∈ J∗ such

that Y R
j′r′ > Ŷ R

r′ . In the latter case, by (18.5), there exists a j′ ∈ J∗ such that XR
j′i′ < X̂R

i′ ,
and condition (ii) of Definition 5 follows.

We have shown that DMU (X̂, Ŷ ) satisfies the conditions of Proposition 9 and is, there-
fore, PR-inefficient.
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