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1. Representative plots of the I-V temperature dependence based on the
hopping conduction, P-F and thermionic emission models, respectively.

Figures S1a-S1d show the plots of I vs V and In (I/'V) vs /T, in both dark and
light illuminations at given bias (-5 to + 5 V) and at temperature from 91 to 300 K for
the DT junction. The plots of I vs V show preferable linear relation in both dark and
light conditions at a low bias (- 1 to + 1 V), while the plots of In (I/V) vs 1/T show
nonlinearity both in the dark and under light conditions. So the hopping conduction is
not the main charge transport mechanism. Generally, the hopping mechanism is used
to explain the charge transport of inorganic or thick organic films. Okada et al.
reported electrical stress-induced variable range hopping conduction in ultrathin
silicon dioxides.®' Reghu et al. investigated the hopping transport of PPy-PFg films
with thickness of 10 to 20 um.sz In our case, the crossbar junctions are made of SAMs
with thickness of about 10-20 A.

Figures S2a-S2d show the analysis of In (I/V) vs V" and In (I vs 1/T,
respectively. Apparent nonlinear relationship exhibited both in the dark and under
light conditions, suggesting that the P-F emission is not the charge transport
mechanism. Moreover, Figures S3a-S3d plot the In (I/Tz) vs 1/T and In (I) vs V2 It is
evident to see the nonlinear dependences of the In (IUT?) vs 1/T in the dark and the In
() vs V"2 under light, respectively. We thus concluded that the thermionic emission

may not be the dominant mechanism too.
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Figure S1. Plots of [ vs V at different temperatures (a) in the dark and (b) under light,
respectively. Plots of In (I/V) vs 1/T in the positive bias at different temperatures (c)

in the dark and (d) under light situations, respectively.
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Figure S2. Plots of the In (I) vs 1/T at different temperatures (a) in the dark and (b)
under light, respectively. Plots of the In (I/'V ) vs 1/V"* in the positive bias at different

temperatures (c) in the dark and (d) under light situations, respectively.
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Figure S3. Plots of the In I/Tz) vs 1/T at different temperatures (a) in the dark and (b)
under light, respectively. Plots of the In (I) vs V" in positive bias range at different

temperatures (c) in the dark and (d) under light conditions, respectively.
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2. Table summarized with the best fitting parameters (o, @, p) for the molecules

of OT, NDT, DT, DDT, and M-1, respectively, as calculated from the Simmons

model.

We simulated the fitting parameters for the molecules of OT, NDT, DT, DDT,

and M-1, respectively. The ® and 3 values for Simmons tunneling through alkanethiol

and conjugated molecular junctions depend on the molecular length and/or structure,

as shown in Table S1.

Table S1. Summary of the best Simmons fitting parameters for the alkanethiol and
conjugated junctions studied at temperature range of 91 to 300 K with a=0.65.

Molecular Condition Bias (V) b (eV) B(A™

Dark 0~+1.0 1.69~1.59 0.86+0.01

OT -1.0~0 1.62~1.59
Light 0~+1.0 1.65~1.62 0.85+0.01

-1.0~0 1.59~1.52
Dark 0~+1.0 1.58~1.48 0.83+0.01

NDT -1.0~0 1.56~1.47
Light 0~+1.0 1.60~1.46 0.83+0.01

-1.0~0 1.60~1.50
Dark 0~+1.0 1.50~1.39 0.810.01

DT -1.0~0 1.47~1.42
Light 0~+1.0 1.49~1.39 0.810.01

-1.0~0 1.46~1.33
Dark 0~+1.0 1.44~1.38 0.80+0.01

DDT -1.0~0 1.46~1.41
Light 0~+1.0 1.43~1.41 0.80+0.01

-1.0~0 1.43~1.41
Dark 0~+1.0 0.72~0.30 0.560.06

M-1 -1.0~0 0.78~1.38
Light 0~+1.0 0.46~0.43 0.37+0.02

-1.0~0 0.59~0.56
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