Supporting Information

Effect of Surface Wettability on Ion-Specific Protein Adsorption

Xiaowen Wang[†], Guangming Liu^{†,*} and Guangzhao Zhang^{‡,*}

[†]Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, P. R. China 230026 [‡]Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, P. R. China 510640

Figure S1 Typical BSA adsorption isotherms in the QCM-D measurements. (a) The changes in Δf and ΔD for the adsorption of BSA at the surface with the x_{DDT} of 100% at pH 3.8 in the presence of NaCl. (b) The changes in Δf and ΔD for the adsorption of BSA at the surface with the x_{DDT} of 100% at pH 7.4 in the presence of NaCl.

Figure S2 Typical BSA adsorption isotherms in the SPR measurements. (a) The change in ΔRU for the adsorption of BSA at the surface with the x_{DDT} of 100% at pH 3.8 in the presence of NaCl. (b) The change in ΔRU for the adsorption of BSA at the surface with the x_{DDT} of 100% at pH 7.4 in the presence of NaCl.

Figure S3 The responses of frequency and dissipation at different overtones during the BSA adsorption. (a) The changes in $(\Delta f/n)$ and ΔD for the adsorption of BSA at the surface with the x_{DDT} of 100% at pH 3.8 in the presence of NaCl, where *n* is the overtone number. (b) The changes in $(\Delta f/n)$ and ΔD for the adsorption of BSA at the surface with the x_{DDT} of 100% at pH 7.4 in the presence of NaCl, where *n* is the overtone number. Obviously, the changes in $(\Delta f/n)$ and ΔD in the both two cases are independent on the overtone number, indicating the formation of a rigid protein layer on the surface. The responses of frequency and dissipation at other surfaces in the presence of different salts also have similar results (data not shown).