Effect of Terminal Groups on Properties of Poly(9,9-dioctylfluorene): A Study with Hexadecylfluorenes as Model Polymers

Qilin Wang,^{1,2} Baohua Zhang,¹Lihui Liu,^{1,2} Yagang Chen,^{1,2} Yao Qu,¹ Junwei Yang,¹ Zhiyuan Xie,^{*,1} Yanhou Geng,^{*,1} Lixiang Wang,¹Fosong Wang¹

¹State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. ²University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Content

1. ¹ H NMR spectra of hexadecylfluorenes and PFO	-S 2-5
2. Photophysical properties	S 6
3. Electroluminescence properties	S 7

Figure S1. ¹H NMR spectra of F16.

Figure S2. ¹H NMR spectra of BrF16.

Figure S3. ¹H NMR spectra of BF16.

Figure S4. ¹H NMR spectra of PFO.

Figure S5. Film absorption (a, b, c), PL (d, e, f) and normalized PL (g, h, i) emission spectra of the films of hexadecylfluorenes: pristine (a, d, g), annealed in argon (b, e, h) and annealed in air (c, f, i).

Figure S6. Driving voltage-dependant EL spectra of PFO (a) and BF16 (b).

Figure S7. Luminance efficiency-current density (η_{LE} -J) characteristics of PLEDs based on F16, BF16, BF16 and PFO.