EACS 2016 paper - Energy Harvesting based on the Hybridisation of two Smart Materials

2017-03-28T15:18:16Z (GMT) by Julian Gosliga Olga Ganilova
<div>EACS 2016 Paper No. 170</div><div><br></div>Recently, there has been an increased demand for power harvesting as a source of providing renewable energy. One of the most promising technologies due to their high power densities are piezoelectric devices, harvesting vibrational energy. There has been extensive research done in the area of energy harvesting using smart materials. However, the majority of this work is dedicated to the application of one type of smart material, such as piezoelectric or shape memory alloy. The aim of this paper is to develop a completely novel concept of a hybrid device combining piezoelectric and shape-memory alloy effects. The resulting device has a strong potential for miniaturisation and practical biomedical applications in environments characterised by thermal fluctuations. Both finite element and analytical models were developed to describe the dynamic behaviour of this innovative device. Both models predicted parametric behaviour for an input frequency of 988 Hz. Performance of the device was comparable to existing energy harvesting devices. The limitations and benefits of each modelling approach are also discussed.