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Abstract 17 

The impact of mineral aerosol (dust) in the Earth’s system depends on particle 18 

characteristics which are initially determined by the terrestrial sources from 19 

which the sediments are entrained.  Remote sensing is an established 20 

method for the detection and mapping of dust events, and has recently been 21 

used to identify dust source locations with varying degrees of success. This 22 

paper compares and evaluates five principal methods, using MODIS Level 1B 23 

and MODIS Level 2 aerosol data, to: (a) differentiate dust (mineral aerosol) 24 

from non-dust, and (2) determine the extent to which they enable the source 25 

of the dust to be discerned. The five MODIS L1B methods used here are: (1) 26 

un-processed false colour composite (FCC), (2) brightness temperature 27 

difference, (3) Ackerman’s (1997: J.Geophys. Res., 102, 17069-17080) 28 

procedure, (4) Miller’s (2003:Geophys. Res. Lett. 30, 20, art.no.2071) dust 29 

enhancement algorithm and (5) Roskovensky and Liou’s (2005: Geophys. 30 

Res. Lett. 32, L12809) dust differentiation algorithm; the aerosol product is 31 

MODIS Deep Blue (Hsu et al., 2004: IEEE Trans. Geosci. Rem. Sensing, 42, 32 

557-569), which is optimised for use over bright surfaces (i.e. deserts). These 33 
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are applied to four significant dust events from the Lake Eyre Basin, Australia.  34 

OMI AI was also examined for each event to provide an independent 35 

assessment of dust presence and plume location.  All of the techniques were 36 

successful in detecting dust when compared to FCCs, but the most effective 37 

technique for source determination varied from event to event depending on 38 

factors such as cloud cover, dust plume mineralogy and surface reflectance. 39 

Significantly, to optimise dust detection using the MODIS L1B approaches, 40 

the recommended dust/non-dust thresholds had to be considerably adjusted 41 

on an event by event basis. MODIS L2 aerosol data retrievals were also found 42 

to vary in quality significantly between events; being affected in particular by 43 

cloud masking difficulties. In general, we find that OMI AI and MODIS AQUA 44 

L1B and L2 data are complementary; the former are ideal for initial dust 45 

detection, the latter can be used to both identify plumes and sources at high 46 

spatial resolution.  Overall, approaches using brightness temperature 47 

difference (BT10-11) are the most consistently reliable technique for dust 48 

source identification in the Lake Eyre Basin.  One reason for this is that this 49 

enclosed basin contains multiple dust sources with contrasting geochemical 50 

signatures. In this instance, BTD data are not affected significantly by 51 

perturbations in dust mineralogy. However, the other algorithms tested 52 

(including MODIS Deep Blue) were all influenced by ground surface 53 

reflectance or dust mineralogy; making it impossible to use one single MODIS 54 

L1B or L2 data type for all events (or even for a single multiple-plume event). 55 

There is, however, considerable potential to exploit this anomaly, and to use 56 

dust detection algorithms to obtain information about dust mineralogy. 57 

 58 

59 
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Dust source identification using MODIS: a comparison of techniques 59 

applied to the Lake Eyre Basin, Australia 60 

 61 

1. Introduction 62 

 63 

Atmospheric mineral aerosols (termed here dust) play an important role 64 

in the land-atmosphere-ocean system (Ridgwell, 2002; Jickells et al., 2005; 65 

Waeles et al., 2007).  For example, they affect soil nutrients at source and 66 

sink (McTainsh & Strong, 2007; Muhs et al., 2007; Li et al., 2007; Reynolds et 67 

al., 2006; Soderberg & Compton, 2007; Swap et al., 1992; Wang et al., 2006), 68 

the radiative forcing of the atmosphere (Haywood & Boucher, 2000; Hsu et 69 

al., 2000; Satheesh & Moorthy, 2005; Yoshioka et al., 2007) and may regulate 70 

phytoplankton activity of oceans (de Baar et al., 2005; Erickson et al., 2003; 71 

Mackie et al., 2008; Piketh et al., 2000; Wolff et al., 2006).  The impact of dust 72 

in the Earth’s system depends on characteristics such as particle size, shape 73 

and mineralogy (in particular iron content: Jickells et al., 2005; Mahowald et 74 

al., 2005).  Whilst these characteristics can change during dust transport 75 

(Desboeufs, 2005; Mackie et al., 2005) they are initially determined by the 76 

terrestrial sources from which the particles are entrained. 77 

 78 

The detection and mapping of dust events and dust transport pathways 79 

has benefited greatly from the use of remote sensing, and at the global scale 80 

major dust source regions have been identified using satellite data, such as 81 

from the Total Ozone Mapping Spectrometer (TOMS; Prospero et al., 2002; 82 

Washington et al., 2003).  The passage of dust along specific regional 83 

transport pathways over land and ocean and the behavior of individual dust 84 

events have also been tracked using TOMS and OMI (Ozone Monitoring 85 

Instrument; e.g. Alpert et al. 2004) and at higher temporal and spatial 86 

resolutions using data from, amongst others, AVHRR (Advanced Very High 87 

Resolution Radiometer; e.g., Evan et al., 2006; Zhu et al., 2007), GOES-88 

VISSR (Geostationary Operational Environmental Satellite, Visible Infra-Red 89 

Spin-Scan Radiometer, e.g.,  MacKinnon et al., 1996), METEOSAT (e.g., 90 

Moorthy et al., 2007), MODIS (Moderate Resolution Imaging 91 

Spectroradiometer, e.g., Badarinath et al., 2007; Gassó & Stein, 2007; 92 
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Kaskaoutis et al. 2008; McGowan & Clark, 2008; Zha & Li, 2007), MSG-93 

SEVIRI (Meteosat Second Generation-Spinning Enhanced Visible and 94 

InfraRed Imager; e.g., Schepanski et al., 2007) and SeaWIFS (Sea-viewing 95 

Wide Field-of-View Sensor; e.g., Eckardt & Kuring, 2005).  Sensor-retrieved 96 

parameters (such as MODIS aerosol size parameters; Dubovik et al., 2008; 97 

Jones & Christopher, 2007; Kaufman et al. 2005) or complex statistical 98 

analyses (such as Principal Component Analysis; e.g. Argarwal et al. 2007; 99 

Jones & Christopher, 2008; Zubko et al. 2007) have also been used to 100 

differentiate dust and non-dust with some success. 101 

 102 

Systematic determination of both the geomorphological and 103 

geochemical variability of dust sources, and hence the variability of the 104 

sediments which are entrained and transported, requires as accurate and 105 

precise an identification of the upwind (source) end of the dust plume as 106 

possible. Researchers have recently started to use remote sensing data to 107 

achieve this (e.g., Bullard et al., 2008; Lee et al., 2008; Zhang et al., 2008), 108 

but with varying levels of success. The ability to use remotely-sensed data 109 

both to detect a dust plume and identify the location from which it has 110 

originated is affected by several factors including the radiative transfer 111 

properties of the material emitted, the radiative properties of the ground/ocean 112 

surface over which the plume is transported, the size and density of the dust 113 

plume, the time of satellite overpass relative to dust emission, the presence or 114 

absence of cloud, the horizontal and vertical plume trajectory, and the sensor 115 

characteristics and radiative transfer model used to detect dust. In many 116 

respects, the relative impacts of these factors on dust source determination 117 

are hard to determine without close reference to surface meteorological data 118 

(e.g. wind speed and visibility records) and ground-based aerosol 119 

determination records (e.g. AERONET – Aerosol Robotic Network) which can 120 

allow comparative characterisation of  individual dust events (e.g. Bullard et 121 

al., 2008; Mahowald et al., 2007). Even where these records exist, the direct 122 

comparison of ground and remote sensing data retrievals to determine dust 123 

sources can be problematic, with some remote sensing data products being 124 

unable consistently to detect dust events due to the factors listed above; 125 

particularly the presence of cloud, and the existence of low contrast between 126 
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dust plume and ground/ocean surface (e.g. Gassó & Stein, 2007; Bullard et 127 

al., 2008).  The principal aim of this paper is to evaluate in detail the use of 128 

MODIS data, one of the most widely and successfully-used sensors, for 129 

improved identification of dust source locations. This paper varies in emphasis 130 

from many previous studies because the focus is on the precision with which 131 

the upwind (source) location of the plume can be discerned, rather than on 132 

the simple determination of plume location, density and trajectory. 133 

Specifically, we compare five methods of using MODIS Level 1 band data and 134 

one MODIS Level 2 aerosol product and evaluate them in terms of: (a) how 135 

well they enable the differentiation of dust and non-dust (cloud, smoke, 136 

volcanic aerosols) and, (b) the extent to which it is possible to discern the 137 

location of the dust source (i.e. the upwind part of the dust plume - or ‘dust 138 

head’) and how much this varies from method to method.  The influence of 139 

environmental factors such as plume density and mineralogy on source 140 

detection by MODIS will also be evaluated.  141 

 142 

2. Data and Methods 143 

 144 

2.1 Data 145 

 146 

Mineral aerosol (dust) can be detected and mapped through remote 147 

sensing via inversion of radiative transfer models which operate in the 148 

following wavelengths: (a) ultraviolet (UV 0.315-0.4 µm) via absorption (e.g. 149 

TOMS AI; Torres et al., 1998), (b) visible (VIS 0.38-79 µm) via scattering (e.g. 150 

Tanré and Legrand, 1991), and (c) thermal infrared (TIR 8-15 µm) via 151 

contrasting land/aerosol emissivity and/or temperature (e.g. Ackerman, 1997). 152 

Due to constraints of sensor design, observations by remote sensing systems 153 

operating in VIS wavelengths can be determined at higher resolution (pixel 154 

size = x) than those made in the TIR (pixel size = x*2-4) and UV (pixel size = 155 

x*100-200), and this has implications for both plume and source detection 156 

using these approaches. Radiative transfer model inversion of aerosol 157 

observations made within (or via combinations of) each of the three 158 

wavelength ranges often provides either a relative indication of aerosol 159 

concentration (e.g. via TOMS AI), or a calibrated (e.g. through comparison 160 
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with AERONET observations) measure of wavelength-dependent total aerosol 161 

optical thickness/depth (AOT/D). The success of the radiative transfer model 162 

inversion in each case is often complicated by factors such as the non-163 

spherical nature of the mineral aerosol, changes in the chemical/physical 164 

nature of the material, and location within the atmosphere during transport. In 165 

addition, over very bright surfaces (e.g. desert regions and urban areas), in 166 

the presence of cloud, and at night, mineral aerosol detection using 167 

UV/VIS/TIR wavelengths can become increasingly uncertain (e.g. Kaufman et 168 

al., 2000). The short-term nature of some mineral aerosol events (often <1 169 

day) also means that an understanding of any bias associated with mineral 170 

aerosol detection at the time of satellite over-passes and temporal sampling 171 

(i.e. either am or pm data collection time) is needed in order to characterize 172 

fully the emission and transport process.  In order to evaluate, compare and 173 

contrast mineral aerosol detection approaches, a range of remote sensing 174 

data are used here (see Table 1).  175 

 176 

<Insert Table 1>  177 

 178 

2.1.1 MODIS Data 179 

Data from the Moderate Resolution Imaging Spectroradiometer 180 

(MODIS) were used to make comparisons of retrievals using VIS and TIR 181 

(often combined) approaches. MODIS makes observations using 36 spectral 182 

bands with wavelengths from 0.41 to 14.4 µm and nadir spatial resolutions of 183 

0.25 km, 0.5 km, and 1 km. It is currently operating onboard the NASA Earth 184 

Observing System (EOS) Terra and Aqua satellites, launched in December 185 

1999 and May 2002, respectively. Daily MODIS Level 1B (L1B) 1 km data 186 

(MOD021KM = Terra, and MYD021KM = Aqua) used in this work have been 187 

processed to convert the sensor’s on-orbit responses in digital numbers to 188 

radiometrically calibrated and geo-located data products (v5.06 processing for 189 

Terra and v5.07 for Aqua). Data were obtained from the Level 1 and 190 

Atmosphere Archive and Distribution System (LAADS; 191 

http://ladsweb.nascom.nasa.gov/). Details of images dates and subsequent 192 

processing of MODIS L1B data are outlined below. 193 

 194 
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Daily MODIS Level 2 Aerosol data are produced at the spatial 195 

resolution of a 10 x 10 km (at nadir) pixel array. There are two MODIS Aerosol 196 

data product file types: MOD04_L2, containing data collected from the Terra 197 

platform and MYD04_L2, containing data collected from the Aqua platform. 198 

Here we only use the MYD04 Aqua product because to date Deep Blue (see 199 

below) retrievals are not yet available for MOD04 Terra data.  Aerosol 200 

properties within MYD04_L2 are derived by the inversion of MODIS observed 201 

reflectances at 500 m resolution using pre-computed radiative transfer look-up 202 

tables based on dynamical aerosol models (Kaufman et al., 1997; Remer et 203 

al., 2005).  Derivation of aerosol from these data is far from straightforward 204 

and, in initial versions of the MODIS aerosol product, the ability to retrieve 205 

aerosol optical thickness (AOT) and single scattering albedo over bright-206 

reflecting surfaces has been problematic because the algorithm relies in part 207 

on the initial detection of dark surfaces or targets (Kaufman et al., 2000). In 208 

addition, the cloud screening has been shown to have problems where mis-209 

identification of some dust plumes as cloud has led to artifacts in the final data 210 

(e.g. as noted by Brindley and Ignatov, 2006). These products have been 211 

under continued and careful evaluation and development, and product 212 

MYD04 (see http://modis-213 

atmos.gsfc.nasa.gov/C005_Changes/C005_Aerosol_5.2.pdf) has recently 214 

received an improved aerosol determination (via reprocessing to collection 215 

5.1/2; Levy et al., 2006, 2007; Remer et al., 2006) over bright surfaces 216 

through the integration of a revised determination of AOT over land (Levy et 217 

al., 2007), and inclusion of the Deep Blue algorithm (Hsu et al., 2004; Hsu et 218 

al., 2006). Here we evaluate the Deep Blue algorithm, which relies on the blue 219 

wavelengths and libraries of surface reflectance to make retrievals over bright 220 

surfaces (Hsu et al., 2004).  221 

 222 

The Deep Blue processing approach involves the following processing 223 

elements: (1) Rayleigh Correction for Terrain Elevation in the following 224 

MODIS channels: R8 (0.405-0.42 µm), R3 (0.459-0.479 µm) and R1 (0.62-225 

0.67 µm); (2) Cloud Screening using: R8 (3 x 3 pixel spatial variance) and 226 

R3/R8 AI; (3) the surface reflectance for a given pixel is determined from a 227 

clear-scene database based upon its geo-location; (4) R8, R3 and R1 228 
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reflectances are then compared to radiances contained in a lookup table with 229 

dimensions consisting of solar zenith, satellite zenith, and relative azimuth 230 

angles, surface reflectance, AOT, and single scattering albedo; (5) a 231 

maximum likelihood method is used to compute a mixing ratio between dust 232 

and smoke models until the calculated spectral reflectances make the best 233 

match with those that are measured; and (6) for mixed aerosol conditions, 234 

once the aerosol models and the mixing ratio that produce the best match are 235 

determined, the values of AOT and Ångström exponent are reported. For 236 

dust-dominant cases, the values of single scattering albedo are retrieved in 237 

addition to these parameters. MODIS Deep Blue data within MYD04_L2 238 

includes AOT (τ) determination at 0.412, 0.47, 0.55 and 0.66 µm, although 239 

only the 0.412 µm data are used here. MYD04_L2 data were obtained from 240 

the Level 1 and Atmosphere Archive and Distribution System (LAADS; 241 

http://ladsweb.nascom.nasa.gov/).  The typical aerosol optical thickness for 242 

visible light in clear air is 0.1, very hazy skies have AOTs of ≥0.3. During initial 243 

processing, typical scale (0.001) and offset (0) values were applied to 244 

MYD04_L2 AOT data prior to display and subsequent data processing. 245 

 246 

2.1.2 AURA OMI 247 

This paper focuses on an evaluation of MODIS data but for each case 248 

study, in addition to MODIS L1B and L2 aerosol data, co-incident data from 249 

an independent sensor, the Ozone Monitoring Instrument (OMI) were also 250 

acquired. OMI is on the Aura satellite (launch date: July 2004) which flies as 251 

part of the NASA A-Train constellation (http://aqua.nasa.gov/doc/pubs/A-252 

Train_Fact_sheet.pdf) a few minutes behind the Aqua satellite. OMI is 253 

designed to continue the Total Ozone Mapping Spectrometer (TOMS) record 254 

for total ozone and other atmospheric parameters related to ozone chemistry 255 

and climate. OMI measurements are sensitive to aerosol absorption in UV 256 

wavelengths, thus providing an independent source of information relating to 257 

mineral aerosol detection in the scene under observation. In addition, and 258 

unlike MODIS, OMI AI (Absorbing Aerosol Index: e.g. Torres et al., 2007) is 259 

sensitive to aerosol absorption even when the particles are above cloud and 260 

AAI is therefore derived successfully in both cloudless and cloudy conditions 261 

(although see Ahn et al., 2008). OMI has a ground resolution of 13 x 24 km 262 
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(nadir) and uses a retrieval algorithm similar to the one used by TOMS 263 

(Torres et al., 1998).  The OMI AI is defined as follows: 264 

 265 

OMI AI = 100 log10( I360
Meas / I360

Calc )     266 

 (Eq.1) 267 

 268 

where I360
Meas is the measured 360 nm OMI radiance and I360

Calc is the 269 

calculated 360 nm OMI radiance for a Rayleigh atmosphere. Under most 270 

conditions, the AI (Eq.1) is positive for absorbing aerosols and negative for 271 

non-absorbing aerosols (pure scattering). An AI >1 is typical of absorbing 272 

aerosols such as smoke or dust (Gassó & Stein, 2007; Kubilay et al., 2005; 273 

Washington et al., 2003).  In this instance, we have chosen to use the OMI-274 

Aura_OMTO3E data, which is a daily Level 3 global gridded product which is 275 

generated by binning the original pixels from the Level 2 data products (15 276 

orbits per day; 13 x 24 km spatial resolution at nadir) into a 0.25 x 0.25 degree 277 

global grid.  278 

 279 

2.2 Methods 280 

 281 

2.2.1 Study region and event selection 282 

The performance of different MODIS dust detection methods in 283 

identifying source locations involved the analysis of four dust events which all 284 

originate in the same drainage basin.  The Lake Eyre Basin (LEB), Australia 285 

was chosen for several reasons.  First, it has been identified as a persistent 286 

and significant southern hemisphere dust source on the basis of surface 287 

observations (Middleton, 1986) and using TOMS AI (Washington et al., 2003). 288 

Second, it is the only inland basin dust source region in Australia, a 289 

geographically-isolated continent distant from other dust sources. 290 

Consequently, within the LEB there is less potential for interaction with other 291 

major dust sources than would be the case, for example, in the Sahara 292 

(Prospero et al. 2002) or China (Shao & Wang, 2003). Third, the basin is large 293 

enough to give rise to several major dust events each year, but not such an 294 

intense dust source as to make it difficult to discern individual plumes. 295 

 296 
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The LEB covers 1.14 million km2, with mean annual rainfall of less than 297 

125 mm and annual potential evaporation in excess of 2500 mm.  There are 298 

several different sedimentary environments in the LEB, all of which emit dust.  299 

The most significant of these are: (1) aeolian deposits covering 33% of the 300 

basin area and accounting for 37% of the dust plumes, (2) alluvial deposits 301 

and floodplains (11.55% area, 30% dust plumes), and (3) ephemeral lakes 302 

and playas which cover only 2.26% of the basin area but from which originate 303 

29% of the dust plumes making these the most intense dust sources (figures 304 

averaged over 2003-6: Bullard et al., 2008).  Inter- and intra-annual variability 305 

of dust storm frequency in the LEB is high, responding to changes in synoptic 306 

pressure distributions across the continent (Ekstrom et al., 2004). The Sprigg 307 

Model, which characterizes dust transporting wind systems in Australia 308 

(Sprigg, 1982), suggests that as frontal systems pass over the LEB, pre-309 

frontal northerly and post-frontal southerly winds can entrain dusts which 310 

travel southeast or northwest respectively.  It is important to note, however, 311 

that the estimated total annual number of dust events in the LEB varies not 312 

only in response to climate but also as a result of differences in how events 313 

are defined. In a previous study (Bullard et al., 2008), we examined MODIS 314 

imagery for all days (between July 2003 and June 2006) where at least one 315 

meteorological station in the LEB (or within 250 km of the catchment 316 

boundary) recorded a dust-induced reduction in visibility to ≤1 km (which 317 

corresponds to the WMO definition of a dust storm).  Whilst there are some 318 

inconsistencies in the relationship between visibility records from 319 

meteorological stations and other indicators of dust emissions, (including 320 

AERONET, TOMS AI and TOMS AOD: Mahowald et al., 2007) and the spatial 321 

distribution of meteorological stations across the arid LEB is sparse which 322 

means a number of events will be missed, visibility remains a useful criteria 323 

for identifying days on which significant dust events have occurred.  From the 324 

43 days on which dust events were identified four case studies were chosen 325 

to illustrate key types of event that occur in the LEB, and also to include 326 

factors which can significantly affect dust plume and source identification (i.e. 327 

single /multiple dust plumes and varying amounts of cloud; see Figure 1; 328 

Table 2). Although there are versions of some dust detection algorithms 329 

designed to work at night (e.g. Wald et al., 1998), we focus on daytime events 330 
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here so that the influence of surface reflectance on dust source identification 331 

can be explored.  332 

 333 

<Insert Figure 1> - 334 

<Insert Table 2>  335 

 336 

2.2.2 MODIS Level 1B Processing Algorithms 337 

As outlined earlier, mineral aerosol is sometimes detectable on un-338 

adjusted VIS satellite images (particularly over the ocean), but because 339 

mineral aerosol can have similar reflectivity to the desert surfaces from which 340 

it is entrained it can be difficult to detect over land. In addition, mineral aerosol 341 

is often hard to differentiate from cloud, sea salt and anthropogenic pollution. 342 

As a result of this, and also due to problems with the performance of MODIS 343 

L2 aerosol products (section 2.1.1), a number of studies have used changes 344 

in brightness temperature (TIR) to detect mineral aerosol over land surfaces. 345 

Initial attempts using single TIR channel data, such as that by Shenk & Curran 346 

(1974) using Nimbus-THIR (Temperature Humidity Infrared Radiometer) 11 347 

µm data, had limited success because changes in surface emissivity at this 348 

wavelength can be misinterpreted as dust (Roskovensky & Liou, 2003; 2005). 349 

As a result of observed variability in the emissive and transmissive nature of 350 

mineral aerosols within multiple TIR wavelength ranges, other researchers 351 

have used methods based on brightness temperature difference (BTD) in 352 

either two or three wavelength ranges, typically 11-12 µm bands (bi-spectral 353 

split window technique) or near 8, 11 and 12 µm bands (tri-spectral) (e.g. 354 

Ackerman, 1997). BTD values from this method reveal temperature 355 

differences that exist between the ground surface and cooler mineral aerosol 356 

while at the same time are largely unaffected by absorption from other 357 

atmospheric gases (Darmenov & Sokolik, 2005).  In addition to detecting dust 358 

over land, these approaches may also allow discrimination between cloud and 359 

dust when both exist in the vicinity of each other. 360 

 361 

Here we initially apply the simple BTD approach detailed by Ackerman 362 

(1997) to MODIS L1B data (Table 3). Using this methodology it has been 363 

inferred that (BTD; 11.03-12.02 µm or MODIS BT31-BT32) values <0 K signify 364 
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the presence of mineral aerosol (dimensionless) and BTD values ≥0 K 365 

indicate no mineral aerosol. While developing the MODIS cloud mask, 366 

Ackerman et al. (2002) have also placed the mineral aerosol detection 367 

threshold at <-1 K.  Although Ackerman’s (1997) analysis implied that the 0 K 368 

threshold could be widely used over a range of land surfaces, it is likely that 369 

this will vary slightly according to variability in the emissive/transmissive 370 

nature of the mineral aerosol. This in turn is determined by factors such as 371 

mineralogy as well as processes acting upon the aerosol as it is transported in 372 

the atmosphere. Mineralogical composition is an important control on the TIR 373 

radiative properties of mineral aerosol and can vary significantly from region 374 

to region (e.g. Claquin et al., 1999; Caquineau et al., 2002; Satheesh & 375 

Moorthy, 2005).  Darmenov and Sokolik (2005) investigated the TIR radiative 376 

signature of dust transported over oceans from 7 different regions and located 377 

the BTD (11.03 -12.02 µm) aerosol detection threshold at 0.5, -0.2, -1.0 and -378 

0.4 K for the Nubian, Thar, Gobi/Taklimakan and Australian deserts 379 

respectively; but could not locate a clear threshold to distinguish mineral 380 

aerosol from cloud for dust over oceans sourced from NW Africa, Libya or the 381 

Iranian desert.  It may also be the case that the threshold varies for a single 382 

geographical region, the precise value being dependent on factors such as 383 

the density of the dust plume (Darmenov and Sokolik, 2005) or local variation 384 

in dust source mineralogy (e.g. iron-rich sources versus illite-rich sources). 385 

This simple bi-spectral split window approach will be applied here to identify 386 

appropriate aerosol detection thresholds over land for the Lake Eyre Basin. 387 

 388 

Using BTD as a basis, a range of more complex algorithms has been 389 

developed that combine BTD and VIS wavelengths to detect mineral aerosol 390 

over land and remove the effects of dense cloud cover, which can obscure 391 

dust, and cirrus clouds which have similar reflectance and BTD properties to 392 

fine dust particles. In this paper we evaluate two of these cloud-removal 393 

approaches applying them to MODIS L1B data for the LEB.  The first is the 394 

multispectral dust enhancement algorithm of Miller (2003) which exploits the 395 

fact that dust particles can have contrasting VIS reflective properties when 396 

compared to cloud (Table 3).  In this model, an inverse brightness 397 

temperature difference is used (BTD; 12.02-11.03 µm or MODIS BT32 – BT31) 398 
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which is rescaled/normalized to lie within the –2 to +2 K range. Based on 399 

Miller’s (2003) algorithm the mineral aerosol output (D) has values 400 

constrained between 1.3 and 2.7 (dimensionless).  In addition this approach, 401 

through manipulation of the red (R), green (G) and blue (B) display, enables 402 

mineral aerosol to be visually differentiated from cloud using colour (D is 403 

loaded on the red color gun). The second approach is that of Roskovensky 404 

and Liou (2005) and Hansell et al., (2007) which focuses on the differentiation 405 

of mineral aerosol from cirrus clouds by combining BTD (11.03-12.02 µm) and 406 

VIS wavelengths (reflectance ratio of 0.54 µm/0.86 µm). In the final output 407 

image, values of D>1 (dimensionless) indicate mineral aerosol is present and 408 

values ≤1 indicate cirrus cloud or non-mineral aerosol in the scene (Table 3).  409 

Inclusion of the reflectance ratio in this case reduces the amount of false 410 

detection of dust over land observed by Ackerman et al. (2002).   411 

 412 

Although the majority of studies cited above have used data from 413 

MODIS it is worth noting that similar approaches have been explored using 414 

data from other sensors such as AVHRR, HIRS/2, GOES-8 and MSG-SEVIRI 415 

with varying degrees of success (e.g. Legrand et al. 1989, Sokolik, 2002, 416 

Schepanski et al., 2007). 417 

 418 

<Insert Table 3>  419 

 420 

Table 3 includes a summary of the default threshold values used to 421 

differentiate dust from non-dust in each of the original algorithms used here. 422 

The threshold values used in these algorithms are sensitive to varying 423 

atmospheric conditions, surface reflectance, dust density and dust 424 

mineralogy,  but are formulated in a manner such that they  allow a certain 425 

degree of tuning to adjust for specific conditions such as regional variability 426 

(Darmonov & Sokolik, 2005), or for dust blowing over land or ocean 427 

(Roskovensky & Liou (2005). In this study, we verified the published models 428 

by using the authors’ original data and study-events both to check the set up 429 

of the algorithms and to ensure we could reproduce the initial values of 430 

dust/non-dust threshold and coefficients used.  For the four case studies 431 

presented here, we therefore established event-specific thresholds using the 432 
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approach suggested by each author (Table 4). The definition of thresholds 433 

therefore involved the interrogation of pixel histograms for each scene-434 

algorithm combination (see below). In each case, peaks were found to be 435 

attributable to specific scene components (e.g. densities and types of cloud 436 

and aerosol), and thresholds were chosen to represent the value which was 437 

best able to identify dust in the scene, as judged by the user (Figure 2a). In 438 

each case, peaks representing dust were relatively easy to identify and 439 

disinter from other scene components, and the effects of the choice of dust 440 

threshold in each case is outlined below. Given the rather inflexible nature of 441 

this approach, data from other study regions, where atmospheric conditions 442 

and water vapor concentrations vary more significantly, may pose a challenge 443 

to the straightforward identification and threshold determination for dust peaks 444 

outlined here. 445 

 Figure 2 shows the histograms used to derive BTD thresholds and 446 

Miller’s D for each event. For the Roskovensky and Liou (2005) output the 447 

dust/non-dust threshold remained at 1, but the D-parameter scaling factor ‘a’ 448 

and BTD offset ‘b’ were adjusted for each event by using the midpoints 449 

between the clear sky and dust histograms of the reflectance ratio and BTD 450 

respectively (Figure 3). 451 

 452 

<Insert Figure 2>  453 

<Insert Figure 3> 454 

<Insert Table 4> 455 

 456 

2.2.3 Evaluation of output images 457 

To evaluate the different MODIS dust detection algorithms it is 458 

necessary to have a common reference against which to compare the output 459 

data.  For each of the four dust events examined, an eight panel figure was 460 

produced. In each case, panel (a) represents the MODIS VIS image (where 461 

red = band 1, green = band 4, blue = band 3). Panel (b) represents the bi-462 

spectral brightness temperature difference (BTD = BT31-BT32) with no dust 463 

threshold applied.  This is the principal image against which the outputs from 464 

the different algorithms outlined in panels (c) Ackerman (1997), (d) 465 

Roskovensky & Liou (2005) and (e) Miller (2003) were compared, because a 466 
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bi-spectral BTD is a common component of each of these Level 1B MODIS 467 

algorithms.  What is evaluated therefore is the extent to which the additional 468 

components of the algorithms actually led to improved dust source detection.  469 

In addition, a simple objective comparison of the outputs from each of the 470 

Ackerman (1997), Roskovensky & Liou (2005) and Miller (2003) algorithms is 471 

shown in panel (f). To produce this, boolean outputs from panels (c), (d) and 472 

(e), where pixels were categorized as dust (=1) or non-dust (=0) were colored 473 

red, green and blue respectively and combined to create a color composite 474 

output image. For example, if a pixel was categorized as dust following 475 

Ackerman’s (1997) procedure it will appear red; if categorized as dust by both 476 

Ackerman (1997) and Miller (2003) it will appear pink; if all three algorithms 477 

categorize it as dust it will appear white; if all three categorize it as non-dust it 478 

will appear black (Figure 4). 479 

 480 

<Insert Figure 4> 481 

 482 

Panels (g) and (h) represent the two dust products, MODIS L2 aerosol 483 

(MYD04) Deep Blue AOT and OMI AI respectively.  Although the spatial 484 

resolution of the data is lower than the MODIS, OMI AI provides an 485 

independent check on the spatial extent and intensity of aerosol retrieval for 486 

all panels because it is not derived from MODIS.  487 

 488 

Whilst a comparison of the different approaches to dust detection will 489 

help to understand how MODIS can best be used to identify the presence or 490 

absence of dust, the main aim of this paper is to evaluate the use of MODIS 491 

for identifying dust sources.  This means that the way in which the upwind 492 

edge of the dust plume is depicted is of most interest. In these comparison 493 

figures, the areas highlighting the active sources for each event (denoted by 494 

coloured squares; e.g. figure 5), which were used to compare the outcome of 495 

the techniques, were determined by an informed approach. Since the BTD 496 

principle is a component of all of the evaluated algorithms (panels c-e), 497 

sources were determined from a combination of the scene BTD plus other 498 

readily available information, including the use of wind direction data to 499 

ascertain the upwind side of plumes. From the companion dust source 500 
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inventory work of Bullard et al. (2008), certain sources in the LEB region could 501 

be identified as relatively recurrent points of emission; locations which had a 502 

record of acting as source areas for several different dust events across the 503 

three year study period. The case study events here were therefore chosen to 504 

ensure that several of the plume origins used for comparison were from 505 

‘proven’ dust sources. Consequently, it is worth noting that the persistence of 506 

certain key sources allowed their identification with a further confidence when 507 

flagged as active in each BTD scene. One such example is the point-source 508 

located at the south east margin of Lake Callabonna, South Australia (centred 509 

on 140°15’0E, 30°S.). This well-studied source location was seen to be active 510 

in both the third and fourth case studies, where BTD data are able accurately 511 

to indicate it as an area where a plume has originated (Figures 7 and 8). The 512 

relative performance of the dust enhancement models was evaluated on this 513 

basis.  It is worth noting that extensive background knowledge of dust events 514 

in the LEB was used to help verify source locations determined from BTD 515 

data and this may not be possible in areas where comparable auxiliary data 516 

are unavailable.  Nevertheless, in this study, we were able to carefully and 517 

thoroughly assess model performance for detection of dust emanating from 518 

known source locations.  519 

 520 

As noted earlier, there are some additional caveats to the use of 521 

remote sensing to determine (or infer) dust source locations; these include the 522 

relative timings of the satellite overpass and the onset of dust emissions 523 

(which might affect not only the location of the plume head, but also the 524 

density of the dust), and the fact that only the upwind dust source can be 525 

located with any additional contributing sources lying under the dust plume 526 

possibly going undetected. To test the likely impact of some of these issues, 527 

HYSPLIT (http://www.arl.noaa.gov/ready) was used to calculate possible 528 

trajectories and plume concentrations for each event.  These data are not 529 

presented here but confirm that the dust emitted during the events was close 530 

to, or at, source at the time of data capture and rarely reached an altitude of 531 

more than 500 m.  This suggests that overpass timings for remote sensing 532 

data capture were likely to have provided data suitable for source 533 

identification. 534 



Page | 17 
 

 535 

3.  Results 536 

 537 

3.1  Event 1: 7th October 2005 538 

 539 

For this event, raised dust is quite difficult to observe in the visible 540 

scene (Figure 5a) and sources are not at all apparent regardless of the level 541 

of contrast enhancement applied. However, BTD analysis (Figure 5b) reveals 542 

the presence of dust plumes, which appear as dark streaks at the centre of 543 

the image. Much of the cloud in the lower left of Figure 5b also appears dark, 544 

indicating some overlap in the thermal signature of cloud and dust in this 545 

scene. This is further highlighted in Figure 5c where a dust/non-dust threshold 546 

of 0 (dust <0, cloud > 0) has been applied. Here, not only are parts of the dust 547 

plumes categorized as dust, but so too are some of the patches of cloud.  548 

Although this simple threshold effectively separates cirrus cloud (white/light 549 

grey in Figure 5b) from the dust plumes, the thicker areas of cloud (which 550 

have similar BTD values to the dust) are mis-identified. Adjustment of the 551 

dust/non-dust threshold for this scene highlighted that there was no single 552 

BTD value that could differentiate these two components.  In terms of 553 

identification of the sources of dust in this scene, there was an observed 554 

offset between the upwind dust heads shown in Figure 5c and the dust 555 

sources identified using Figure 5b.  This is most likely to be because the dust 556 

at source is still close to the ground surface and therefore has a less 557 

pronounced thermal contrast with the ground surface than airborne dust 558 

further downwind of the source which will have risen to a higher atmospheric 559 

level. Given the dust/non-dust threshold applied to the scene is 0, this also 560 

indicates that some of the dust from this location can have a BTD value of >0 561 

(Figure 5b). 562 

 563 

<Figure 5> 564 

 565 

Application of the Roskovensky and Liou (2005) algorithm (Figure 5d)  566 

effectively removes the cirrus cloud from the scene, and only a small area of 567 

the remaining cloud is included when a dust threshold (using event-specific ‘a’ 568 
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and ‘b’ coefficients; Table 4) is applied.  The upwind ends of the main dust 569 

plumes map on to the same source locations inferred from BTD (Figure 5b), 570 

with the exception of the most northwestern plume which is not detected.  571 

Miller’s (2003) algorithm clearly differentiates the cloud from the main dust 572 

plume (Figure 5e) which is picked out in red.  With the exception of the 573 

northernmost plume, source detection is comparable to those in Figure 5b. 574 

However, there are some parts of this scene where dust is likely to have been 575 

mis-identified.  These areas (marked ‘FS’ in Figure 5e) are patches on the 576 

ground surface where fires have changed the ground surface reflectance 577 

characteristics significantly (Jacobberger-Jellison, 1994), and suggest that the 578 

Miller algorithm is sensitive to ground reflectance variability. Given that the fire 579 

scar is clearly discernible in the visible image (Figure 5a), but not when the 580 

other techniques (which rely more heavily on BTD to detect dust) are used, 581 

this implies that the component within the Miller (2003) algorithm that uses 582 

VNIR wavelengths is slightly over weighted in this application. Figure 5f 583 

shows the extent to which the three MODIS L1B algorithms agree and 584 

highlight co-incident pixels containing dust. Whilst all three pick out the main 585 

central plumes of dust, there are considerable differences elsewhere in the 586 

scene.  In particular, the Miller (2003) algorithm suggests a much more 587 

extensive plume of dust than the other two approaches, especially in the 588 

northeast.  All of the techniques misidentify some of the most dense cloud as 589 

dust, with Ackerman (1997) and Miller (2003) performing particularly poorly. 590 

 591 

The MODIS Deep Blue AOT image (Figure 5g) shows that the cloud 592 

mask applied in this instance is effective in separating the clear or dusty sky 593 

from the clouds, and some dust is detected (AOT values close to 0).  The dust 594 

plumes in the far right of the scene that are highlighted in previous panels 595 

(Figure 5 b, c, and d) are clearly defined, but the main central plume is less 596 

obvious. In comparison, despite the relatively coarse resolution, the OMI AI 597 

image (Figure 5h) depicts clearly the central and far right plumes, and with 598 

similar AI values.  This suggests that the inability of Deep Blue to detect both 599 

of these plumes is not likely to be due to vastly different aerosol densities in 600 

each plume. Instead, one possibility (explored further in section 4.6) is that 601 

MODIS Deep Blue data are actually more sensitive to variations in dust colour 602 
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(mineralogy) than OMI.  There is also an area in Figure 5g that is excluded by 603 

the Deep Blue cloud mask (marked ‘FP’ in Figure 5g) where cloud is not 604 

apparent.  On the ground, this is a floodplain and the high surface reflectance 605 

characteristics also cause confusion for the cloud mask when applied to event 606 

3 (Figure 7g). Overall, the location of the dust plumes outlined by OMI AI data 607 

correspond very closely to the position of the plumes in the MODIS 1B 608 

algorithm outputs. In addition, the gridded AI data capture the extent and 609 

variation of aerosol density apparent in the other panels. Although plume 610 

identification is acceptable, the coarse resolution of the aggregated OMI AI 611 

data (0.25°x0.25°) mean these data are less able to define the dust source 612 

location or the nature of the surface sedimentary environments with the same 613 

precision as can been achieved using the combination of outputs from the 614 

MODIS L1B algorithms (e.g., Bullard et al., 2008; Lee et al., 2008).  615 

 616 

3.2 Event 2: 24th September 2006 617 

 618 

In the second event, the downwind (northerly) limit of the advancing 619 

dust is very distinct in the MODIS VIS (Figure 6a). The upwind edges of the 620 

plume are, however, not distinct and are in places difficult to differentiate from 621 

the underlying bright desert surface.  For Event 1, the dust/non-dust 622 

thresholds or coefficients chosen are the same as those recommended in the 623 

published techniques.  However, if these values are applied to Event 2 some 624 

problems become evident.  Figure 6 shows the visible MODIS (panel a) and 625 

BTD values (panel b) for Event 2 and the results of applying the Event 1 626 

thresholds (Table 4; Figure 6 panels c-f).  There is no possibility of identifying 627 

dust sources using the Roskovensky and Liou (2005) or Miller (2003) 628 

algorithms with these thresholds.  The Roskovensky and Liou (2005) output 629 

suggests that the dust plume fills most of the panel, whilst no dust is 630 

highlighted using the Miller (2003) approach.  This is emphasized in Figure 6f 631 

which shows there are no areas of the image that all the different approaches 632 

identify as containing dust. 633 

 634 

<Figure 6> 635 

 636 
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For this reason, thresholds and parameters appropriate to this event 637 

were determined using the histogram approach (see Table 4 for values).  The 638 

results of applying these event-specific thresholds are shown in Figure 7.  The 639 

dust source areas for this event and extent of the plume are reasonably well 640 

discerned using BTD (Figure 7b), which also reveals several other minor 641 

plumes that are not evident in the VIS. When an event-specific threshold is 642 

applied to the BTD (Figure 7c) most of the plume is highlighted but some of 643 

the thin, discrete plumes are not identified as dust or are foreshortened. This 644 

again suggests the use of the dust/non-dust threshold can affect the accurate 645 

identification of dust sources. The main plume is successfully identified using 646 

Roskovensky and Liou’s (2005) algorithm (Figure 7d) but the source areas 647 

are poorly represented. Despite extensive experimentation with the ‘a’ and ‘b’ 648 

coefficients to improve dust detection, it was not possible to pick out the 649 

westernmost dust plumes without introducing a significant component of the 650 

ground surface reflectivity to the dust determination.  651 

 652 

<Figure 7> 653 

 654 

Using Miller’s (2003) algorithm (Figure 7e), the maximum D value for 655 

this event falls below the published dust >1.3 threshold (see Table 3) 656 

necessitating an adjustment of this threshold such that dust >-0.55. Although 657 

this adjustment enhances the dust visualization significantly, it does not do so 658 

without introducing further artifacts.  First, some areas of the plume evident in 659 

Figure 7b were not highlighted, for example the thin streaks to the left of the 660 

main plume that were also not identified using the default Ackerman (1997) or 661 

Roskovensky and Liou (2005) thresholds (Figures 7c and d).  Second, whilst 662 

detection of airborne dust is improved, some areas of the ground surface are 663 

also mis-identified as dust.  Some of these are the same areas (marked FS in 664 

Figure 7e) that caused difficulties in event 1 due to changes in surface 665 

reflectivity caused by fire scars, and can clearly be seen in other panels 666 

(Figure 7 a-d).  667 

 668 

Figure 7f shows that the agreement between the MODIS L1B 669 

enhancement methods for dust (white) is restricted to the most dense part of 670 
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the plume. Ackerman (1997) performs best at highlighting the more subtle 671 

(perhaps less dense) dust plumes in the west of the scene. The Roskovensky 672 

and Liou (2005) threshold mis-identifies dust not only to the west but also to 673 

the south and so under-represents its spatial extent; with obvious implications 674 

for upwind source detection. 675 

 676 

The central dust plume is shown clearly in the MODIS Deep Blue 677 

aerosol product for this event (Figure 7g). Not only is the sharp advancing 678 

dust front apparent, but these data also indicate higher dust concentrations in 679 

the southerly, upwind source area of the plume. At best, however, these data 680 

are only able to provide a broad regional indication of the plume’s source 681 

because the thin, discrete plumes in the west are not detected. The MODIS 682 

Deep Blue product also suggests that the highest AOT values in the scene 683 

are associated with the plume at the extreme eastern edge of the scene 684 

(marked ‘X’).  This contrasts with the MODIS BTD analyses where dust 685 

appears to have a higher concentration at the furthest downwind edge of the 686 

plume (marked ‘Y’). Similarly, OMI AI data clearly outline the main plume, and 687 

also suggest higher aerosol density in the east (Figure 7h). Comparison of the 688 

Deep Blue and OMI data highlight the performance of the cloud masks used 689 

in these products. The Deep Blue cloud mask only removes the cloud in the 690 

top left of the scene, which is clearly present in MODIS VIS, whilst the OMI 691 

cloud-mask obscures as much as 15% of the scene.  692 

 693 

3.3  Event 3: 2nd February 2005 694 

 695 

Event 3 was an extensive dust event during which 35 meteorological 696 

stations recorded a reduction in visibility to ≤1 km. Here we concentrate on 697 

two areas in the central LEB: the first is where two parallel dust plumes can 698 

clearly be seen blowing northwards out of Lake Eyre North and the second is 699 

in the lower right corner of the image and is difficult to see in the VIS (Figure 700 

8a), but is clearly shown on the BTD (Figure 8b). The previous two events 701 

used a BTD threshold of <0 with varying success. For this event (Figure 8c), a 702 

significantly lower threshold for dust detection (dust <-1.2) was required to 703 

identify dust plumes (Table 4). Using this value, most of the pixels highlighted 704 
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contain dust although the area marked ‘GS’ on Figure 8c is not dust, but is the 705 

ground surface. Crucially, the <-1.2 threshold in this instance does allow the 706 

observed dust plumes to be traced all the way back to the source areas.  707 

 708 

<Figure 8> 709 

 710 

The Roskovensky and Liou (2005) algorithm (Figure 8d) is effective at 711 

picking out the two main dust areas, but the origin of the twin plumes is 712 

situated north of the known dust source (the bed of Lake Eyre North). The 713 

parallel plumes are also visible when Miller’s (2003) algorithm (Figure 8e) is 714 

applied with an adjusted dust threshold, but this dense dust is only enhanced 715 

by the model (coloured red) at the downwind end of the plume, and not in the 716 

source locations. Furthermore, in comparison to BTD (Figure 8b), the origin of 717 

the dust in Figure 8e (in white) would be placed approximately 70km north of 718 

the actual lake bed source. The ‘best’ dust threshold that could be determined 719 

for the Miller (2003) algorithm in this instance also seems to divorce the 720 

apparent upwind boundary of the plume from the source area marked ‘X’ in 721 

the right of the image (Figure 8e). However, the entire aerosol outbreak to the 722 

lower right is highlighted in red using this approach, and the plume clearly 723 

extends back to the assumed source.  This demonstrates that there can be 724 

significant variability in the performance of this enhancement approach within 725 

a single scene. The composite image (Figure 8f) for the MODIS L1B 726 

enhancement techniques highlights the problem of surface reflectance evident 727 

when applying the Miller algorithm, as to the northwest of the twin plumes the 728 

fire scar (FS) is clearly shown in blue.  729 

 730 

In Figure 8g, the distinctive parallel dust plumes are mainly excluded 731 

by the Deep Blue cloud mask, and only the downwind end of the plume is 732 

detected. Other parts of the image, where no cloud is present (cf. Figure 8a), 733 

are also excluded by the cloud mask. For example, the dry bed of Lake Eyre 734 

and small patches across the whole area of the scene are flagged as no-data. 735 

In Figure 8h, the OMI AI data show dust over the majority of the scene, 736 

suggesting a widespread dust haze. The AI maximum of 5.4 is very high for 737 

Australia but, whilst all the main areas of dust are identified in a manner 738 
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broadly consistent with the MODIS L1B algorithms, the spatial resolution is 739 

insufficient to illustrate the detail of the parallel plumes or the specific source 740 

locations. Indeed, although these data clearly have limited utility for 741 

determining the specific point-sources in this scene, the OMI data do suggest 742 

the presence of diffuse raised dust across the scene which would be expected 743 

given the number of meteorological stations recording the event. 744 

 745 

3.4 Event 4: 30th August 2005 746 

 747 

The weather systems that promote LEB dust storms (thunderstorms, 748 

pre- and post-frontal winds; Sprigg, 1982) mean that dust events are often 749 

associated with cloud cover. Event 4 was selected to explore further the 750 

extent to which dust and cloud can be distinguished. Dust is visible in the 751 

centre of the VIS scene between the bands of cloud (Figure 9a) and can also 752 

be identified using BTD (Figure 9b); although large areas of thicker cloud can 753 

be seen which exhibit a similar BTD as the dust, making initial interpretation of 754 

this scene using BTD alone problematic.  A dust threshold of <-0.35 was 755 

applied to BTD in this instance (Figure 9c), and was effective in isolating the 756 

major dust plumes that exist between the clouds, but at the expense of the 757 

thinner plumes which are removed when this particular threshold is applied.  758 

 759 

<Figure 9> 760 

 761 

Most of the cloud is removed from the image by application of 762 

Roskovensky and Liou’s (2005) algorithm (Figure 9d) and the inferred sources 763 

for the two main dust plumes clearly map on to those identified from BTD 764 

(Figure 9b).  For this event, the Miller (2003) algorithm (Figure 9e) was scaled 765 

using dust>0.45, and can be seen to be very effective as the principal dust 766 

plumes are easily discernable and source determination is possible. The 767 

enhancements discussed here are unable to ameliorate the blanketing effect 768 

of thick cloud when it obscures active dust sources or plumes; they can only 769 

enhance the dust that can be ‘seen’ between the cloud banks. Interestingly, 770 

none of the BTD-based methods pick up the thin plume which is best seen on 771 

the MODIS visible panel (marked ‘X’, Figure 9a). The most notable feature, 772 
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other than the general agreement of spatial extent and source location for the 773 

two plumes shown in Figure 9h, is the appearance of the blue areas where 774 

the Miller (2003) output has confused the thickest cloud with dust. 775 

 776 

The cloud masking of the Deep Blue (Figure 9g) scene seems to work 777 

well  for much of the cloud coverage in the image, but does also remove much 778 

of the northernmost dust evident in the other panels (Figures 9b-f). The shape 779 

and downwind extent of the central plume is indicated by raised AOT values, 780 

but the MODIS Deep Blue data also suggest an origin for the dust that is 781 

some distance removed downwind from the source when compared with the 782 

BTD-based approaches. The OMI data (Figure 9h) again show more of the 783 

dust plume than the MODIS Deep Blue product, and less of the image is 784 

affected by cloud masking. 785 

 786 

4. Discussion 787 

 788 

The main aim of this paper is to evaluate the use of MODIS for 789 

detecting dust sources.  In some instances dust plumes may be discernible on 790 

the MODIS VIS (e.g. Figure 6); but this certainly is not always the case (e.g. 791 

Figure 4).  From the results presented above, we can confirm that all the dust 792 

enhancement techniques used here make it easier to detect dust. However, 793 

with respect to source determination, the results suggest that, of the MODIS 794 

L1 processing techniques, the ‘best’ approach varies from event to event.  For 795 

events 1 and 2 arguably the best source detection came from the simple 796 

brightness temperature difference calculation (BTD), often with no dust 797 

threshold applied.  Of the more complex processing techniques, that of 798 

Roskovensky & Liou (2005) works well for event 1 (Figure 5) as it is very 799 

effective at removing cloud cover, whereas the Ackerman (1997) is better for 800 

events 2 and 3, where cloud cover is less of an issue.  The cloud cover in 801 

event 4 (Figure 8) makes it much harder to determine sources from the BTD 802 

alone, but both Roskovensky & Liou (2005) and Ackerman (1997) work well.  803 

For these four events, the Miller (2003) algorithm is extremely useful for 804 

visualizing dust, but there are significant problems with precise source 805 

identification and determination of dust plume extent in all cases except event 806 
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4.  For the majority of events and algorithms the published, or indicative, 807 

thresholds under-perform and the values vary from event to event.  This 808 

makes it difficult to suggest appropriate regional scale thresholds.  Whilst 809 

some of this variation is due to factors specific to the algorithms or individual 810 

events, other causes such as diurnal and seasonal variations in surface 811 

temperature/dust contrast (which affect BTD) will affect all the methods.  The 812 

advantages and disadvantages of each of the approaches from an operational 813 

perspective are discussed in detail below. 814 

 815 

4.1 Brightness Temperature Difference (bispectral split window) 816 

 817 

Calculating BTD is straightforward, and keeping the full range of values 818 

(rather than applying a dust threshold) is often preferable for both dust plume 819 

and source detection.  The procedure does not appear to be very sensitive to 820 

observed mineralogical variability either within or between plumes, and so all 821 

dust, regardless of source, is enhanced provided it can be differentiated 822 

thermally from the ground surface.  The main disadvantages are that because 823 

no definition of dust/non-dust is applied the interpretation of the BTD data 824 

becomes subjective and data retrieval can suffer through lack of cloud cover 825 

elimination. With the exception of event 4, this is not a major problem in the 826 

case studies presented here, but it is likely to be important for anyone 827 

interpreting the data, to have a good understanding of how and why ground 828 

surface characteristics may vary. 829 

 830 

4.2 Ackerman (1997) 831 

 832 

Although Ackerman (1997) did not explicitly present a dust/non-dust 833 

threshold of zero, he observed negative differences in BT11-BT12 for dust 834 

storms and a universal threshold of dust<0 could be implied. Darmenov & 835 

Sokolik (2005) demonstrated that this dust threshold was in fact variable when 836 

applied to dust over oceans and suggested that dust sourced from the Lake 837 

Eyre Basin and travelling southeast over the Tasman Sea had a value of <-838 

0.4 K.  All the dust plumes examined here are over land, and whilst the 839 

threshold of zero worked effectively for events 1 and 2, adjustments had to be 840 
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made for events 3 and 4.  For event 3, in order to eliminate interference from 841 

the ground surface, the threshold had to be lowered to <-1.2 K; for event 4 the 842 

threshold was <-0.35 to eliminate cloud. Interestingly, whilst it was possible to 843 

find a dust/non-dust threshold for event 4 where all cloud could be removed 844 

this was not possible for event 1.  Here (Figure 5c), a dust threshold lower 845 

than zero removed more dust in the scene so the threshold was left at 0.  846 

Another factor affecting the BTD threshold is likely to be the thickness of the 847 

dust plume.  Where there is low AOT (as confirmed by comparison with 848 

MODIS Deep Blue) we have determined BTD differences of >0 for pixels 849 

populated by dust.  One possibility is that where the dust plume 850 

thickness/density is low, BTD becomes increasing affected by the ground 851 

surface temperature signal.  Using this approach, therefore, may involve a 852 

compromise between dust detection and the elimination of cloud.  If both dust 853 

and cloud are dense/opaque then it is straightforward to identify and 854 

implement a dust threshold. If the dust is thin and cloud cover is dense (as in 855 

event 1), then it can be hard to identify an appropriate dust/non-dust 856 

threshold.  Where the cloud cover is sparse and the dust plume is 857 

dense/opaque (as in event 4) then their differentiation through threshold 858 

adjustment is straightforward.  From this study it is also apparent that the 859 

thickness/density of the dust plume also affects the degree to which the dust-860 

head can be pinpointed, and an inappropriate threshold value may 861 

foreshorten plumes. 862 

 863 

4.3 Roskovensky & Liou (2005) 864 

 865 

This approach was designed explicitly as a simple method for the 866 

differentiation of dust from cirrus cloud, and is very effective at doing so in 867 

both of the cloudy scenes examined here (events 1 and 4).  For all events it 868 

was necessary to adjust the scaling factor ‘a’ and BTD offset value ‘b’. 869 

Roskovensky and Liou (2005) calculated these to be 1.1 and 0 over ocean 870 

(around the Korean peninsula) and 3 and 0 over land (the Gobi desert).  All of 871 

the events examined here occurred over land and the coefficients determined 872 

were variable (values of ‘a’ ranged from 0.25 to 1.2 and values of ‘b’ ranged 873 

from –0.5 to +1) and made a significant difference to both the number of 874 
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pixels classified as dust and the inferred location of the dust sources. 875 

Although the algorithm is slightly more computationally complex to calculate 876 

than simple BTD, it is easy to tune it for specific events, and certainly worth 877 

the extra effort.  Overall this model worked best on dense dust; there was little 878 

observed confusion with ground surface reflectance, and the inferred upwind 879 

plume source locations compared well with those suggested by BTD alone. 880 

 881 

4.4 Miller (2003) 882 

 883 

The Miller (2003) algorithm is designed to provide improved 884 

differentiation of dust from water/ice clouds over bright desert surfaces and 885 

was found to be visually very effective for all events observed in this study.  In 886 

particular, there is generally a clear distinction between dust and cloud. In a 887 

similar manner to optimizing the Ackerman (1997) data, the Miller (2003) dust 888 

threshold also had to be tuned for each event to be effective (Table 4) and in 889 

most cases it was necessary to decrease the lower threshold value to well 890 

below Miller’s suggested +1.3  (as low as -0.55 in one instance). Unfortunately 891 

tuning this algorithm was not straightforward, and although it worked very well 892 

for some events, this was not always the case. 893 

 894 

4.5  The Aerosol Products (Deep Blue and OMI) 895 

 896 

The main utility of the aerosol products is in the detection of dust 897 

because for dust source identification the coarse spatial resolution of the 898 

products is a limitation. Average AI values over a long time series have been 899 

used to detect persistent, regional scale dust sources (e.g. Washington et al., 900 

2003) but accurate and event-specific source identification requires the clear 901 

delineation of the upwind margin of the plumes. We have presented values of 902 

Deep Blue AOT and OMI AI which, whilst not comparable in terms of absolute 903 

values can be compared relatively.  There are occasions where OMI agrees 904 

well with the much higher resolution MODIS, but often the upwind margin of a 905 

dust plume is difficult to detect using AI.  906 

 907 
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In some cases, it was difficult to determine not only the upwind dust 908 

sources but also the extent of the dust plumes because the in-built cloud 909 

masks of the products eliminated them. For example, in Figure 8g, the origin 910 

of the parallel twin plumes was not discernible because MYD04 returned no 911 

data from the bright dry lake surface, which was classified as cloud. This is a 912 

recognised limitation and is probably due to the colour and density of the dust 913 

or reflectance of the surface. The twin parallel plumes comprise white 914 

coloured dense dust sourced from Lake Eyre and are sufficiently bright to 915 

saturate the pixels causing misidentification as cloud (a known problem with 916 

Level 2 aerosol product http://modis-917 

atmos.gsfc.nasa.gov/MOD04_L2/ga.htm).  There are obvious implications for 918 

dust source identification – ephemeral lakes are often very bright surfaces 919 

and have been seen in this study to be routinely masked out as cloud even in 920 

cloud-free and dust-free scenes, yet are common dust sources not only in the 921 

LEB (Bullard et al. 2008), but also in the USA (e.g. Reynolds et al. 2007), 922 

southern Africa (Mahowald et al. 2003) and other dryland regions.  The 923 

authors are also evaluating the Aura-OMI  Aerosol Data Product; OMAERUV 924 

(V003) which provides aerosol extinction and optical depth via swath data 925 

(rather than global gridded) at the native 13 x 24 km pixel (see: 926 

http://daac.gsfc.nasa.gov/Aura/OMI/omaeruv.shtml).  This may offer further 927 

potential for dust source identification, but requires further validation. 928 

 929 

4.6 Impacts of Dust Mineralogy and Surface Reflectance on Data Retrieval 930 

 931 

One issue that can be explored briefly here, and will be developed 932 

further as a future project, is the impact of dust mineralogy on both the Miller 933 

(2003) dust thresholds and MODIS Deep Blue retrievals.  A range of different 934 

sedimentary environments emit dust within the Lake Eyre Basin (Bullard et al., 935 

2008) and these have different mineralogical compositions which in turn 936 

control the infrared radiative properties of the dust (Claquin et al., 1999; 937 

Sokolik, 2002).  An example can be seen in event 3 (Figure 8) where a dust 938 

plume was observed originating from the bed of Lake Eyre (which is illite-rich), 939 

in the west of the scene and a dust plume originating from dune sands with 940 

iron-rich coatings in the southeast of the scene.  Using threshold values 941 
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where 0.6 < dust < 1.98 it was possible to pick out the dust sourced from the 942 

dunes in red, but not the near-source dust from the lake (although part of the 943 

distal end of the plume is highlighted).  When a threshold was selected to 944 

highlight both plumes large areas of ground surface were also included. 945 

 946 

The effect of dust mineralogy on detection is also apparent in the 947 

MYD04 Deep Blue data presented here.  In the Deep Blue algorithm, surface 948 

reflectivity over desert regions is assumed to be low in blue wavelengths and, 949 

dust aerosol slightly more reflective (Hsu et al., 2004).  However, dust 950 

reflectivity is variable depending on its chemistry and can decrease 951 

significantly with increased iron concentration (Dubovic et al., 2002; Arimoto 952 

et al., 2002).  Consequently red, or iron-rich, dust will have relatively low blue 953 

reflectivity and therefore potentially lower contrast relative to background 954 

reflectance, whereas white dust (composed of carbonates, bleached quartz or 955 

evaporite minerals) will have higher reflectance in the VIS and significantly 956 

higher contrast with respect to underlying soils and vegetation.  This is 957 

illustrated in Figures 7g and 8g where the white, dry lake bed sources of dust 958 

are more distinct than the iron-oxide rich dust from dune sources (noting 959 

however that the OMI product suggests these red plumes are also less dense 960 

than the white dust plumes which will affect AOT). 961 

 962 

For the Lake Eyre Basin events there are some problems with the 963 

differentiation of dust from the underlying desert surface.  Specifically, large 964 

areas of the LEB dunefields comprise red brown to orange, highly reflective 965 

sands with a partial vegetation cover; although sand color is variable 966 

especially between the redder Simpson dunefield and the less red Strzelecki 967 

dunefield (Pell et al., 2000; Bullard and White, 2002).  Where the vegetation 968 

cover has not been disturbed by fire, the Miller (2003) algorithm works well.  969 

However, where vegetation has been removed by fire and large areas of 970 

bright sand are exposed the algorithm cannot distinguish dust from the 971 

surface. Fire changes both surface reflectance characteristics, through the 972 

removal of absorbing vegetation, and sediment reflectance characteristics, 973 

through fire-induced reddening or changes in mineralogy (Jacobberger-974 

Jellison, 1994). The way in which the performance of the Miller (2003) 975 
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algorithm is affected by these changes has important implications for dust 976 

provenance because areas which have been de-vegetated through fire may 977 

be mis-identified as a dust source. A complicating issue is that fire scars can 978 

act as sources of dust under certain conditions (Bullard et al. 2008; McGowan 979 

& Clark, 2008). This highlights two issues.  First, it is important to deploy 980 

event-specific dust/non-dust thresholds to limit the influence of surface 981 

reflectance as far as possible. Second, familiarity with the underlying surface 982 

characteristics is essential, and examination of more than one scene, 983 

including known dust-free images is desirable. The latter means that 984 

permanent or semi-permanent ground characteristics can be discerned. For 985 

example, the firescars in the LEB have distinctive shapes that can be 986 

identified on most of the VIS images taken post-2001 when widespread 987 

burning occurred.  Cross-referencing with other MODIS-derived output can 988 

also be useful. For example, in event 1 the fire scar is only clearly discernible 989 

on the VIS and Miller (2003) panels which suggests that it was not a dust 990 

source.  In contrast, in event 2 the fire scars are discernable in all panels 991 

(Figure 7 a-e) which may suggest that they acted as dust sources at this time.  992 

 993 

4.7.  Tools for dust source detection 994 

 995 

Figure 10 presents a summary of the how the different data sources 996 

and analyses used here complement one another. At the global-regional 997 

scale, dust events can be detected using visibility criteria, as in this paper, or 998 

OMI AI.  An alternative that we have not discussed in detail here is the 999 

MOD/MYD08 Global Gridded Atmospheric Product (1 x 1 deg) which could 1000 

also be used (Bryant et al., 2007), although it has some limitations over bright 1001 

desert surfaces (Chu et al., 2002). If none of these three indicates dust it does 1002 

not necessarily mean that dust is not present as the relative timing of satellite 1003 

overpass or visibility observation may result in no dust being recorded (see 1004 

quality control indicators), but the events missed are likely to be minor. If any 1005 

one of these indicates the presence of dust then there is the potential for 1006 

determining dust sources at higher resolution.  The choice of higher resolution 1007 

technique depends on the precise research question to be answered.  The 1008 

MOD/MYD04 aerosol products give data processed to a common standard 1009 
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that enables comparison from one region to another.  The versatile 1010 

MOD/MYD02 data can be processed simply using brightness temperature 1011 

difference to enhance the dust signal.  Where cloud is present, or if it is 1012 

necessary to highlight the dust plume then one of the methods for employing 1013 

a dust/non-dust threshold can be used, but it is recommended that event-1014 

specific thresholds are calculated where possible (as opposed to using global 1015 

or regional thresholds). 1016 

 1017 

 1018 

5. Conclusions 1019 

This paper set out to evaluate the use of MODIS data for identifying dust 1020 

sources.  Through objective and subjective comparison of several different 1021 

approaches to dust detection several conclusions can be drawn.  Whilst these 1022 

conclusions have implications for regional and global scale studies of dust, 1023 

the clear outcomes are that even within a single drainage basin, dust events 1024 

should be examined on an event by event basis, and that the ‘best’ algorithm 1025 

for identifying dust sources varies considerably.  1026 

(1) For the region examined here (the Lake Eyre Basin), no single MODIS 1027 

technique was found to be ideal for source determination.   1028 

(2) MODIS VIS full colour composite data can be useful but are often 1029 

insufficient to discern dust plumes over reflective desert surfaces.  In 1030 

particular, for event detection MODIS VIS (particularly via quicklooks) 1031 

should be used with caution, or in combination with other data sources, 1032 

because not all dust plumes will be visible over the bright surfaces.  An 1033 

ideal combination for rapid detection of dust activity is OMI AI (or 1034 

equivalents) and MODIS but the former can not be used to derive 1035 

source location due to its low spatial resolution. 1036 

(3) BTD data are simple to calculate and very effective at highlighting dust 1037 

that is not seen in VIS data. If the user is familiar with the underlying 1038 

ground surface characteristics and has the VIS image available to 1039 

discern cloud cover, this can be the most simple and possibly most 1040 

accurate method of source determination. From the four example 1041 

events presented here, BTD is the approach that is least sensitive to 1042 

dust mineralogy. 1043 
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(4) For scenes where cloud is present, there is potential for confusion 1044 

between cloud and dust using just BTD and the algorithms designed to 1045 

differentiate these have been demonstrated as effective for screening 1046 

out cirrus cloud (for which they were designed) although thick cloud 1047 

can remain.  1048 

(5) Whilst there are published dust/non-dust thresholds for each method 1049 

compared here, for each method thresholds may need adjusting on a 1050 

regional and/or event scale.  Although there are clear guidelines for 1051 

positioning thresholds, a considerably amount of informed (but 1052 

subjective) judgement can be required.  It is important therefore for 1053 

users of these techniques to consider the effects of not adjusting 1054 

thresholds for each event.  This paper suggests that for an event-1055 

based study it is essential to derive event-specific thresholds. However 1056 

it seems likely that for global or longer-term studies of this nature to be 1057 

effective, it may be pragmatic to use regional thresholds.  1058 

(6) In the Lake Eyre Basin, it is not possible to use a single dust/non-dust 1059 

threshold for all events for any of the algorithms tested here.  One 1060 

possible reason is that it is a basin with multiple potential dust sources 1061 

with different mineralogies; where different sources (e.g. iron-rich 1062 

dunes, illite-rich lake beds) can emit dust simultaneously it is necessary 1063 

to use event-specific, or even plume-specific thresholds.  In regions 1064 

with a single definable source (for example a large playa such as the 1065 

Magkadigadki, Botswana) it may be possible to discern a single 1066 

dust/non-dust threshold, however any use of a regional (or global) 1067 

threshold is likely to result in errors or inconsistencies.   1068 

(7) Some sedimentary environments are more intense dust sources than 1069 

others.  In particular, previous studies have noted ephemeral lakes and 1070 

areas devegetated by fire as prominent dust sources.  Significantly, 1071 

these are two of the ground surface types that have proved most 1072 

problematic for establishing dust/non-dust thresholds due to confusion 1073 

caused by their bright surfaces which cause false positive dust signals 1074 

or may be falsely identified as cloud. 1075 

(8) Whilst the findings of this research may be challenging in some 1076 

respects, what is clear is that there is considerable potential for using 1077 
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MODIS data to obtain information about dust mineralogy by interpreting 1078 

the shifts to the thresholds (or coefficients) that need to be made.  1079 

Possible mineral aerosol information that could be gained can not only 1080 

assist in identifying the dust source, but also its radiative properties. 1081 

 1082 

Using data from sensors such as MODIS will inevitably mean that some 1083 

dust activity is missed due to the relative timing of overpass and dust 1084 

emissions or cloud cover.  Other sources of data such as MSG can minimize 1085 

the problem of overpass timings but cloud cover is still a problem and 1086 

coverage is not yet global.  This paper has focused on daytime dust 1087 

emissions only, but analysis of night time dust emissions and source 1088 

identification are the subject of future research. It is worth noting that the 1089 

products and data used here are subject to continual development and 1090 

improvement and consequently some of the issues raised here may be 1091 

resolved or change. 1092 

 1093 

 1094 

1095 
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Figure Captions 1412 

 1413 

Figure 1. The Lake Eyre Basin of Australia, and the coverage extents of 1414 

the four dust event case studies by event number. 1415 

 1416 

Figure 2. Histograms illustrating (a) the basic method for determining 1417 

dust/non-dust threshold; (b) dust/non-dust thresholds derived for BTD 1418 

(Ackerman, 1997) (dust < threshold; and (c) dust/non-dust threshold derived 1419 

for Miller (2003) algorithm outputs (dust > threshold) for events 1-4. 1420 

 1421 

Figure 3. Histograms showing the derivation of scaling factor ‘a’, based on 1422 

reflectance ratio, for events 1-4 (graphs a-d), and BTD offset ‘b’ for events 1-4 1423 

(graphs e-h) necessary for applying Roskovensky & Liou’s (2005) algorithm. 1424 

For event 4 the scaling factor = 0.25 (not shown). Note: vertical axes vary. 1425 

 1426 

Figure 4. Key to interpreting the colour composite combining dust/non-1427 

dust detection using Ackerman (1997), Miller (2003) and Roskovensky & Liou 1428 

(2005) and shown in Figures 5-8, panel (f). 1429 

 1430 

Figure 5. Event 1: 7th October 2005.  Across all panels, squares highlight 1431 

the prominent active dust source areas, as identified from the BTD split 1432 

window product. The dust/non-dust thresholds used are detailed in Table 4. 1433 

Panels (a) to (e) are derived from MODIS (Aqua) data.  (a) MODIS visible 1434 

(wind direction marked with arrow); (b) BTD (BT11-BT12); (c) threshold applied 1435 

to BTD (after Ackerman, 1997); (d) Roskvensky & Liou (2005) dust 1436 

enhancement algorithm; (e) Miller’s (2003) dust enhancement algorithm (dust 1437 

is red); (f) Composite image of Ackerman, Miller and Roskovensky and Liou 1438 

output for key see Fig.4. Panels (g) and (h) are aerosol products for the same 1439 

event where (g) MYD04 Deep Blue AOT 0.1°x 0.1° spatial resolution; (h) OMI 1440 

AAI 0.25°x 0.25° spatial resolution. 1441 

 1442 
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Figure 6. Event 2: 24th September 2006.  Dust/non-dust thresholds used 1443 

are those recommended in the published literature and the same as those 1444 

used for Event 1. 1445 

 1446 

Figure 7. Event 2: 24th September 2006.  Dust/non-dust thresholds used 1447 

are specific to Event 2 and adjusted using the histogram approach (Figure 3). 1448 

 1449 

Figure 8. Event 3: 2nd February 2005.  For panel explanations see Figure 1450 

5. Dust/non-dust thresholds used are specific to Event 3 and adjusted using 1451 

the histogram approach (Figure 3) 1452 

 1453 

Figure 9. Event 4: 30th August 2005.  For panel explanations see Figure 5. 1454 

Dust/non-dust thresholds used are specific to Event 4 and adjusted using the 1455 

histogram approach (Figure 3) 1456 

 1457 

Figure 10. Summary of the relationships between the methods and 1458 

approaches discussed in this paper. 1459 

 1460 

1461 
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Table 1. Spatial and temporal characteristics of remote sensing data used in 1461 

this study. 1462 

 1463 

Data Type Spatial Resolution at 

Nadir (km) 

Scenes 

used per 

day 

Archive 

Length 

Typical Overpass:  

(am/pm) 

MOD02 

[Terra] 

0.25 x 0.25 (VIS1) 

0.5 x 0.5 (VIS + NIR2) 

1 x 1 (TIR3 + all bands) 

1 1999 - date am (10:30) ect† 

MYD02 

[Aqua] 

0.25 x 0.25 (VIS) 

0.5 x 0.5 (VIS + NIR) 

1 x 1 (TIR + all bands) 

1 2002 - date pm (13:30) ect 

MYD04 

[Deep Blue] 

10 x 10 1 2002 - date pm (13:30) ect 

OMI 13 x 24 1 2004 - date pm (13:38) ect 
1Visible; 2Near-infrared; 3Thermal-infrared; †Equatorial crossing time 1464 

 1465 

 1466 
1467 
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Table 2. Summary of dust event case studies used in this study to evaluate 1467 

MODIS dust detection algorithms 1468 

 1469 

Event Date 

DD/MM/YY 

(Julian) 

Satellite 

overpass time 

(UTC) 

BoM† stations 

recording 

visibility ≤1km 

Selection 

Criteria 

Synoptic 

Conditions 

 

1 
07/10/05 

(2005:280) 

AQUA (01:35) 

AURA (01:46) 
1 

Dust and 30% 

cloud cover 

Pre-frontal 

northerly 

2 
24/09/06 

(2006:267) 

AQUA (04:20) 

AURA (04:31) 
2 

Dust - Single 

frontal plume 

Post-frontal 

southerly 

3 
02/02/05 

(2005:033) 

AQUA (04:10) 

AURA (04:21) 
35 

Dust - Multiple 

plumes and 

source types 

Post-frontal 

southerly 

4 
30/08/05 

(2005:242) 

AQUA (04:50) 

AURA (05:01) 
1 

Dust and 50% 

cloud cover 

Pre-frontal 

northerly 

†Bureau of Meteorology 1470 

 1471 

 1472 
1473 
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Table 3. Summary of dust detection algorithms applied to MODIS L1B 1473 

data in this study 1474 

 1475 

Algorithm Display 
parameters 

Source 

€ 

D = BT31−BT32( )  Dust < 0.0 Ackerman 
(1997) 
Sokolik 
(2002) 

where: 
BT31= BT10.780-11.280 µm 
BT32 =BT11.770-12.27 µm 

  

€ 

D = exp −
R4
R16
* a + BT31 − BT32( ) − b( )

 

 
 

 

 
 

 
 
 

 
 
 

 
Dust > 1.0 Roskovensky 

& Liou 
(2003) 
Roskovensky 
& Liou 
(2005) 

where: 
a=Scaling Factor (0.8) 
b=btd offset (2.0) 
R4=R0.545–0.565 µm 

 
R16 =R0.862–0.877 µm 
BT31= BT10.780-11.280 µm 
BT32 =BT11.770-12.27 µm 

Hansell et 
al., (2007) 

€ 

D = BT32 − BT31( )a + 2R1 − R3 − R4 − BT31( )b − R26( )c + 1− BT31( )d[ ]  1.3 < Dust < 2.7 Miller (2003) 

where: 
R1= R0.620–0.670 µm 
R3= R0.459–0.479 µm 
R4= R0.545–0.565 µm 
R26= R1.360 - 1.390 µm 
BT31= BT10.780-11.280 µm  
BT32 =BT11.770-12.27 µm 
 

Normalization:  
a =(-2 to +2)  
b=(-5 to +0.25) 
c= (if M26>0.05, c=0, otherwise c=1) 
d= occurrences of M31 are normalized 
in this equation as (M31max – 21K if 
M31max < 301K) or ((M31max-273)/4 
+273) otherwise. 

 

 1476 
 1477 

1478 
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Table 4. Comparison of recommended dust/non dust thresholds and 1478 

thresholds identified for events  1479 

described in this study.  1480 

 1481 

 1482 

Dust/non-dust thresholds  

Event 1 Event 2 Event 3 Event 4 

Technique Suggested 

threshold  

values 7 Oct 2005 24 Sept 2006 2 Feb 2005 30 Aug 2005 

Ackerman 

(1997) 

Dust < 0.0 Dust < 0.0 Dust < 0.0 Dust < -1.2 Dust < -0.35 

Miller (2003) 1.3 < Dust 

< 2.7 

1.3 < Dust < 

2.27* 

-0.55 < Dust 

< 1.11* 

0.3 < Dust < 

2.05* 

0.45 < Dust < 

1.08* 

Roskovensky 

& Liou (2005) 

Dust > 1.0 

a = 0.8, b 

= 2 

Dust > 1.0 

a = 0.8, b = 1 

Dust > 1.0 

a = 0.9, b = -

0.5 

Dust > 1.0 

a=1.2, b=-0.5 

Dust > 1.0 

a=0.25, b=0 

*upper value is scene maximum 1483 

 1484 
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Figure 1 1485 
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Figure 2 1488 
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Figure 3 1492 
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Figure 5 
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