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Disturbance Observer Based Control for
Nonlinear Systems

Wen-Hua Chen

Abstract—This paper presents a general framework for nonlinear
systems subject to disturbances using disturbance observer based control
(DOBC) techniques. A two-stage design procedure to improve disturbance
attenuation ability of current linear/nonlinear controllers is proposed
where the disturbance observer design is separated from the controller
design. To facilitate this concept, a nonlinear disturbance observer is
developed for disturbances generated by an exogenous system, and global
exponential stability is established under certain condition. Furthermore,
semiglobal stability condition of the composite controller consisting of a
nonlinear controller and the nonlinear disturbance observer is established.
The developed method is illustrated by the application to control of a
two-link robotic manipulator.

Index Terms—Composite controllers, control system design, disturbance
attenuation, disturbance observers, nonlinear systems, stability.

I. INTRODUCTION

This paper proposes a disturbance observer based control (DOBC)
approach for nonlinear systems under disturbances, namely, nonlinear
DOBC or NDOBC. Within this framework, instead of considering the
control problem for a nonlinear system under disturbances as a single
one, it is divided into two subproblems, each with its own design
objectives. The first subproblem is the same as the control problem
for a nonlinear system without disturbances and its objective is to
stablize the nonlinear plant and achieve performance specifications
such as tracking or regulation. The second subproblem is to attenuate
disturbances. A nonlinear disturbance observer is designed to deduce
external disturbances and then to compensate for the influence of the
disturbances using proper feedback. DOBC for linear systems has
been developed and applied in engineering over two decades. Muller
and Ackermann [1] and Nakao et al. [2] pioneered the development
of DOBC for robot control independently. After that, DOBC has been
applied inmanymechatronic systems including disk drivers,machining
centres, dc/ac motors, manipulators [3]–[5]. Most of the work in
DOBC is engineering-oriented and lacks sound theoretic justification.
When attempt is made to extend DOBC from linear systems to
nonlinear systems, this leads to a composite controller consisting of
a nonlinear controller and a nonlinear disturbance observer. Analysis
and design of such a control system is challenging. Recent work
has been concentrated on the development of nonlinear disturbance
observers. To this end,Oh andChung first improved a linear disturbance
observer in robots using the information of nonlinear inertial coupling
dynamics [6]. The application of this modified observer in redundant
manipulators gives improved performance. A sliding mode based
nonlinear disturbance observer was proposed and applied in motor
control by [7]. Chen et al. [8] developed a nonlinear disturbance
observer for unknown constant using Lyapunov theory and applied
it to a two-link manipulator.
This paper attempts to establish a more general framework for

NDOBC and establish rigorous basis for NDOBC development. First,
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a general procedure for the design of DOBC for nonlinear systems is
presented. Then, this procedure is applied to the control problem for a
nonlinear system subject to disturbances generated by an exogenous
system. This kind of disturbance widely exists in engineering including
unknown load and harmonics, and has been investigated in several
linear/nonlinear control methodologies, most notably, nonlinear output
regulation theory [9].
There are three main contributions in this paper. The first one is that a

general design procedure forDOBCof nonlinear systems is introduced.
One of the main features of this two-stage design procedure is its flexi-
bility and, in principle, it can be used to enhance the disturbance atten-
uation ability of any current nonlinear control method that cannot deal
with disturbances. To establish rigorous theoretic results and facilitate
this design concept, we then focus our attention on a class of nonlinear
systems with disturbances generated by a general liner system. Many
engineering problem can be formulated in this way; for example, non-
linear mechanical systems subject to unknown or variation of load and
active noise/vibration control of nonlinear mechanical structures. The
second contribution of this paper is to develop a nonlinear disturbance
observer for this kind of disturbance and establish its global exponen-
tial stability. The traditional design methods of disturbance observers
in linear DOBC are based on frequency domain techniques [10], which
cannot be extended to nonlinear systems. A new methods for the non-
linear disturbance observer design is proposed in this paper using the
algebraic structure of a nonlinear system. The third contribution is to
establish semiglobal stability result for DOBC when the nonlinear dis-
turbance observer is integrated with a nonlinear controller globally ex-
ponentially stabilizing the nonlinear system.

II. NONLINEAR DISTURBANCE OBSERVER BASED CONTROL (NDOBC)

A nonlinear system is described by

_x(t) = f(x(t)) + g1(x(t))u+ g2(x(t))d(t)

y(t) = h(x(t))
(1)

where x 2 Rn, u 2 R, and d 2 R are the state vector, input and
external disturbance, respectively. It is assumed that f(x), g1(x), g2(x)
are smooth functions in terms of x.
A general design procedure for system (1) is proposed in the fol-

lowing NDOBC design procedure.

Step 1) Design a nonlinear controller for system (1) to achieve
stability and other performance specifications under the
assumption that the disturbance is measurable.

Stpe 2) Design a nonlinear disturbance observer to estimate the
disturbance.

Step 3) Integrate the disturbance observer with the controller by
replacing the disturbance in the control law with its esti-
mation yielded by the disturbance observer.

The block diagram of the proposed NDOBC is shown in Fig. 1. As
seen from this figure, the composite controller consists of two parts: a
controller without or having poor disturbance attenuation ability and a
disturbance observer.
Remark 1: The procedure proposed above consists of two stages.

In the first stage, the controller is designed under the assumption that
there is no disturbance or the disturbance is measurable. All the ex-
isting methods for designing a linear controller (for example, based
linearised models) or a nonlinear controller can be used in this stage.
In the second stage, a linear/nonlinear disturbance observer is designed
and then integrated with the previous designed controller.
Remark 2: This procedure is quite general and flexible. Design of

the controller is separated from design of the disturbance observer. In
principle, it can be used to enhance the disturbance attenuation ability
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Fig. 1. Structure of nonlinear disturbance observer based control.

for any controller that cannot deal with disturbances or has poor distur-
bance attenuation ability.
Although the above approach is rather general, to establish theoretic

results, we will concentrate on a class of nonlinear systems under
disturbances. Furthermore, this paper will not discuss how to design
a controller to stabilize nonlinear systems and achieve performance
specifications for tracking or regulation in the absence of disturbances.
It is assumed that a linear/nonlinear controller has been designed
for this class of nonlinear systems using existing linear/nonlinear
control techniques; for example, dynamic inversion control, feedback
linearization, gain scheduling or sliding mode control. This paper
will focus on Steps 2) and 3) in the design procedure, i.e., design
of the nonlinear disturbance observer and integration of it with the
controller. We also will investigate the property of the composite
controller like stability.

III. NONLINEAR DISTURBANCE OBSERVERS

It is supposed that the disturbance is generated by an linear exoge-
nous system

_� = A�

d = C�
(2)

where � 2 Rm and d 2 R. In general, the exogenous system (2) is as-
sumed to be neutral stable, which implied that a persistent disturbance
is imposed on the system (1).
To estimate the unknown disturbance d, a basic disturbance observer

is suggested as

_̂
� = A�̂ + l(x)( _x� f(x)� g1(x)u� g2(x)d̂)

d̂ = C�̂
(3)

where l(x) is the nonlinear gain function of the observer.
However, the above disturbance observer cannot be implemented

since the derivative of the state is required.
A new nonlinear disturbance observer is then proposed after modi-

fying the above basic observer, given by (4) at the bottom of the page
where z 2 Rm is the internal state variables of the observer and
p(x) 2 Rm is a nonlinear function to be designed. The nonlinear ob-
server gain l(x) is then determined by

l(x) =
@p(x)

@x
: (5)

Theorem 1: Consider system (1) under the disturbance generated by
the exogenous system (2). The disturbance observer (4) can exponen-
tially track the disturbance if the nonlinear gain function l(x) is chosen
such that

_e(t) = (A� l(x)g2(x)C)e(t) (6)

is globally exponentially stable regardless ofxwhere e is the estimation
error, defined as

e = � � �̂: (7)

Proof: Combining (1) and (2), and (4)–(6) gives

_e = _� �
_̂
�

=A� � _z +
@p

@x
_x

=Ae� l(x)(g2(x)d� g2(x)d̂)

= (A� l(x)g2(x)C)e: (8)

This implies that �̂(t) approaches �(t) exponentially if l(x) is chosen
such that (6) holds regardless of x. Hence, the result. Q:E:D:
Suppose that the relative degree from the disturbance to the output,

r, is uniformly well defined. This implies that Lg Lr�1f h(x) 6= 0 for
all x, where L denotes Lie derivatives [11]. Without loss of generality,
suppose that Lg Lr�1f h(x) > 0. This implies that Lg Lr�1f h(x) can
be divided as

Lg L
r�1
f h(x) = �0 + �1(x) (9)

where �0 > 0 is a constant that can be chosen as the minimum of the
function Lg Lr�1f h(x) over all x, and �1(x) > 0 for all x. After the
nonlinear variable p(x) is chosen as

p(x) = KL
r�1
f h(x) (10)

whereK = [k1; . . . ; km]T are gains to be determined, it follows from
(5) that the observer gain function l(x) is determined by

l(x) =
@p(x)

@x
= K

@Lr�1f h(x)

@x
: (11)

Then substitution of the above observer gain, together with (9), into
the observer error dynamics (6) yields

_e = A�K
@Lr�1f h(x)

@x
g2(x)C e

= A�KLg L
r�1
f h(x)C e

= (A�K(�0 + �1(x))C)e: (12)

Theorem 2: The estimation yielded by the nonlinear disturbance ob-
server (4) converges to the disturbance d globally exponentially if there
exists a gain K such that the transfer function

H(s) = C(sI � �A)�1K (13)

is asymptotically stable and strictly positive real where

�A = (A�K�0C): (14)

_z = (A� l(x)g2(x)C)z+Ap(x)� l(x) g2(x)Cp(x) + f(x) + g1(x)u

�̂ = z + p(x)

d̂ = C�̂

(4)
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Proof: According to strictly positive real Lemma, the transfer
function (13) being stable and positive real implies that there exists
a positive definite matrix P such that

�AT
P + P �A < 0 (15)

and

PK = C
T
: (16)

Let an Lyapunov candidate for the observer error dynamics (6) be
given by

VO(e) = e
T
Pe: (17)

Differentiation of the Lyapunov function with respect to time along the
trajectory of the observer error dynamics (12) gives

_VO(e) = 2eTP (A�K(�0 + �1(x))C)e

= e
T ( �AT

P + P �A)e� 2eTPKCe�1

< � �e
T
e� 2eTCT

Ce�1(x) (18)

where � is a small positive scalar depending on (15). The last inequality
follows form condition (15) and (16). Since the relative degree from the
disturbances to the output is uniformly well defined, it follows from
(9) that �1(x) > 0 regardless of x. Noting that eTCTCe � 0, (18)
becomes

_VO(e) < ��eT e (19)

for any x and e, which implies that the estimation yielded by the distur-
bance observer approaches to the disturbance d globally exponentially.

Q:E:D:
Theorem 2 states that the convergence of the disturbance observer

regardless of x can be guaranteed by determining the gainK such that
the transfer function (13) is asymptotical stable and strictly positive
real. According to the proof, this can be performed by finding a suitable
P andK such that conditions (15) and (16) are satisfied. Invoking (14),
together with substitution of condition (16) into (15), it can be shown
that conditions (15) and (16) are met if

A
T
P + PA � 2�0C

T
C < 0 (20)

which is easy to calculate using linear matrix inequalities (LMIs) pack-
ages. After P is determined, the gain can be calculated by

K = P
�1
C
T
: (21)

IV. COMPOSITE CONTROLLER

After the nonlinear disturbance observer is designed as in (4), it is
integrated with a separately designed controller. This section will in-
vestigate stability of the closed-loop system under the composite con-
troller as shown in Fig. 1. The main result of this section is stated in
Theorem 3.

Theorem 3: Consider nonlinear system (1) with well defined dis-
turbance-to-output relative degree and under the disturbance (2). The
closed-loop system under the nonlinear composite controller, namely,
NDOBC, designed by the procedure in Section II, as shown in Fig. 1,
is semiglobally exponentially stable in the sense that for an initial state
x and � satisfying

kx(0)k � R1 k�(0)k � R2 (22)

where R1 and R2 are given scalars (could be arbitrarily large)

lim
t!1

x(t)! 0 (23)

and

lim
t!1

e(t)! 0 (24)

if the following conditions are satisfied:

1) when the disturbance d is measurable, there exists a control law
u(x; d) such that the closed-loop system is globally exponen-
tially stable for any disturbance;

2) the nonlinear disturbance observer (4) is designed as in Sec-
tion III with the chosen design function p(x) in (10) and there
exists a gain functionK such the transfer function (13) is asymp-
totically stable and strictly positive real.

Proof: See the Appendix.

V. EXAMPLE STUDY

The proposed NDOBC approach is demonstrated by control of a
two-link robotic manipulator, each link of which is directly driven by
a dc motor [8]. The dynamic model of the manipulator including the
first order dynamics of dc motors is given by

J(�(t))��(t) +G(�(t); _�(t)) = u(t) + d(t)0 (25)

where � 2 R2, _� 2 R2 are displacement and velocity of the links.
u(t) 2 R2 is the voltage applied on the motors and d0 the equivalent
torque disturbances on the motor input. In this simulation study, it is
assumed that there is only reaction torque from the object/environment
acting on the tip of the second link in the operation. Hence d0 can be
written as

d
0(t) = c2d(t) (26)

where

c2 =
0

1
: (27)

Following the design procedure in Section II, first it is assumed that
there are no disturbances and the well-known computed torque control
(CTC) method is applied to control of the two link robotic manipulator.
The resulted control law is given by

u
�(t) = � J(�) Kp(� � �d) +Kv( _� � _�d)� ��d �G(�; _�)

(28)

where �d defines reference trajectory of the manipulator, and _�d and ��d
are velocity and acceleration of the reference trajectory. The feedback
gain matrices Kp = diagfkp ; kp g and Kv = diagfkv ; kv g are
determined according to closed-loop performance requirements.
It is shown in Figs. 2 and 3 by the dashed lines (which are almost

indistinguishable from solid lines) that in the absence of disturbance,
satisfactory performance can be achieved by CTC with feedback gains

kp = 7:5; kv = 30; for i = 1; 2: (29)

Suppose that there is a periodic disturbance torque acting on the end
of the second link, given by

d(t) = 0:5 sin(2t+ 1) N�m: (30)
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Fig. 2. Performance of disturbance observer enhanced computed torque controller: Link 1.

Fig. 3. Performance of disturbance observer enhanced computed torque controller: Link 2.

As is shown in Figs. 2 and 3 by the dotted lines, the performance of
the above CTC is significantly degraded, in particular for the second
link.

We now design a nonlinear disturbance observer to enhance the dis-
turbance attenuation ability of the CTC by following the design proce-
dure presented in Section III. The disturbance d(t) can be generated by
a neutral stable system described by (2) with

A =
0 2

�2 0
C = [ 1 0 ] : (31)

Following design procedure, the the nonlinear variable p(x) can be
chosen as

p(x) = KLfh(x) = K _�2 (32)

where K =
k1

k2
is the gain matrix and is chosen as k1 = k2 = 10

in the simulation.
The above designed disturbance observer is then integrated with the

CTC to enhance its disturbance attenuation ability. The simulation re-
sults shown in Figs. 2 and 3 by the solid lines for Link 1 and 2, respec-
tively, indicates that the performance of the CTC under the disturbance
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is significantly improved and the NDOBC achieves good disturbance
attenuation ability. For NDOBC, there is tracking error caused by the
disturbance in the second link at the beginning. However, after a short
period, good tracking performance is achieved.

VI. CONCLUSION

This paper proposes a general framework for design of controllers
for nonlinear systems under disturbances using DOBC techniques. It
is shown that this approach is quite flexible and can be integrated with
current linear/nonlinear control methods that have poor disturbance
attenuation ability. The effectiveness of the nonlinear DOBC procedure
is illustrated by the control problem of a class of nonlinear systems
subject to disturbances generated by a linear exogenous system.
Theoretic results have been obtained for the DOBC approach to this
problem including the global exponential stability of the nonlinear
disturbance observer and semiglobal exponential stability of the
composite controller.

APPENDIX

A. Proof of Theorem 3

In order to asymptotically stabilize the system for any disturbance,
a part of the control effort, u(x; d), shall linearly depend on the distur-
bances d. Thus, the control law can be divided into

u(x; d) = �(x) + 
(x)d: (33)

Substituting (33) into system (1) obtains

_x = f(x) + g1(x)�(x) + g1(x)
(x)d+ g2(x)d (34)

which implies that in order to exponentially stabilize system (1) under
arbitrary disturbance, there must exist 
(x) such that

g1(x)
(x) = �g2(x): (35)

Under this condition, the closed-loop system (34) reduces to

_x = f(x) + g1(x)�(x) (36)

which is globally exponentially stable under an appropriately designed
�(x).
Since the disturbance d is unavailable, it is estimated by the non-

linear disturbance observer (4). It follows from Theorem 2 that condi-
tion (2) in Theorem 3 implies that the nonlinear disturbance observer
(4) with the design function (10) is globally exponentially stable. After
replacing the disturbance d by its estimate in the control law (33), ac-
cording to condition (35), the closed-loop system (34) becomes

_x = f(x) + g1(x)�(x) + g2(x)(d� d̂): (37)

Augmenting (37) with the observer dynamics (6) gives the closed-
loop system under the composite controller, described by

_x = f(x) + g1(x)�(x) + g2(x)e1
_e = (A� l(x)g2(x)C)e

(38)

where e1 d� d̂ = C(� � �̂) = Ce. We now prove the semiglobal
stability of the above composite system.
Since the system (36) is globally exponentially stable, it implies that

there exists an Lyapunov function Vc(x) such that its derivative along
system (36) satisfies

_Vc(x) =
@Vc(x)

@x
(f(x) + g1(x)�(x)) < �1kxk (39)

where �1 is a small positive scalar. Choosing

V (x; e) = Vc(x) + �Vo(e) = Vc(x) + �e
T
Pe (40)

as an Lyapunov candidate for system (38) where � is a large positive
scalar to be determined, one has

_V (x; e) =
@Vc(x)

@x
(f(x) + g1(x)�(x) + g2(x)e1)

+2�eT (A� l(x)g2(x)C)e: (41)

When the transfer function (13) is asymptotically stable and strictly
positive real, substitution of (19) and (39) into (41) yields

_V (x; e) =
@Vc(x)

@x
(f(x) + g1(x)�(x)) +

@Vc(x)

@x
g2(x)e1

� ��e
T
e

< � �1kxk+
@Vc(x)

@x
g2(x)e1 � ��e

T
e: (42)

In the same fashion as in [11], one can conclude that all the state and
observer error starting from a possible arbitrarily large set converges to
the origin as t!1. Hence, the results. QED
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