figshare
Browse
jz7b00273_si_001.pdf (2.68 MB)

Dissociative Water Adsorption by Al3O4+ in the Gas Phase

Download (2.68 MB)
journal contribution
posted on 2017-03-06, 12:50 authored by Matias R. Fagiani, Xiaowei Song, Sreekanta Debnath, Sandy Gewinner, Wieland Schöllkopf, Knut R. Asmis, Florian A. Bischoff, Fabian Müller, Joachim Sauer
We use cryogenic ion trap vibrational spectroscopy in combination with density functional theory (DFT) to study the adsorption of up to four water molecules on Al3O4+. The infrared photodissociation spectra of [Al3O4(D2O)1–4]+ are measured in the O–D stretching (3000–2000 cm–1) as well as the fingerprint spectral region (1300–400 cm–1) and are assigned based on a comparison with simulated harmonic infrared spectra for global minimum-energy structures obtained with DFT. We find that dissociative water adsorption is favored in all cases. The unambiguous assignment of the vibrational spectra of these gas phase model systems allows identifying characteristic spectral regions for O–D and O–H stretching modes of terminal (μ1) and bridging (μ2) hydroxyl groups in aluminum oxide/water systems, which sheds new light on controversial assignments for solid Al2O3 phases.

History