
  

 
 

Abstract— Resistance bands are often used in resistance 
training programs for older adults. Despite their widespread 
use, there is a lack of objective assessment of the actual strength, 
speed and precision of the movements during these exercises. 
Therefore, this paper presents the development of a sensorised 
resistance-band and a preliminary trial of activities classification 
by using artificial intelligence. The results show that in the 
preliminary trial, the classification accuracy of 4 different 
activities reached over 96% using accelerometer data only. A 
future study will be based on the sensorised resistance band to 
quantify resistance band exercises objectively in elderly people.  

Keywords— Resistance band; Activity classification; Dementia 
treatment; Artificial Intelligence;  

I. INTRODUCTION 

Ageing is a complex process that may lead to a decline in 
physical functions. These age-related changes affect a broad 
range of functions, such as muscular, cardiovascular, 
pulmonary-functions, body composition and physical 
functional capacities, which, cumulatively, could impact on 
the preservation of activities of daily living and independence 
in older adults [1], [2]. In general, a decrease in muscle 
functionality, that can compromise muscle mass and regional 
adiposity, muscle strength, and motor control, is considered 
one of the most important physiological changes during the 
ageing process [3]. This decrease is involved in the 
pathogenesis of frailty and disability that leads to a decrease in 
autonomy in activities of daily living [4]–[6], increasing the 
risk of falls, and consequent risk of morbidity and mortality 
[4], [7]. However, muscle strength can be improved in older 
adults through strength training exercises [8], [9].  

One of the most frequently used approaches to strength 
exercise is progressive resistance training using weight 
resistance devices. Previous studies showed that the use of 
weight resistance devices improved muscle strength, power, 
functional skills and muscle mass in older adults [1], [3], [10]–
[12]. Resistance band training is a specific training that could 
be defined as progressive strength training where the workout 
is against an external force that is increased as strength 
increases [3]. Considering the older adults population, with 
some untrained or with frailty (i.e. older adults with functional 

 
 

limitations of. muscles and joints), may be not able to use the 
necessary weight to produce positive muscle adaptation, due 
to a general physical inability, and decrease in motor control. 
Moreover, a gym-based resistance training program, based on 
free weights, isokinetic machines or other weight machines, 
could be not feasible as a long-term method for providing 
personalised strength training to the older adult population. 
Resistance-training programmes using resistance bands or 
tubing (e.g. Thera-Bands) to enhance their strength may offer 
a safe, inexpensive, and practical method for older adults [13]. 

In general, the quantification of the resistance bands 
exercises is limited to the number of repetitions and total time. 
Because of the variable loading patterns of resistance bands 
(greater stretch produces greater resistance), it is fundamental 
to quantify the exact strength, intensity and speed used to 
identify the volume and intensity of training [14]. This is 
fundamental to optimally assign tailored training programmes 
to the older adults. Resistance bands could be too weak or too 
hard, and consequently the execution and the effect of the 
prescribed exercise may be negatively affected.  

The problem above could be solved with wearable sensing 
technology, which continually assesses exercise even after the 
patients has left the hospital [15], [16]. The type, frequency 
and intensity of exercise can then be assessed by using the 
data. By sharing the exercise information with the doctor, the 
doctor can also assess the patient remotely. 

However, for elderly people or people with dementia, the 
wearable sensors are too complex to operate [15]. Instead of 
putting sensors on the body, we are sensorising the 
environment; in this case, the handle of resistance band. The 
first device we built for this objective is called WBR-SH1 [17]. 
The WBR-SH1 is integrated with multiple sensors which 
objectively measure motion and force data. However, there are 
a few limitations with it: A) the motion sensors are placed 
inside the handle, and the handle is rotated freely while doing 
exercises, which makes it difficult to identify the direction of 
resistance band; B) battery life is not sufficient for real-life 
experiments; C) the connection between the handle and the 
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sensor board is weak; D) it is not possible to synchronise the 
data of the two handles. 

This paper presents the development of the new sensorised 
resistance band WBR-SH2, aimed at overcoming the above-
mentioned limitations, and its preliminary evaluation for the 
classification of exercises using TensorFlow [18]. 

II. MATERIALS AND METHODS 

The role of the WBR-SH2 was to collect raw data of 
multiple on-board sensors and send these to Android phones 
in real-time. All calculations are done by computer afterwards.  

 
Figure 1.   Sensor positioning difference in WBR-SH1 and WBR-SH2. 

 The new electronic board is shown in Figure 1. The most 
significant change is moving the motion sensor from the 
handle to the box in between the resistance band and handle.  

TABLE I.  SPECIFICATION OF WBR-SH DEVICES 

Labels 
WBR-Sensorised Handle 

WBR-SH1 WBR-SH2 

Size 55 x 28 mm 45 x 18 mm 

MCU STM32F405 NRF52832 

Sensor 
9-Axis Motion sensor, 
Barometer, Loadcell 

9-Axis Motion sensor, 
Barometer, Loadcell 

Resolution 
Motion sensors 16bit,  
Loadcell & Barometer 

24bit 

Motion sensors 16 bit, 
Loadcell & Barometer 

24bit 
Power 153 mA 22 mA / Idle 100uA 

Battery 1300 mAh 300mAh 

Battery Life 8 hours 12 hours continuous 
acquisition; 90 days Idle 

Wireless Bluetooth 4.2, sub-1G Bluetooth 5 
Max Over 
Air Data Rate 500Hz 800Hz (single device), 

500Hz (double devices)b. 
Storage MicroSD carda. 16 MBytes Flash 

Weights 120g incl. Battery 32g incl. Battery 
Visual 
Feedback None RGB LEDs 

Sensor 
Position 

Motion sensor within 
handle, loadcell is 

attached on resistance 
band 

Motion sensor and 
loadcell attached on 

resistance band 

a. Supports up to 32GBytes SDHC. 
b. The maximum data rate is also limited by receiver’s Bluetooth hardware and configuration. 

 The board integrates a Cortex M4F Bluetooth 5.0 SoC 
(System on Chip) NRF52832, a USB power management 
circuit; the load cell driver is connected to the board through 
an extension connection. The WBR-SH2 is always power-on 
but will enter idle mode while disconnected from the 
Smartphone, thus extending the battery life up to 90 days. The 
comparison between WBR-SH1 and WBR-SH2 is shown in 
TABLE I, with the green highlight showing the improvement. 

A. Experiment  
1) Experimental protocol 

The Couch Potatoes for Cognition [19] programme is 
produced by Loughborough University specifically for elderly 
and people with dementia, and it consists of 4 types of low-
intensity resistance band activities (Figure 2), each consisting 
of 20 repetitions followed by 1 minute of rest to avoid 
accumulation of fatigue. These activities are mainly focussed 
on improving upper body muscle strength, as a previous study 
proved that training of upper body strength will slow down the 
process of memory decline [20]. Subjects are asked to sit on a 
chair while they are doing the activities, to minimise the 
chances of falling.  

 
Figure 2.  Couch Potatoes for Cognition; the red arrows show the direction 

of the movments in each activity.  

Six healthy male volunteers (23yo to 40yo, all right handed) 
participated to the preliminary experiment. The experimental 
protocol involving human subjects was approved by the 
Loughborough University Ethics Committee (R17-P143).  

2) Experimental setup 
 Before doing the exercises, both WBR-SH2 sensors were 
calibrated and synchronized. The participants followed the 
experimental protocol and used two WBR-SH2s instead of the 
regular handles. During the exercises, both WBR-SH2s sent 
the raw data to an Android phone (Xiaomi Mi6), in which the 
data was recorded and tagged manually from the start of each 
activities to the end.  



  

B. Data Pre-processing 
1) Raw data frame 
During the experiment, all data was collected at frequency 

ƒ = 100Hz and stored in a CSV file for further processing. 
Available data was from 3-Axis accelerometer, 3-Axis 
gyroscope, 3-Axis magnetometer, barometer, and loadcell. In 
this preliminary paper, only accelerometer data is used. Each 
frame consists of 3-Axis acceleration data from both left hand 
and right-hand sensors. No filtering of raw data is required 
while using the Convolution Neural Network (CNN) [18].  

2) Overlapping windows 
Most activity classification methods use windows 

technique to split data into small segments [21]. In the data 
processing, an overlapping windows technique is used to 
segment the raw data. Each segmented data length 2.5 seconds 
(250 frames) with 2/3 window overlapping [21]. An example 
is shown in Figure 3.  

 
Figure 3.  Overlapping windows segment. 

3) Sensor position switching 
Each frame consists of 2 sets of acceleration data coming 

from the two handles. To remove the differences between 
right and left (which are not relevant for the classification 
presented in this paper), raw data is duplicated and the 
position is switched in the segmentation process. This 
generates another set of segmented data. Both segmentations 
are put into the same neural network for training. Figure 4. 
shows the segmented raw data and the position-switched data.  

 
Figure 4.   Position-switched segment. 

4) Neural network architecture 
The CNN architecture, implemented on TensorFlow 1.4 

with Python 3.6, is shown in Figure 5. The training dataset and 
testing dataset are randomly picked from the segmented data 
with a ratio of 60% and 40%, respectively. Since the training 
data is randomly picked from the same dataset, the training of 
the neural network was performed several times to evaluate the 
stability. Each training was stopped at the 20th epochs, and the 
accuracy and confusion matrix were stored. 

  

 
Figure 5.   Convolution Neural Network Architecture.  

III. EXPERIMENT RESULT 

A. Data distribution  
The total length of the recorded data is 143,940 frames, 

equivalent to 1439.4 seconds. After pre-processing, 3,190 
segments of data are generated (including both raw data and 
position-switched data segments). Due to the natural 
differences between each activity, the data distribution is not 
equivalent. The total data distribution is shown in Figure 6.  

 
Figure 6.  Data distribution. Data is collected from 6 subjects number from 

S1 to S6. Each subject did 4 different types of activities following Couch 
Potatoes instruction.  

B. Learning accuracy  
After 12 times training, the mean training accuracy and 

testing accuracy is plotted in Figure 7. The standard error of 
the testing accuracy is 0.9%.  

 
Figure 7.  Average accuracy after 12 times of training. 



  

C. Confusion Matrix 
The Confusion Matrix is shown in TABLE II. Since the 

dataset for training and testing is randomly chosen from the 
same dataset, each time of training will produce a different 
network and result. TABLE II. shows the average value in 
each block after 12 times training.  

TABLE II.  CONFUSION MATRIX AFTER 12 TIMES TRAINING 
 

Test Activity Types  

A1 A2 A3 A4 

T
ra

in
 A

ct
iv

ity
 

T
yp

es
 

A1 335 5 4 0 

A2 3 185 9 0 

A3 3 5 199 0 

A4 1 0 3 200 

IV. CONCLUSION 

This paper presented the development of a sensorised 
resistance-band and a preliminary trial of activities 
classification by using artificial intelligence. The preliminary 
experiments show that the WBR-SH2 can be used as 
replacement equipment of the traditional resistance band 
handle for data collections. In the preliminary trail, the 
classification of CNN is accurate enough while only the 
acceleration data is analysed. However, the size of data set 
and types of activities are small, and the results may be 
limited. The further works is using other onboard sensors 
together to evaluate the exercise quantity in different types of 
activity with elderly people in both the lab-environment and 
home-environment.  
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