Determination of the Absolute Configurations of Microtermolides A and B

Zhantao Yang, ${ }^{\dagger}$ Meiyan Ma, ${ }^{\dagger}$ Chun-Hua Yang, Yuan Gao, Quan Zhang, Yue Chen*

The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, People's Republic of China

Contents

1. Experimental section .. 3
2. Copies of NMR Spectra... 25
3. References... 56

1. Experimental section

1-((3aR,6S)-8,8-dimethyl-2,2-dioxidohexahydro-1 H-3a,6-methanobenzo[c]isothiazol-1-yl)-4-((4-methoxybenzyl)oxy)butan-1-one (3).

Compound $\mathbf{3}$ was synthesized based on literature. ${ }^{1}$

4-(benzyloxy)-1-((3aR,6S)-8,8-dimethyl-2,2-dioxidohexahydro-1H-3a,6-methanobenzo[c]isothiazol-1-yl)butan-1-one (14).

Compound 14 was synthesized based on literature. ${ }^{1}$

1-((3aR,6S)-8,8-dimethyl-2,2-dioxidohexahydro-1H-3a,6-methanobenzo[c]isothiazol-1-yl)pentan-1-one (S5).

To a stirred solution of $\mathbf{S} \mathbf{1}(1.6 \mathrm{~g}, 7.5 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(1.6 \mathrm{ml}, 11.2 \mathrm{mmol})$ and DMAP ($92.0 \mathrm{mg}, 0.8 \mathrm{mmol}$) in THF (10 ml) was added n-Pentanoyl chloride S4 (1.0 $\mathrm{g}, 8.3 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirred for half an hour, the reaction was quenched by aqueous HCl . The aqueous phase was extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$ and washed successively by aqueous NaOH . The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (Petroleum ether : ethyl acetate $=$ 8:1) to obtain $\mathbf{S 5}$ (2.1 g; 93\%).

1-((6R,7aR)-8,8-dimethyl-2,2-dioxidohexahydro-1H-3a,6-methanobenzo[c]isothiazol-1-yl)pentan-1-one (S7).

Compound S 7 was synthesized according to protocol in previous reporting. ${ }^{2}$

(2S)-1-((3aR,6S)-8,8-dimethyl-2,2-dioxidohexahydro-1H-3a,6-
methanobenzo[c]isothiazol-1-yl)-2-methylpentan-1-one (S8).

Under argon atmosphere, to a stirred solution of $\mathbf{S 5}(3.8 \mathrm{~g}, 12.8 \mathrm{mmol})$ in THF (90 ml) was added NaHMDS ($8.3 \mathrm{ml}, 16.6 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After 1 hour, HMPA (7.0 $\mathrm{ml}, 38.3 \mathrm{mmol}$) was added to this temperature followed by $\mathrm{MeI}(2.4 \mathrm{ml}, 38.3 \mathrm{mmol})$. The reaction was warmed to room temperature and stirred overnight before saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added. The aqueous phase was extracted with ethyl acetate $(3 \times 40 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (Petroleum ether: ethyl acetate $=20: 1$) to obtain $\mathbf{S 8}(3.4$ g; $86 \%) .[\alpha]^{26}{ }_{\mathrm{D}}=+105.0\left(c 1.0, \mathrm{CHCl}_{3}\right)^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.87(\mathrm{t}, J=$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.00(\mathrm{~m}, 1 \mathrm{H})$, 2.04 (d, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.25(\mathrm{~m}, 5 \mathrm{H})$, $1.18(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 176.4,65.2,53.3,48.3,47.8,44.7,40.2,38.7,34.9,32.9$, 26.5, 20.9, 20.6, 20.0, 19.1, 14.2; HRMS-MALDI (m/z): [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{SNa}^{+}, 336.1609$; found: 336.1608.

(2R)-1-(($6 R, 7 \mathrm{aR})-8,8$-dimethyl-2,2-dioxidohexahydro-1H-3a,6-methanobenzo[c]isothiazol-1-yl)-2-methylpentan-1-one (S9).

The procedure was the same as the procedure above. $[\alpha]^{26}{ }_{\mathrm{D}}=-104.6$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right)^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.88(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=13.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.42(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.82$ $(\mathrm{m}, 3 \mathrm{H}), 1.79-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.27(\mathrm{~m}, 5 \mathrm{H}), 1.18(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H})$, $0.96(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.5,65.2$, $53.3,48.3,47.8,44.7,40.2,38.6,34.9,32.9,26.6,20.9,20.6,20.0,19.1,14.2$; HRMS-MALDI (m/z) :[M+Na]+ calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{SNa}^{+}, 336.1609$; found: 336.1610 .

(S)-2-methylpentanal (18a).

Under argon atmosphere, to a solution of compound $\mathbf{S 8}(5.0 \mathrm{~g}, 16.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added DIBAL-H (1.5 M in toluene, $16.0 \mathrm{~mL}, 24.0 \mathrm{mmol}$) at -78 ${ }^{\circ} \mathrm{C}$. After stirred for 1.5 h at $-78{ }^{\circ} \mathrm{C}$, the reaction was quenched by addition of $\mathrm{NaHSO}_{4}(5.0 \mathrm{~g})$ in water $(50 \mathrm{~mL})$. The resulting mixture was diluted with hexane (60 $\mathrm{mL})$, and the aqueous layer was extracted with hexane $(2 \times 30 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexanes: $\mathrm{CH}_{2} \mathrm{Cl}_{2}=2: 1$). The eluents were concentrated carefully. The solution of product was dried (1.00 g of $4 \AA$ molecular sieves), and store in $-20^{\circ} \mathrm{C}$ overnight. The upper clear solution was used for the next step directly.

(R)-2-methylpentanal (18b).

The procedure was the same as the procedure above.

(S,E)-allyl-4-((tert-butoxycarbonyl)amino)-5-((tert-butyldiphenylsilyl)oxy)pent-2enoate (S12).

To a stirred suspension of $\mathrm{NaH}(1.0 \mathrm{~g}, 25.4 \mathrm{mmol})$ in THF (68 mL) was added triethyl phosphonoacetate $\mathbf{S 1 1}(7.2 \mathrm{~g}, 30.5 \mathrm{mmol})$, and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . $\mathbf{S 1 0}(5.4 \mathrm{~g}, 12.7 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ was added, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for $10 \mathrm{~min} . \mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added to quench the reaction, and the aqueous layer was extracted with ethyl acetate $(3 \times 60 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether : ethyl acetate $=20: 1$) to obtain $\mathbf{S 1 2}$ $(13.0 \mathrm{~g}, 84 \%) .[\alpha]^{26}{ }_{\mathrm{D}}=-2.7\left(c 10.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-7.55$ (m, 4H), 7.49-7.34 (m, 6H), 6.96 (dd, $J=15.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=15.7,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.99-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=17.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=10.4,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.47-4.40(\mathrm{~m}, 1 \mathrm{H}), 3.79$ (dd, $J=10.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,155.3,146.9,135.7,135.6,133.0,132.8,132.3$, $130.1,130.0,127.9,121.8,118.3,80.0,65.5,65.2,53.2,28.5,26.93,19.4 ;$ HRMSMALDI (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{NO}_{5} \mathrm{SiNa}^{+}, 532.2495$; found: 532.2493.

(R, E)-5-(allyloxy)-1-((tert-butyldiphenylsilyl)oxy)-5-oxopent-3-en-2-aminium 2,2,2-trifluoroacetate (11).

To a solution of $\mathbf{S 1 2}(1.0 \mathrm{~g}, 1.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$ was added trifluoroacetic acid ($15.0 \mathrm{~mL}, 34.0 \mathrm{mmol}$). The mixture was stirred for 4 h before all volatiles were removed under reduced pressure. Then the mixture was directly purified through column chromatography (petroleum ether:ethyl acetate $=10: 1$ to $2: 1$) to give the title product $11(0.8 \mathrm{~g}, 81 \%)$.

General preparation of $\mathbf{4 a}, \mathbf{4 b}, \mathbf{1 5 a}$ and $\mathbf{1 5 b}$.

To a solution of the chiral amide $\mathbf{3 / 1 4}\left(1 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added triethylamine ($1.3 \mathrm{mmol}, 1.3$ equiv) and $\operatorname{TBSOTf}(1.2 \mathrm{mmol}, 1.2$ equiv). The reaction mixture was stirred at room temperature overnight; the resulting solution was directly used for the next step.

To a solution of the chiral aldehyde $\mathbf{1 8 a} / \mathbf{1 8 b}$ ($1.5 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 $\mathrm{mL})$ was added $\mathrm{TiCl}_{4}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.5 \mathrm{~mL}, 1.5 \mathrm{mmol}\right)$ dropwise at $-78^{\circ} \mathrm{C}$. After 5 min , the solutionabove was added to the reaction mixture. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 3 h before saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to obtain $\mathbf{4 a}$ or $\mathbf{4 b}$ or $\mathbf{1 5 a}$ or $\mathbf{1 5 b}$.
(2R,3R,4R)-1-((3aR,6S)-8,8-dimethyl-2,2-dioxidohexahydro-1H-3a,6-methanobenzo[c]isothiazol-1-yl)-3-hydroxy-2-(2-((4-methoxybenzyl)oxy)ethyl)-4-methylheptan-1-one (4a). $[\alpha]^{27}{ }_{\mathrm{D}}=+42.7\left(c 4.0, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v_{\text {max }}: 3534$, 2955, 2872, 1688, 1513, 1245, 1128, 820, 769; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=11.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.48(\mathrm{~m}, 4 \mathrm{H}), 3.42-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.63$ (br s, 1H), 2.22-2.12 (m, 2H), 2.06-2.00 (m, 1H), 1.87-1.81 (m, 4H), 1.58-1.48 (m, 2H), 1.46-1.38 (m, 1H), 1.30 (d, $J=7.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.10-1.05(\mathrm{~m}, 1 \mathrm{H})$, 0.96-0.95 (m, 6H), $0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.9$, $159.1,130.9,129.4,113.7,78.5,72.4,67.9,65.6,55.3,53.3,48.3,47.8,45.8,44.7$, $38.6,36.0,33.0,32.0,29.0,26.5,20.7,20.2,20.0,16.7,14.4$; HRMS-MALDI (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{NO}_{6} \mathrm{SNa}^{+}, 544.2709$; found: 544.2708

4b: $[\alpha]^{29}{ }_{\mathrm{D}}=+34.8\left(c 2.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.27(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{t}, J=5.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.49(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.29-$ $2.24(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{dt}, J=15.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=13.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-$ $1.81(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{dd}, J=11.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.35-1.23(\mathrm{~m}, 6 \mathrm{H})$,
$1.16(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.88-0.85(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.3$, $159.2,131.0,129.5,113.8,72.6,68.2,65.8,55.4,53.4,48.3,47.8,47.0,44.8,38.5$, 36.3, 35.2, 33.0, 29.1, 26.5, 20.8, 20.4, 20.0, 14.3, 12.4; HRMS-MALDI (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{NO}_{6} \mathrm{SNa}^{+}, 544.2709$; found: 544.2705.

15a: $[\alpha]^{29}{ }_{\mathrm{D}}=+42.9\left(c 2.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.17(\mathrm{~m}$, $5 \mathrm{H}), 4.46(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{t}, J$ $=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.47-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.33$ (d, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51$ (brs, 1H), 2.18-2.09 (m, 2H), 1.99-1.95 (m, 1H), 1.84-1.78 $(\mathrm{m}, 4 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H})$, $1.05-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.91-0.88(\mathrm{~m}, 6 \mathrm{H}), 0.83(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 174.9,138.8,128.3,127.8,127.4,78.5,72.7,68.1,65.6,53.3,48.2,47.8$, $45.8,44.7,38.5,36.0,32.9,32.0,29.0,26.5,20.7,20.2,20.0,16.7,14.3$; HRMSMALDI (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{NO}_{5} \mathrm{SNa}^{+}, 514.2603$; found: 514.2600.

15b: $[\alpha]^{11}{ }_{\mathrm{D}}=+34.7\left(c 5.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.17$ $(\mathrm{m}, 5 \mathrm{H}), 4.44(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.57$ $(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=$ $13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.93$ $(\mathrm{m}, 1 \mathrm{H}), 1.80-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.14(\mathrm{~m}$, $5 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}), 0.83-0.78(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $174.2,138.8,128.3,127.9,127.5,72.9,68.5,65.7,53.3,48.3,47.8,47.0,44.7,38.5$, $36.5,35.2,32.9,29.8,29.1,26.5,20.8,20.4,20.0,14.3,12.4$; HRMS-MALDI (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{NO}_{5} \mathrm{SNa}^{+}$, 514.2603; found: 514.2600.

5a $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}$
5b $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}$

(2R,3R,4R)-allyl-3-hydroxy-2-(2-((4-methoxybenzyl)oxy)ethyl)-4-

methylheptanoate (5a). To a solution of $\mathbf{4 a}(2.2 \mathrm{~g} 4.2 \mathrm{mmol})$ in THF, $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{O}(24 \mathrm{~mL}, 6 \mathrm{~mL}, 6 \mathrm{~mL})$ was added $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(885 \mathrm{mg} 21.1 \mathrm{mmol})$ at room temperature. After being stirred for 4 h at this temperature, the reaction mixture was acidified to $\mathrm{pH}=2.0$ with aqueous $10 \% \mathrm{NaHSO}_{4}$ solution, and was extracted with EtOAc. The solvent were evaporated, and the resulting mixture was directly used for the next step without further purification.

The crude acid was dissolved in methanol $(10 \mathrm{~mL})$, and was added a solution of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(688 \mathrm{mg}, 2.1 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ slowly at $0{ }^{\circ} \mathrm{C}$. The mixture was allowed $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added, and the aqueous layer was extracted with EtOAc. The combined organic phases were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified with column chromatography on silica gel (petroleum ether: ethyl acetate $=20: 1$) to afford the desired compound $\mathbf{5 a}$ (890 mg , 58% for two steps) as a colorless oil. $[\alpha]^{27}{ }_{\mathrm{D}}=+15.5\left(c 1.2, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ $v_{\max }: 3520,2866,1726,1611,1513,1459,1173,1096,820 ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.93-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.31$ (d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=13.1,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.52$ (dd, $J=13.1,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 3.54-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.85(\mathrm{~m}$,

1H), 2.67 (br s, 1H), 2.15-2.06 (m, 1H), 1.96-1.88 (m, 1H), 1.63-1.56 (m, 1H), 1.48$1.38(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.12(\mathrm{~m}, 2 \mathrm{H}), 0.92-0.87(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $175.6,159.3,132.0,130.5,129.4,118.8,113.9,76.9,72.8,67.6,65.3,55.4,44.7$, 37.5, 34.3, 30.6, 20.1, 16.2, 14.5; HRMS-MALDI (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na}^{+}, 387.2147$; found: 387.2148.

5b: $:[\alpha]^{29}{ }_{\mathrm{D}}=+2.3\left(c 3.0, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v_{\text {max }}: 3521,3079,2956,2865$, 1727, 1612, 1513, 1173, 933 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.93-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=13.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=13.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}$, 2H), $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.42(\mathrm{~m}, 3 \mathrm{H}), 2.84-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.05-1.96$ $(\mathrm{m}, 1 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.22(\mathrm{~m}$, $1 \mathrm{H}), 1.19-1.10(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.89-0.86(\mathrm{~m}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.5,159.3,132.1,130.5,129.4,118.7,113.9,75.7,72.8,67.6,65.4$, $55.4,45.8,36.2,35.9,30.1,20.1,14.3,14.0 ;$ HRMS-MALDI (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na}^{+}, 387.2147$; found: 387.2145 .

(R)-3-((1R,2R)-1-hydroxy-2-methylpentyl)dihydrofuran-2(3H)-one (16a).

Pd-C (400 mg) was added in one portion to a stirred solution of the benzyl ether 15a ($1.3 \mathrm{~g}, 2.65 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{OH}(150 \mathrm{ml})$ at room temperature, and the apparatus was then evacuated prior to the introduction of hydrogen gas. The mixture was stirred at room temperature for 24 h under one atmosphere of hydrogen, then filtered through
celite. The filter cake was washed with EtOAc and the combined organic washings were then concentrated in vacuum to give the primary alcohol and directly used for the next step.

To a solution of the primary alcohol in $\mathrm{MeOH}(50 \mathrm{ml})$ was added silica $(2 \mathrm{~g})$ at room temperature, after 24 h , filtered and evaporated under reduced pressure. The residue was further purified through column chromatography (petroleum ether : ethyl acetate $=20: 1$) to the title product $\mathbf{1 6 a}\left(345 \mathrm{mg}, 70 \%\right.$ for two steps) as an oil. $[\alpha]^{29}{ }_{\mathrm{D}}=$ $1.6\left(c 0.5, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v_{\max }: 3463,2925,2867,1757,1459,1214,1091$, 1025, 803 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.40(\mathrm{td}, J=8.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{ddd}, J$ $=10.5,9.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=8.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dt}, J=$ $11.6,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.40-$ $1.34(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.5,76.4,67.0,42.3,35.9,32.0,26.2,20.6,16.7$, 14.5; HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{Na}^{+}, 209.1154$; found: 209.1154.

16b: $[\alpha]^{29}{ }_{\mathrm{D}}=-19.8\left(c 1.0, \mathrm{CHCl}_{3}\right)$; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v_{\text {max }}: 3517,2929,2872,1753$, $1459,1329,1136,1023,936 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.34(\mathrm{td}, J=8.9,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.15$ (ddd, $J=10.7,9.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.62(\mathrm{dt}, J=11.7,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.38(\mathrm{~m}$, 2H), 1.34-1.24 (m, 3H), 0.87-0.82 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.9$, 74.0, 66.9, 42.2, 35.9, 35.2, 25.7, 20.3, 14.2, 12.2; HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{Na}^{+}$, 209.1154; found: 209.1150 .

5a $R^{1}=H, R^{2}=M e$
$5 b R^{1}=M e, R^{2}=H$

16a $R^{1}=H, R^{2}=M e$
16b $R^{1}=M e, R^{2}=H$

6a $R^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}$
6b $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}$

23a $R^{1}=H, R^{2}=M e$
23b $R^{1}=M e, R^{2}=H$

General preparation of $\mathbf{6 a}, \mathbf{6 b}, \mathbf{2 3 a}$ and 23b.

To a solution of acid 12 ($1.2 \mathrm{mmol}, 1.2$ equiv) and the alcohol ester $5 \mathrm{a} / 5 \mathrm{~b} / 16 \mathrm{a} / 16 \mathrm{~b}\left(1 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was added DMAP (0.6 mmol , 0.6 equiv)) and DIC (2 mmol, 2 equiv) under argon atmosphere at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 4 h at $20^{\circ} \mathrm{C}$, and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and then quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to obtain 6a or 6b or 23a or 23b.
(2R,3R,4R)-allyl-3-(((R)-2-((($9 H$-fluoren-9-yl)methoxy)carbonyl)amino)-3-methylbutanoyl)oxy)-2-(2-((4-methoxybenzyl)oxy)ethyl)-4-methylheptanoate (6a): $[\alpha]^{27}{ }_{\mathrm{D}}=+26.0\left(c 0.9, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v_{\max }: 3362,2961,2869,1733,1514$, $1456,1261,1096,1025,804 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.64-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{td}, J=7.4,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=$
$8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.92-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.31(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}$, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.41-4.39(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{dd}, J=9.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.06-3.04(\mathrm{~m}$, $1 \mathrm{H}), 2.21-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.30(\mathrm{~m}, 2 \mathrm{H})$, $1.20-1.07(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,171.5,159.3$, 156.4, 144.1, 144.0, 141.4, 132.1, 130.4, 129.4, 127.8, 127.2, 125.3, 120.1, 118.7, 113.9, 79.0, 72.8, 67.3, 67.2, 65.4, 59.5, 55.4, 47.4, 44.4, 34.9, 33.6, 31.1, 29.6, 19.9, 19.5, 17.3, 16.1, 14.3; HRMS-MALDI (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{51} \mathrm{NO}_{8} \mathrm{Na}^{+}$, 708.3512; found: 708.3509 .

6b: $[\alpha]^{29}{ }_{\mathrm{D}}=+6.7\left(c 1.8, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v_{\max }: 354,3062,2960,2872$, 1733, 1611, 1456, 1175, 988; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.65-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.91-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}$, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.17(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=5.3 \mathrm{~Hz}$, $2 \mathrm{H}), 4.41-4.40(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 4.32(\mathrm{dd}, J=9.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79$ (s, 3H), 3.48 (dd, $J=9.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.06-3.01$ (m, 1H), 2.21-2.17 (m, 1H), 1.99-1.92 (m, 1H), 1.85-1.77 (m, 2H), 1.41-1.29 (m, 3H), 1.17-1.11 (m, 1H), $1.00(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-0.87(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.5,171.4,159.3,156.3,144.1,143.9,141.4,132.0,130.4,129.4,127.8$, 127.1, 125.2, 120.0, 118.7, 113.8, 78.1, 72.8, 67.3, 67.1, 65.5, 59.4, 55.3, 47.3, 44.9, 35.6, 34.5, 31.0, 29.5, 20.1, 19.5, 17.3, 14.2, 14.1; HRMS-MALDI (m/z): [M+Na] ${ }^{+}$ calcd for $\mathrm{C}_{41} \mathrm{H}_{51} \mathrm{NO}_{8} \mathrm{Na}^{+}, 708.3512$; found: 708.3505.

23a: $[\alpha]^{29}{ }_{\mathrm{D}}=+7.2\left(c\right.$ 2.5, $\left.\mathrm{CHCl}_{3}\right) ; \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v_{\text {max }}: 3345,3042,2925,2872$,
$1771,1726,1518,1227,1026 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.64-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.32(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.10-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.34-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=16.4,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{td}, J=9.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.22$ $(\mathrm{m}, 2 \mathrm{H}), 2.18-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.15-1.11(\mathrm{~m}$, $1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 175.5,171.9,156.5,144.2,143.9,141.4,127.8,127.2$, $125.3,120.1,77.4,67.2,66.1,59.6,47.3,40.3,34.4,33.8,30.8,26.0,19.8,19.6,17.4$, 16.0, 14.3;HRMS-MALDI (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{NO}_{6} \mathrm{Na}^{+}, 530.2519$; found: 530.2517.

23b: IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v_{\text {max }}: 3350,2960,2871,1755,1710,1533,1263,1070,963 ;$ ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.35(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.36-4.29(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.14(\mathrm{~m}$, $1 \mathrm{H}), 2.96-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.32(\mathrm{~m}, 3 \mathrm{H})$, $1.21-1.13(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.6,171.8,156.5$, 144.1, 143.9, 141.4, 127.8, 127.2, 125.3, 120.0, 76.2, 67.2, 66.0, 59.5, 47.3, 40.4, 35.4, 34.7, 30.7, 26.2, 20.0, 19.6, 17.3, 14.4, 14.2; HRMS-MALDI (m/z): [M+Na] ${ }^{+}$ calcdfor $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{NO}_{6} \mathrm{Na}^{+}, 530.2519$; found: 530.2518.

23a $R^{1}=H, R^{2}=M e$ 23b $R^{1}=\mathrm{Me}, R^{2}=H$

24a $R^{1}=H, R^{2}=M e$ 24b $R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}$

25a $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}$ 25b $R^{1}=M e, R^{2}=H$

General preparation of $\mathbf{2 4 a}, \mathbf{2 4 b}, \mathbf{2 5 a}, \mathbf{2 5 b}$.

To a solution of Fmoc-protected amino acid 23a/23b (1 mmol, 1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{Et}_{2} \mathrm{NH}(10 \mathrm{~mL})$ at room temperature. After 2 hour, the solvent was removed under reduced pressure. The residue was purified by column chromatography to obtain $\mathbf{2 4}$ a or $\mathbf{2 4 b}$ or $\mathbf{2 5 a}$ or $\mathbf{2 5 b}$.
$(R)-(1 R, 2 R)$-2-methyl-1-((R)-2-oxotetrahydrofuran-3-yl)pentyl-2-amino-3methylbutanoate (24a): $[\alpha]^{29}{ }_{\mathrm{D}}=+34.0\left(c 0.2, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v_{\text {max }}: 3336$, 2929, 2874, 1772, 1525, 1460, 1256, 1105, 1028; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.99$ (dd, $J=7.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{td}, J=8.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=16.5,8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.29(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{ddd}, J=17.3,11.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{ddd}, J=$ $16.6,12.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.61$ (br s, 2H), 1.41-1.29 (m, 2H), 1.21$1.13(\mathrm{~m}, 1 \mathrm{H}), 1.09-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $0.88(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.87-0.83(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.7$, $175.2,76.7,66.1,60.5,40.2,34.4,33.9,31.5,26.0,19.8,19.7,16.9,16.1,14.3 ;$ HRMS-MALDI (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Na}^{+}, 308.1838$; found: 308.1838.

24b: $[\alpha]^{29}{ }_{\mathrm{D}}=+11.6\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.09(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{td}, J=8.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dt}, J=16.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=$ $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{td}, J=9.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.96(\mathrm{~m}, 2 \mathrm{H})$, $1.60(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.41-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.20-1.12(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.93$ (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91-0.87(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 175.8,175.1,75.5,66.1,60.7,40.3,35.7,34.8,31.6,26.4,20.1,19.8,17.1$, 14.4, 14.3. HRMS-MALDI (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Na}^{+}, 308.1838$; found: 308.1836.

25a: $[\alpha]^{29}{ }_{\mathrm{D}}=+11.6\left(c\right.$ 1.0, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dd}, J=7.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=9.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{td}, J$ $=8.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=16.5,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.55(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{td}, J=$ $9.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.28-1.18(\mathrm{~m}, 3 \mathrm{H}), 1.15-1.06(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $6 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.6,175.5,171.6$, $77.4,66.3,57.6,50.8,40.3,34.3,34.2,30.8,26.1,21.4,19.7,19.7,17.8,16.1,14.4$. HRMS-MALDI (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}, 379.2209$; found: 379.2209.

25b: $[\alpha]^{29}{ }_{\mathrm{D}}=+19.3\left(c 0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=9.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{td}, J=8.8$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=16.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{td}, J=$ $9.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.01(\mathrm{~m}, 5 \mathrm{H}), 1.36(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.31-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.11(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-0.87(\mathrm{~m}, 3 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $175.8,175.6,171.5,76.5,66.2,57.5,50.8,40.4,35.5,34.6,30.7,26.4,21.5,20.0$, 19.7, 17.7, 14.7, 14.3; HRMS-MALDI (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}$, 379.2209; found: 379.2208.

(2R,3R,4R)-allyl-3-(((R)-2-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amin
o)propanamido)-3-methylbutanoyl)oxy)-2-(2-((4-methoxybenzyl)oxy)ethyl)-4-me thylheptanoate (7a). To a solution of Fmoc-protected amino acid $\mathbf{6 a}(450 \mathrm{mg}, 0.62 \mathrm{~m}$ $\mathrm{ml})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added $\mathrm{HNEt}_{2}(4 \mathrm{~mL})$ at room temperature. After 2 hour, the solvent was removed under reduced pressure. The residue was purified by column ch romatography (petroleum ether : ethyl acetate $=10: 1-4: 1)$ to give the amine (290 m g, 95\%).

The obtained amine ($220 \mathrm{mg}, 0.475 \mathrm{mml}$) and L-Fmoc-alanine $\mathbf{1 3}$ ($177 \mathrm{mg}, 0.57$ mmol) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 mL), and HOBt ($87 \mathrm{mg}, 0.57 \mathrm{mmol}$), EDCI ($109 \mathrm{mg}, 0.57 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(57 \mathrm{mg}, 0.57 \mathrm{mmol})$ was added successively. The reaction mixture was stirred overnight and the solvent was removed. The residue was dissolved in EtOAc (30 mL) and washed successively with $1 \% \mathrm{HCl}$, sat. NaHCO_{3}, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether:ethyl acetate $=4: 1$) to give the title compound $7 \mathrm{a}(300 \mathrm{mg}, 83 \%)$ as a white solid. $[\alpha]^{27}{ }_{\mathrm{D}}=+19.2(c 1.0$, $\left.\mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v_{\text {max }}: 3365,2934,2872,1734,1680,1514,1456,1247,1177$, 1093, 745. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.91-5.81(\mathrm{~m}, 2 \mathrm{H}), 5.28(\mathrm{~d}, J=$ $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-5.00(\mathrm{~m}, 1 \mathrm{H}), 4.55-4.51(\mathrm{~m}, 3 \mathrm{H}), 4.43-$ $4.38(\mathrm{~m}, 3 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.43(\mathrm{~m}, 1 \mathrm{H})$, $3.40-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{dt}, J=9.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.88(\mathrm{~m}$, $1 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.40-1.29(\mathrm{~m}$, $2 \mathrm{H}), 1.21-1.07(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.7,172.3$, $170.5,159.2,156.1,143.9,143.9,141.3,131.8,130.3,129.3,127.8,127.1,125.1$,
$120.0,118.7,113.8,78.7,72.7,67.1,65.5,57.9,55.3,50.7,47.2,44.3,34.9,33.8$, 31.2, 29.6, 19.7, 19.4, 18.9, 17.7, 15.9, 14.2; $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{44} \mathrm{H}_{56} \mathrm{NO}_{8} \mathrm{Na}^{+}$, 779.3884; found: 779.3882.

7b: $[\alpha]^{29}{ }_{\mathrm{D}}=+3.7\left(c 1.2, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v_{\text {max }}: 3315,2961,2872,1734$, 1515, 1244, 1178, 1086, $983 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.60(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.88-5.79(\mathrm{~m}, 2 \mathrm{H})$, $5.28(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-$ $4.48(\mathrm{~m}, 3 \mathrm{H}), 4.42-4.38(\mathrm{~m}, 3 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $3.48-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{dt}, J=10.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.10(\mathrm{~m}$, $1 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.40-1.29(\mathrm{~m}$, $3 \mathrm{H}), 1.15-1.07(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-0.85(\mathrm{~m}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.8,172.2,170.5,159.3,156.2,144.0,143.9,141.4,131.9,130.3$, $129.4,127.8,127.2,125.2,120.1,118.9,113.9,78.1,72.8,67.2,65.7,57.9,55.4$, $50.7,47.3,45.0,35.6,34.7,31.2,29.8,29.6,20.0,19.5,18.8,17.8,14.4$, 14.2;HRMS-MALDI (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcdforC $4_{44} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Na}^{+}, 779.3884$; found: 779.3880.

9a $R^{1}=H, R^{2}=M e$ 9b $R^{1}=M e, R^{2}=H$
(3R,6S,11S,14R,15R,E)-11-(((tert-butyldiphenylsilyl)oxy)methyl)-3-isopropyl-

14-(2-((4-methoxybenzyl)oxy)ethyl)-6-methyl-15-((R)-pentan-2-yl)-1-oxa-4,7,12-

 triazacyclopentadec-9-ene-2,5,8,13-tetraone (9a).To a solution of $\mathbf{7 a}(210 \mathrm{mg}$, $0.278 \mathrm{mmol})$ in anhydrous THF $(5 \mathrm{~mL}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(64 \mathrm{mg}, 0.055 \mathrm{mmol})$ and $\mathrm{N}-$ methylaniline ($59 \mathrm{mg}, 0.55 \mathrm{mmol}$). The reaction mixture was stirred for 30 min at room temperature, concentrated and purified through column chromatography (Petroleum ether : ethyl acetate $=20: 1$ to $1: 1$) to afford an acid, which was used directly in the next step.The obtained acid above and amine $11(233 \mathrm{mg}, 0.46 \mathrm{mmol})$ was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, and DIPEA ($119 \mathrm{mg}, 0.92 \mathrm{mmol}$), HATU ($380 \mathrm{mg}, 0.92$ mmol). The reaction mixture was stirred for 2 h , and the solvent was removed. The residue was dissolved in EtOAc (20 mL), and was washed successively with $1 \% \mathrm{HCl}$, sat. NaHCO_{3}, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated; the mother liquid was concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether: ethyl acetate $=4: 1)$ to give the amide $(200 \mathrm{mg}$, 65% for two steps) as a colorless oil.

The amide above ($130 \mathrm{mg}, 0.117 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(27 \mathrm{mg}, 0.023 \mathrm{mmol})$ was dissolved in anhydrous THF (3 mL). And N-methylaniline ($25 \mathrm{mg}, 0.23 \mathrm{mmol}$) was added. After 30 min , the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether : ethyl acetate $=4: 1$ to $1: 1$) to afford an acid.

The carboxylic acid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.6 \mathrm{~mL})$ and diethylamine (0.8 mL), the reaction mixture was stirred at room temperature for 1 h , and then the solvent was removed under reduced pressure to give a crude amino acid.

The residue above was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$, and DIPEA ($132 \mathrm{mg}, 1.02$
mmol) and HATU ($309 \mathrm{mg}, 0.814 \mathrm{mmol}$) was added successively at $0^{\circ} \mathrm{C}$. After addition was completed, the reaction mixture was allowed to warm to room temperature and stirred for 24 h . The solvent was removed under reduced pressure; the residue was dissolved in EtOAc $(50 \mathrm{~mL})$ and washed successively with $1 \% \mathrm{HCl}$, sat. NaHCO_{3}, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether: ethyl acetate $=1$: 5) to give the cyclic product $\mathbf{9 a}$ ($44 \mathrm{mg}, 29 \%$ for five steps) as a power. $[\alpha]^{29}{ }_{D}=+32.6$ (c $\left.1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 7.68(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.44-7.38(\mathrm{~m}$, $6 \mathrm{H}), 7.10(\mathrm{dd}, J=15.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.11(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.39-4.33 (m, 1H), $4.16(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, $3.67(\mathrm{dd}, J=9.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{td}, J$ $=10.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.53-$ $1.48(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.35-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.98-0.92(\mathrm{~m}$, $12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 174.9,174.3,170.6,168.8,160.6,145.5,136.5$, $133.9,133.8,131.1,130.9,130.3,128.9,128.9,119.5,114.5,79.9,73.4,67.9,66.8$, $59.0,55.5,53.0,52.5,46.2,35.0,33.5,33.0,30.6,27.2,21.4,19.9,19.8,18.7,18.5$, 16.9, 14.4; $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{47} \mathrm{H}_{65} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{SiNa}^{+}, 850.4439$; found: 850.4436 .

9b. $[\alpha]^{27}{ }_{\mathrm{D}}=+17.8\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v_{\max }: 3311,2956,2864,1727$, 1517, 1248, 1106, 1036, 841; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.69(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}$), $7.46-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.10(\mathrm{dd}, J=15.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=15.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.73$ (m, 1H), 4.37-4.31 (m, 1H), $4.16(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (s, 3H), 3.67 (dd, $J=9.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=9.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.33$ (m, $1 \mathrm{H}), 2.89(\mathrm{td}, J=10.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.67$
$(\mathrm{m}, 1 \mathrm{H}), 1.44(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.35-1.29(\mathrm{~m}, 4 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, MeOD) $\delta 174.8,174.3,170.3,168.8,160.6,145.6,136.6,133.9$, $133.8,131.1,131.0,130.9,130.4,128.9,128.8,119.4,114.5,77.8,73.5,67.8,66.8$, $59.2,55.5,53.0,52.6,46.6,37.4,34.7,33.5,30.5,27.2,21.3,20.0,19.8,18.7,18.7$,
14.3, 13.3; $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{47} \mathrm{H}_{65} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{SiNa}^{+}, 850.4439$; found: 850.4436.

9a $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}$
9b $R^{1}=M e, R^{2}=H$

10a $R^{1}=H, R^{2}=M e$
10b $R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}$
(3R,6S,11S,14R,15R,E)-11-(hydroxymethyl)-3-isopropyl-14-(2-((4-methoxybe nzyl)oxy)ethyl)-6-methyl-15-((R)-pentan-2-yl)-1-oxa-4,7,12-triazacyclopentadec-9 -ene-2,5,8,13-tetraone (10a). To a solution of $\mathbf{9 a}(40 \mathrm{mg}, 0.048 \mathrm{mmol})$ in dry THF (4 $\mathrm{mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(98 \mathrm{mg}, 0.97 \mathrm{mmol})$ and followed by $3 \mathrm{HF} \cdot \mathrm{NEt}_{3}(110 \mu \mathrm{~L}, 1.93 \mathrm{~m}$ $\mathrm{mol})$. The mixture was stirred under argon at room temperature for 4 h . The mixture w as directly purified through column chromatography (ethyl acetate: $\mathrm{CH}_{3} \mathrm{OH}=10: 1$) to afford 10a $(24 \mathrm{mg}, 84 \%)$ as a solid. $[\alpha]^{24}{ }_{\mathrm{D}}=+44.0\left(c 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400$ $\mathrm{MHz}, \mathrm{MeOD}) \delta 8.32(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.96(\mathrm{dd}, J=15.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.11(\mathrm{dd}, J=15.1,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=10.0 \mathrm{~Hz} 1 \mathrm{H}), 4.74-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.51-4.36(\mathrm{~m}, 4 \mathrm{H}), 3.78(\mathrm{~s}, 3$ H), 3.63-3.51 (m, 4H), $3.01(\mathrm{td}, J=10.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.84$ $(\mathrm{m}, 2 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.34-1.28$
(m, 3H), 0.98-0.92 (m, 12H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, MeOD) $\delta 175.0,174.5,170.6,16$ $9.0,160.7,146.0,131.3,130.5,119.6,114.6,80.0,73.4,67.8,64.5,59.1,55.5,53.5,5$ $2.5,46.3,35.0,33.5,33.1,30.5,21.4,19.9,18.7,18.4,16.9,14.3 ;[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Na}^{+}, 612.3258$; found: 612.3258 .

10b. $[\alpha]^{29}{ }_{\mathrm{D}}=+40.8\left(c 0.5, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v_{\text {max }}: 3275,2958,2870,1729$, 1679, 1517, 1247, 1177, 844; ${ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD) $\delta 7.75(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{dd}, J=15.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.10(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.49-4.34(\mathrm{~m}$, $4 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.52(\mathrm{~m}, 4 \mathrm{H}), 2.95(\mathrm{td}, J=10.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.02(\mathrm{~m}$, $1 \mathrm{H}), 1.89-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.30(\mathrm{~m}$, $3 \mathrm{H}), 1.17-1.08(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}(100 \mathrm{MHz}, \mathrm{MeOD}) \delta 174.8,174.4$, $170.3,168.9,160.7,146.0,131.3,130.6,119.6,114.6,77.9,73.5,67.7,64.5,59.2$, $55.5,53.4,52.5,46.6,37.4,34.8,33.5,30.7,21.4,20.0,18.7,18.6,14.3,13.4$; $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Na}^{+}, 612.3258$; found: 612.3258.

(E)-methyl 4-amino-4-oxobut-2-enoate (21).

To a solution of $\mathbf{2 0}(2 \mathrm{~g}, 15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added oxalyl chloride (2.93 g , 23 mmol), and then 0.1 ml DMF was added. The reaction mixture was stirred for 30 min. The mixture was concentrated to get a solid which can be used without further purification. The solid was dissolved in anhydrous THF (10 mL). And the solution was added to a mixture of $\mathrm{NH}_{3} \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ in THF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 30 min , the
reaction mixture was quenched by $\mathrm{H}_{2} \mathrm{O}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mother solution was evaporated under reduced pressure and the residue was further purified through column chromatography (petroleum ether : ethyl acetate $=10: 1$ to $1: 1$) to give the title product $21\left(660 \mathrm{mg}, 33 \%\right.$ for two steps) as a white solid. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, MeOD) $\delta 7.03(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, MeOD) $\delta 168.0,167.1,137.4,130.9,52.4$.

(E)-4-amino-4-oxobut-2-enoic acid (22).

To a solution of $\mathbf{2 1}(600 \mathrm{mg}, 4.65 \mathrm{mml})$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}(9 \mathrm{~mL} / 9 \mathrm{~mL})$ was added $\mathrm{LiOH}_{2} \mathrm{O}(322 \mathrm{mg}, 7.67 \mathrm{mml})$, after half an hour, the solvents were evaporated in vacuum and directly purified through chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}=5 \%\right)$ to give the title product $22(227 \mathrm{mg}, 42 \%)$ as a white solid.IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v_{\text {max }}: 3399,3165$, 2923, 2848, 1690, 1428, 1306, 1191, 947, ${ }^{1}$ H NMR (400 MHz , MeOD) $\delta 7.00(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , MeOD) $\delta 168.3,168.2$, 137.2, 131.9; HRMS-ESI (m/z): $[\mathrm{M}-\mathrm{H}]^{+}$calcd for $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NO}_{3}{ }^{-}, 114.0191$; found: 114.0190 .

2. Copies of NMR Spectra

11

$$
\begin{aligned}
& \text { \&゚ロ \& } \\
& \text { ザ }
\end{aligned}
$$

15a

[^0]
 $1111 \mid$

15b

6a

23b

190	180	170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10	0

24b

5a

190
180 $\begin{array}{lll}170 & 160 \quad 150\end{array}$

9b $\begin{array}{lllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl} & (\mathrm{ppR})\end{array}$

21

22

2b

20

3. References

1.Yang, Z. T.; Yang, G.; Ma, M. Y.; Li, J. N.; Liu, J. W.; Wang, J. H.; Jiang, S. D.; Zhang, Q.; Chen, Y. Org. Lett. 2015, 17, 5725-5727.
2.Kumaraswamy, G.; Padmaja, M.; Markondaiah, B.; Jena, N.; Sridhar, B.; Kiran, M. U. J. Org. Chem. 2006, 71, 337-340.

[^0]:

