figshare
Browse
Dehydration entropy drives liquid-liquid phase separation by molecular crowding.zip (171.59 MB)

Dehydration entropy drives liquid-liquid phase separation by molecular crowding.zip

Download (171.59 MB)
dataset
posted on 2020-04-08, 11:11 authored by Sohee ParkSohee Park, Ryan Barnes, Yanxian LinYanxian Lin, Byoung-jin Jeon, Saeed NajafiSaeed Najafi, Kris T. Delaney, Glenn H. Fredrickson, Joan-Emma Shea, Dong Soo Hwang, Songi Han

Complex coacervation driven liquid-liquid phase separation (LLPS) of biopolymers has been attracting attention as a novel phase in living cells. Studies of LLPS in this context are typically of proteins harboring chemical and structural complexity, leaving unclear what property is fundamental to complex coacervation versus protein-specific. This study focus on the role of polyethylene glycol (PEG)—a widely used molecular crowder—in LLPS. Significantly, entropy-driven LLPS was recapitulated with charged polymers lacking hydrophobicity and sequence complexity, and its propensity dramatically enhanced by PEG. Experimental and field-theoretic simulation results are consistent with PEG driving LLPS by dehydration of polymers, and show that PEG exerts its effect without partitioning into the dense coacervate phase. It is then up to biology to impose additional variations of functional significance to the LLPS of biological systems.

History