## Data_Sheet_1_Stable and Efficient Time Integration of a Dynamic Pore Network Model for Two-Phase Flow in Porous Media.pdf

We study three different time integration methods for a dynamic pore network model for immiscible two-phase flow in porous media. Considered are two explicit methods, the forward Euler and midpoint methods, and a new semi-implicit method developed herein. The explicit methods are known to suffer from numerical instabilities at low capillary numbers. A new time-step criterion is suggested in order to stabilize them. Numerical experiments, including a Haines jump case, are performed and these demonstrate that stabilization is achieved. Further, the results from the Haines jump case are consistent with experimental observations. A performance analysis reveals that the semi-implicit method is able to perform stable simulations with much less computational effort than the explicit methods at low capillary numbers. The relative benefit of using the semi-implicit method increases with decreasing capillary number Ca, and at Ca~ 10^{−8} the computational time needed is reduced by three orders of magnitude. This increased efficiency enables simulations in the low-capillary number regime that are unfeasible with explicit methods and the range of capillary numbers for which the pore network model is a tractable modeling alternative is thus greatly extended by the semi-implicit method.

#### Categories

- Classical Physics not elsewhere classified
- Biophysics
- Quantum Physics not elsewhere classified
- Physical Chemistry of Materials
- Solar System, Solar Physics, Planets and Exoplanets
- Condensed Matter Physics not elsewhere classified
- Mathematical Physics not elsewhere classified
- Applied Physics
- Tropospheric and Stratospheric Physics
- Computational Physics
- Condensed Matter Physics
- Particle Physics
- Plasma Physics
- Mesospheric, Ionospheric and Magnetospheric Physics
- High Energy Astrophysics; Cosmic Rays
- Space and Solar Physics
- Cloud Physics
- Astrophysics
- Photonics, Optoelectronics and Optical Communications
- Classical and Physical Optics
- Physical Chemistry not elsewhere classified