Supporting Information

A DFT assisted mechanism evolution of the Carbonylation of Ethylene glycol to ethylene carbonate by urea over $Zn(NCO)_2.(NH_3)_2$ catalyst.

Prabhakar Sharma, Reena Dwivedi, Rajiv Dixit and Rajendra Prasad*

School of Chemical Sciences, Devi Ahilya University, Indore. Madhya Pradesh, Pin-452001, India.

*Corresponding Author : Telephone No.+91-0731-4060208,

Email address: rjndr.prsd3@gmail.com

	Atom	Calculated Bond	Atoms	Calculated Bond	
		Length		Angle	
S.No.					
1	r _{Zn-NH3}	2.106	$\beta_{N2-Zn1-N3}$	127.2	
2	r _{Zn-NH3}	2.108	$\beta_{N2-Zn1-N'8}$	102.8	
3	r _{Zn-NCO}	1.895	$\beta_{N2-Zn1-N'12}$	102.7	
4	r _{Zn-NCO}	1.894	$\beta_{Zn1-N2-C5}$	174.7	
5	r _{NH}	1.018	$\beta_{N3-Zn1-N'8}$	102.7	
6	r _{NH}	1.019	$\beta_{NC3-Zn1-N'12}$	102.8	
7	r _{NH}	1.018	$\beta_{Zn1-NC3-C4}$	174.7	
8	r _{NH}	1.019	$\beta_{N'8-Zn1-N'12}$	120.5	
9	r _{NH}	1.019	$\beta_{Zn1-N'8-H9}$	103.4	
10	r _{NH}	1.017	$\beta_{Zn1-N'8-H10}$	103.5	
11	r _{N=C}	1.225	$\beta_{Zn1-N'8-H11}$	122.1	
12	r _{N=C}	1.225	$\beta_{Zn1-N'12-H13}$	122.1	
13	r _{C=O}	1.223	$\beta_{Zn1-N'12-H14}$	103.4	
14	r _{C=O}	1.223	$\beta_{Zn1-N'12-H15}$	103.5	
15			$\beta_{N2-C5-O7}$	179.2	
16			$\beta_{N3-C4-O6}$	179.2	
17			$\beta_{H9-N8-H10}$	109.4	
18			β _{H9-N8-H11}	109	
19			β _{H10-N8-H1}	109	
20			β _{H13-N12-H14}	109	
21			β _{H13-N12-H15}	109	
22			$\beta_{\rm H14-N12-H15}$	109.4	

Table-S1. Optimized geometrical parameter of Zn(NCO)₂ 2NH₃.

r =Bond length in Angstrom, Beta=Bond angle in degree, N="N" atom of NCO group, N'="N" atom of NH_3 group

S.No.	Atom	2-HEC	2-HEC	
		(S-Trans)	(S-cis)	
1	Amino "N"	-0.733	-0.819	
2	Carbonyl "C"	0.686	0.621	
3	Hydroxyl "O"	-0.605	-0.633	
4	Hydroxyl "H"	0.379	0.417	

Table-S2. Mullikan atomic charges in cis-cis and cis-trans conformers of 2-HEC.

S.No.	Atom	HNCO	EG	NCO ⁻ in
				catalyst
1	Н	0.364	0.368	
2	Ν	-0.474		732
3	С	0.416	-0.093	.651
4	0	-0.306	-0.617	-512

Table-S3. Charge distribution in HNCO, EG and -NCO group in catalyst.

S.N	Atom	2-HEC	2-HEC on
0.			Catalyst Via
			NH ₃
1	Amino "N"	-0.723	-0.704
2	Carbonyl "C"	0.683	0.726
3	Hydroxyl "O"	-0.618	-0.637
4	Hydroxyl "H"	0.365	0.410

Table-S4. Charge distribution in associative mechanism when 2-HEC adsorbed via both ammonia group of the catalyst.

	Adsorption via	Energy of	Dipole
	Functional Group	optimized	Moment
S.No.	Atom	Geometry (a.u.)	(Debye)
1	Amino "N"Atom	-2570.66940275	4.9496
2	Carbonyl "O"Atom	-2570.68679039	9.9923
3	Hydroxyl "O"Atom	-2570.67393107	11.1311
4	Bidentate	-2514.1040531	7.3975

Table-S5 The electronic energies of optimized structure of 2-HEC adsorbed through different functional groups.

Atom	2-HEC		2-HEC		2-HEC		2-HEC		2-HEC
	(Gaseous		(Adsorbed Via		(Adsorbed Via		(Adsorbed Via		(Adsorbed as
	Phase)		Ammino N site)		Carbonyl O site)		Hydroxy O site)		bidentate
									ligand)
	Trans	Cis	Trans	Cis	Trans	Cis	Trans	Cis	
N(Amino)	-0.733	-0.671	-0.892	-0.948	-0.452	-0.635	-0.727	-0.766	-0.815
C(Carbonyl)	0.686	0.707	0.683	0.702	0.613	0.768	0.681	0.556	0.672
O(Carbonyl)	-0.425	-0.465	-0.404	-0.44	-0.565	-0.565	-0.411	-0.366	-0.362
O(Alkoxy)	-0.524	-0.503	-0.451	-0.48	-0.332	-0.482	-0.536	-0.473	-0.484
C(Alkyl)	-0.057	-0.107	-0.208	-0.018	-0.116	-0.052	-0.054	-0.072	0.083
C(Alkyl)	-0.021	-0.081	-0.083	-0.216	-0.014	-0.087	-0.023	-0.051	0.008
O(Hydroxy)	-0.605	-0.568	-0.578	-0.561	-0.398	-0.633	-0.678	-0.688	-0.684

Table-S6 The charge distributions on various atoms in different mode of adsorptions.

Gaussian 09, Revision C.01,

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,

M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,

G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,

A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,

M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,

Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,

J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,

K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,

K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,

M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,

V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,

O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,

R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,

P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,

O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,

and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.