figshare
Browse
cm502304e_si_002.zip (1.34 MB)

Computational Design of Metal–Organic Frameworks Based on Stable Zirconium Building Units for Storage and Delivery of Methane

Download (1.34 MB)
dataset
posted on 2014-10-14, 00:00 authored by Diego A. Gomez-Gualdron, Oleksii V. Gutov, Vaiva Krungleviciute, Bhaskarjyoti Borah, Joseph E. Mondloch, Joseph T. Hupp, Taner Yildirim, Omar K. Farha, Randall Q. Snurr
A metal–organic framework (MOF) with high volumetric deliverable capacity for methane was synthesized after being identified by computational screening of 204 hypothetical MOF structures featuring (Zr6O4)­(OH)4(CO2)n inorganic building blocks. The predicted MOF (NU-800) has an fcu topology in which zirconium nodes are connected via ditopic 1,4-benzenedipropynoic acid linkers. Based on our computer simulations, alkyne groups adjacent to the inorganic zirconium nodes provide more efficient methane packing around the nodes at high pressures. The high predicted gas uptake properties of this new MOF were confirmed by high-pressure isotherm measurements over a large temperature and pressure range. The measured methane deliverable capacity of NU-800 between 65 and 5.8 bar is 167 cc­(STP)/cc (0.215 g/g), the highest among zirconium-based MOFs. High-pressure uptake values of H2 and CO2 are also among the highest reported. These high gas uptake characteristics, along with the expected highly stable structure of NU-800, make it a promising material for gas storage applications.

History