
 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



JOURNAL OF APPLIED PHYSICS 100, 063304 �2006�
Complex dynamic behaviors of nonequilibrium atmospheric
dielectric-barrier discharges

Yuan Tao Zhang and De Zhen Wanga�

State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Department of Physics,
Dalian University of Technology, Dalian 116024, People’s Republic of China

M. G. Kong
Department of Electronic and Electrical Engineering, Loughborough University, Leics LE11 3TU, United
Kingdom

�Received 5 February 2006; accepted 8 July 2006; published online 22 September 2006�

In this paper, a one-dimensional fluid model is used to investigate complex dynamic behaviors of a
nonequilibrium dielectric-barrier discharge �DBD� in atmospheric helium. By projecting its
evolution trajectory in the three-dimensional phase space of gas voltage, discharge current density,
and electrode-surface charge density, the atmospheric DBD is shown to undergo a sequence of
complex bifurcation processes when the applied voltage is increased from prebreakdown to many
times of the breakdown voltage. Once the gas voltage exceeds the breakdown voltage, the discharge
plasma is found to acquire negative differential conductivity and as a result its stability is
compromised. For atmospheric DBD, however, the resulting low plasma stability is mitigated by a
rapid accumulation of surface charges on the electrodes, thus allowing the atmospheric DBD to
retain their character as a glow discharge. At certain values of the applied voltage, a highly complex
phenomenon of period multiplication is observed in which the period of the discharge current is
three times that of the applied voltage. This suggests that nonequilibrium atmospheric DBD may
support evolution patterns that are quasiperiodic or even chaotic. These complex dynamic behaviors
are likely to be critical to a full understanding of plasma stability of nonequilibrium atmospheric
discharges and to the development of their instability control strategies. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2345463�
I. INTRODUCTION

Spatially diffuse and nonequilibrium dielectric-barrier
discharges �DBDs� generated at atmospheric pressure have
been a subject of active research because of their widespread
use in many processing applications including surface modi-
fication, pollution control, and sterilization.1–5 Distinctly dif-
ferent from the filamentary mode to which atmospheric
DBDs used to be associated, their glow mode allows them to
be sustained at a gas temperature as low as room
temperature.2 Essentially, nonequilibrium atmospheric DBDs
are capacitively coupled glow discharges and they represent
the most common group in the family of atmospheric pres-
sure glow discharges �APGDs�. Over the past five years,
considerable advance has been made both in their scientific
understanding and in their technological capability, benefited
from a series of systematic studies of plasma dynamics both
theoretically6–9 and experimentally.10–13 It is widely recog-
nized that an in-depth understanding of plasma dynamic be-
haviors of atmospheric DBDs is likely to be indispensable to
their future development.

Nonequilibrium atmospheric DBDs are a typical ex-
ample of spatially extendable and dissipative systems with
strong nonlinearity in both spatial and temporal dimensions.
This is reflected in their complex spatiotemporal behaviors.
For example, nonequilibrium atmospheric DBDs are known
to possess a spatial structure consisting of a sheath region of
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high electric field, a bulk-plasma region of near neutrality,
and several intermediate regions between the sheath region
and the bulk-plasma region.4,6 This mode structure is very
similar to that of low-pressure glow discharges. Other dis-
tinct spatial structures of atmospheric DBDs have also been
observed, including transitions between filamentary and
glow modes,14,15 self-organized discharge filaments and
patterns,15,16 and striation.17,18 Similar complexity also exists
in the temporal characteristics of nonequilibrium atmo-
spheric DBDs. Early understanding of atmospheric DBDs
was that their discharge events can be characterized by a
single discharge current pulse of several microseconds every
half cycle of the applied voltage.4,6,7 Subsequent experimen-
tal and computational studies have suggested that it is also
possible to obtain several discharge current pulses every half
voltage cycle.8–10 This suggests that the discharge system
remains spatially homogeneous while it undergoes periodic
temporal variations. In nonlinear science, such periodic tem-
poral variation is generally known as oscillation. It is known
that the oscillation is a common temporal feature of systems
maintained far from the system equilibrium and that this
temporal oscillation is often caused by Hopf bifurcation.19

Since atmospheric gas discharges have a tendency for glow-
to-arc transition, it is particularly desirable to distinguish os-
cillations associated with stable plasma operation from those
that could lead to irreversible plasma instability and arcing.

This paper reports a theoretical study of complex dy-

namic behaviors in nonequilibrium atmospheric DBDs and
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how such temporal characteristics may impact on plasma sta-
bility. It is partly motivated by the success of using the
current-voltage characteristics to identify glow modes in
radio-frequency APGDs �Refs. 20 and 21� and subsequent
correlation of mode characteristics to their plasma stability.22

This indicates that the current-voltage relationship provides a
valuable signature of plasma dynamic behaviors in nonequi-
librium atmospheric DBDs. Experimental evidence so far
suggests that nonequilibrium atmospheric DBDs in their
usual mode of one current pulse every half cycle are most
likely to have the same physics roots as those with greater
complexity of distinct spatiotemporal patterns.15 Therefore,
our study will be based on a one-dimensional fluid model
previously developed for nonequilibrium atmospheric
DBDs.4,6–8,23

II. DESCRIPTION OF THE PLASMA MODEL

We consider a nonequilibrium atmospheric gas discharge
generated and sustained between two dielectrically insulated
parallel-plate electrodes. In most DBD experiments, the elec-
trode gap size is much smaller than the width of the elec-
trodes and so we assume that the plasma dynamics can be
approximated reliably with a one-dimensional description.
While spatial structures such as the sheath region may re-
quire more sophisticated electron-kinetics models,24,25 the
currently prevailing hydrodynamic model is sufficiently ac-
curate to study temporal behaviors.7,8,23 As a result, the
diffusion-drift approximation is used and dynamical behav-
iors of all charged particles are described by their continuity
equations. This description is subjected to a knowledge of
the electric field between the two electrodes and the latter is
determined by the Poisson equation. Hence in the one-
dimensional limit, the basic governing equations for atmo-
spheric DBDs are described as

�ne

�t
+

�je

�x
= S , �1�

�ni

�t
+

�ji

�x
= S , �2�

je = − �eEne − De
�ne

�x
, �3�

ji = + �iEni − Di
�ni

�x
, �4�

where the indices e and i correspond to electrons and ions,
respectively, and S is the source term. n, j, and E are the
particle densities, the flux densities, and the electric field,
respectively, whereas D and � denote the mobility and dif-
fusion coefficient. To focus on the most essential plasma
properties, we consider only direct ionization by electron im-
pact and recombination in the bulk of the gas gap. Plasma
chemistry of interest to a particular DBD experiment is out-
side the scope of the current study and will be considered in
a future note. With the above consideration, the source term

takes the form of
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S = Ap�eEnee
−Bp/�E� − �neni, �5�

where A and B are constants related with the working gas, p
is the gas pressure, and � is the recombination coefficient.

For the calculation of the electric field, the Poisson equa-
tion is usually solved together with the continuity equations.
In the gas gap, the Poisson equation takes the form of

�E

�x
=

e

�0
�ni − ne� . �6�

To develop the above equation further, time differentiation is
performed to both sides of the above equation. By using the
continuity equation for space charges to relate charged par-
ticle densities to flux densities, the above equation is reduced
to26

�E

�t
=

e

�0
j0 −

e

�0
jg, �7�

where j0 is the total flux density and jg= ji− je is the conduc-
tion flux density in the gas gap. The total flux density is a
function of time only, a result of charge conservation. The
conduction flux density is, on the other hand, a function of
both time and space, as it depends on the local balance of
creation and loss of charged particles within the gas gap. The
electric field in the gas gap can be calculated from the above
current balance equation as an alternative to the Poisson
equation �6�. A spatial integration of Eq. �7� across the gas
gap leads to

dVg

dt
=

e

�0
j0dg −

e

�0
�

0

dg

jgdx , �8�

where Vg is the voltage across the gas gap having a gap
distance of dg. It is important to note that the spatial integral
of jg describes the net change of charged particles due to
ionization, recombination, and excitation in the gas gap, not
the loss of charged particles through adsorption on the elec-
trode surfaces. In other words, it is not zero. The voltage fall
across the two dielectric layers can be obtained from the
relationship Vs=V�t�−Vg, where V�t� is the applied voltage.
By treating the dielectric as a capacitor, the time derivation
of Vs can be represented as

dVs

dt
=

2e

�0�r
j0ds, �9�

where �r is the relative permittivity of the dielectric barriers
covering the two electrodes and ds is the thickness of each of
the two dielectric-barrier layers. Combining Eqs. �8� and �9�,
the total flux density can be obtained. It is composed of a
displacement flux density and a conduction flux density and
is given by

j0 =
�0

e�dg + 2ds/�r�
dV�t�

dt
+

1

ds + 2ds/�r
�

0

dg

jgdx . �10�

For simplicity, we introduce d=dg+2ds /�r. This also en-
hances the applicability of our results as it allows a straight-
forward application to, for example, barrier-free APGDs
�Ref. 21� for which d=dg. If we assume a sinusoidal applied

voltage of V�t�=Va sin�2�ft� with Va being its amplitude and
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f being its frequency, the total flux density of charged par-
ticles can be expressed simply as

j0 =
2�f�0Va

ed
cos � +

1

d
�

0

dg

jgdx , �11�

where �=2�ft is the phase of the applied voltage and its
time derivation is

��

�t
= 2�f .

The total surface charge density q deposited on the
dielectric-barrier layers affects the dynamics of the gas
plasma system and can be described by

�q

�t
= jgb, �12�

where jgb is the current density in the gas gap but immedi-
ately next to the dielectric barrier. The electric field produced
by the surface charges can be estimated from Eq=q /�0 ac-
cording to Gauss’s theorem. Boundary conditions must be
specified before the above equations can be solved. Second-
ary electron emission from the instantaneous cathode is con-
sidered here for ion bombardment alone, and therefore the
electron current density leaving the cathode is given by �jib,
where � is the secondary electron emission coefficient and jib

is the ion current density at the instantaneous cathode sur-
face.

The above equations can be further simplified with the
following normalized quantities.26,27

X0 = 1/Ap , E0 = Bp , V0 = E0X0,

t0 = X0/�eE0, n0 = �0E0/eX0.

So, we can deduce the dimensionless distance, time, electric
field, voltage, and particle densities by changing the scales as
follows:

l = x/X0, � = E/E0, U = V/V0,

� = t/t0, �e = ne/n0, �i = ni/n0 .

With the above normalized variables, Eqs. �3� and �4� can be
rewritten as follows:

ji = �eE0n0����i −
�Ti

V0

��i

�l
� , �13�

je = �eE0n0�− ��e −
Te

V0

��e

�l
� , �14�

where �=�i /�e and Ti and Te denote, respectively, the ion
and electron temperatures. In deriving the above equations,
we have used Di=Ti�i and De=Te�e according to Einstein’s
relation. For nonequilibrium atmospheric plasmas in general,
the ion temperature is much lower than the electron tempera-
ture, namely, Ti	Te. Using �eE0n0 to divide into both sides
of Eqs. �13� and �14�, we introduce the dimensionless ion

and electron current densities Ji and Je as follows:
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Ji = ���i −
�Ti

V0

��i

�l
, �15�

Je = − ��e −
Te

V0

��e

�l
. �16�

As a result, the dimensionless conduction current density in
the gas gap is Jg=Ji−Je. The continuity equations for elec-
trons and ions now take the form of

��e

��
+

�Je

�l
= ��ee

−1/��� − �̄�e�i, �17�

��i

��
+

�Ji

�l
= ��ee

−1/��� − �̄�e�i, �18�

where �̄=�0� / �e�e� is the dimensionless recombination co-
efficient. Similarly, the total dimensionless discharge current
density J0, the dimensionless voltage over the gas gap Ug,
and the dimensionless surface charge Q=q /e�eE0n0t0 can be
described by the following equations:

J0 =
1

L	 1

V0

dV�t�
d�

+ �
0

Lg

Jgdl
 , �19�

dUg

d�
= J0Lg − �

0

Lg

Jgdl , �20�

dQ

d�
= Jgb, �21�

where L=d /X0 and Lg=dg /X0. Consequently, the dynamic
behaviors of nonequilibrium atmospheric DBDs are de-
scribed by the above dimensionless equations and controlled
by key system parameters, particularly Va, f , and L. All these
parameters can significantly influence plasma dynamics. For
this study, we confine our discussion to the effect of Va, the
peak applied voltage. The above equations were discretized
and solved with the Schartetter-Gummel scheme26,28 and the
algorithm is detailed in a previous report.29

III. RESULTS AND DISCUSSIONS

For all numerical examples presented here, the working
gas was helium at 760 torr and the frequency of the applied
sinusoidal voltage was 10 kHz. The gas gap between the two
dielectrically insulated electrodes was fixed at 2 mm, and the
two dielectric layers were identical with each other having a
thickness of 1 mm and a relative permittivity of 7.6. The
secondary electron emission coefficient � was set to 0.02,
whereas drift coefficients as well as reaction rate constants
were taken from a recent DBD simulation study30 and the
corresponding diffusion coefficients can be obtained by Ein-
stein’s relation.

As the applied voltage increased to be near but below the
breakdown voltage of the gas gap, weak ionization events
started to take place before the avalanche was reached. Un-
der this prebreakdown condition, the total discharge current
consists of mainly the displacement current. With a peak

applied voltage of 1 kV, the temporal evolution of the dis-
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charge current density is shown in Fig. 1�a� together with
that of the gas voltage and the applied voltage. Because of
the relatively small applied voltage, the discharge current
density was always below 32 �A/cm2 and its wave form
was that of a distorted sinusoidal. On the other hand, the gas
voltage is seen in Fig. 1�b� to follow an approximately sinu-
soidal pattern. These features are different from the usual
DBD pattern of one sharp current pulse every half cycle.4 To
understand the basic current-voltage characteristics, the in-
stantaneous discharge current density is plotted in Fig. 1�b�
as a function of its corresponding instantaneous gas voltage.
This current-voltage relationship is closed, suggesting that
the plasma dynamics are essentially periodic under the pre-
breakdown condition of very low current densities. It is
worth noting that the closed loop in Fig. 1�b� covers the
entire range of the gas voltage from −900 to 900 V. This is a
direct result of the current pulse remaining large over the
entire period of the applied voltage in Fig. 1�a�. From the
standpoint of nonlinear dynamical systems, the closed loop
in Fig. 1�b� is a so-called limited cycle and indicates a peri-
odic state of the discharge system.31 This is a simple state of
periodicity, with which the dynamical behaviors of the dis-
charge can be described completely by the discharge current

FIG. 1. Plasma dynamics under a prebreakdown condition having a peak
applied voltage of 1.0 kV, described by �a� time traces of the discharge
current density and the applied and gas voltages and �b� the relationship
between the current density and the gas voltage.
and the gas voltage alone.
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A significant feature of the current-voltage relationship
in Fig. 1�b� is that it always has a positive differential con-
ductivity. So the discharge current increases when the gas
voltage increases, and vice versa. This implies that the
growth of the discharge current can be easily limited if the
electrical power input from the power supply to the plasma
rig is capped.32 Hence by restricting the input power using
simple power electronics techniques, nonequilibrium atmo-
spheric DBDs with a positive differential conductivity can
achieve very high stability.33

As the peak applied voltage increased to 1.5 kV, gas
breakdown occurred and the classic DBD characteristic of
one current pulse every half cycle was observed. This is
shown in Fig. 2�a�, similar to that previously reported.4,10

The width of the current pulse was about 2 �s, a fraction of
the voltage period of 100 �s. The peak current was
1.75 mA/cm2 now, some 60 times larger than that in Fig.
1�a�. Also significantly changed was the relationship of the
current density and the gas voltage as shown in Fig. 2�b�.
While this is again a closed pattern and so represents a re-
petitive temporal behavior from cycles to cycles, it consists
of two individual closed loops interlinked by two lines of
very low current densities. These two closed loops corre-
spond to the two discharge current pulses in Fig. 2�a�. They
are confined to two small voltage ranges of 625–1070 V and
from −625 to −1070 V, in which the magnitude of the dis-
charge current reaches its maximum in Fig. 2�a�. In other
words, the size of the closed loops in Fig. 2�b� is determined
directly by the voltage range in which the discharge current
is most significant. This correlation is also true in the case of
Fig. 1. Furthermore, it is worth mentioning that the area of
the loops is proportional to dissipation power density.

It is interesting to note that each of the two closed loops
in Fig. 2 can have either positive differential conductivity or
negative differential conductivity. A negative differential
conductivity implies that the discharge current can in prin-
ciple grow without restriction even when the input power is
capped.32 Hence with negative differential conductivity, non-
equilibrium atmospheric DBDs become less stable. In Fig.
2�b�, the atmospheric DBD is shown to acquire a negative
differential conductivity when it evolves from point a to
point b. This evolution is accompanied with a rapid increase
of the discharge current and a simultaneous reduction of the
gas voltage. Theoretically this can lead to a glow-to-arc tran-
sition with unrestricted current growth. Yet the current
growth is halted at point b, when the differential conductivity
of the gas gap changes from being negative to positive. Re-
lating it to Fig. 2�a�, point b is also halted when sufficient
ionization-generated electrons reach one dielectric layer to
alter the memory voltage, namely, the voltage falling on the
dielectric barrier,4 and subsequently reduce the gas voltage to
below the breakdown voltage. As a result, the production of
new electron-ion pairs is prevented and the discharge current
starts to reduce rapidly. So, although negative differential
conductivity is induced in Fig. 2�b�, the theoretical possibil-
ity of an unrestricted current growth is removed very effec-
tively through depositing charged particles on the dielectric
barriers in nonequilibrium atmospheric DBDs. The use of the

dielectric layers controls the duration over which the gas
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voltage can exceed the breakdown voltage and as such sup-
press the glow-to-arc transition. In Fig. 2�b�, the differential
conductivity is negative also in the region from point c to d.
However, since the temporal trend of the discharge is from a
high current at point c to a low current point at point d, this
region of negative differential conductivity does not present
any danger for a glow-to-arc transition.

It is of interest to see clearly the temporal evolution of
the differential conductivity. Since a direct calculation of
dU /dI leads to mathematical singularities when dI /dt ap-
proaches to zero, we plot the time derivatives of the gas
voltage and the current density in Fig. 2�c�. It is evident that
the breakdown avalanche occurs most significantly in the
two regions marked as A and B where time derivatives of
both the discharge current density and the gas voltage change
considerably. In region A, the time derivative of the current
density is always positive and that of the gas voltage is al-
ways negative. Hence, the discharge current increases while
the gas voltage decreases, suggesting a negative differential
conductivity. As the discharge evolves into region B, the gas
voltage maintains a negative time derivative and so contin-
ues to reduce. However, the discharge current density stops
to increase and starts to decrease now with a negative time

FIG. 2. Plasma dynamics at a peak applied voltage of 1.5 kV, described by
�b� the relationship between the current density and the gas voltage, �c� temp
and �d� temporal dependence of the time derivatives of the surface charge d
derivative. The discharge plasma now has a positive differ-
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ential conductivity. Hence the boundary between region A
and region B represents a transition point from negative dif-
ferential conductivity to positive differential conductivity.
This transition point corresponds to point b in Fig. 2�b�.

There are two additional regions in Fig. 2�c�, both with
small time derivatives of the discharge current and the gas
voltage. Therefore, plasma stability in these two regions is
unlikely to change significantly, even though region C has
positive differential conductivity and region D has negative
differential conductivity. Using the differential conductivity,
it is possible to directly correlate the temporal behaviors of
the atmospheric DBD to its plasma stability. Prior to a strong
ionization event in region C, the discharge evolves with an
increasing current density and a positive differential conduc-
tivity. Upon its entrance into region A, its gas voltage starts
to decrease and its differential conductivity becomes nega-
tive, thus compromising the plasma stability. As the dis-
charge current continues to grow, the differential conductiv-
ity decreases further and the atmospheric DBD becomes
progressively less stable. The decline of the plasma stability
is halted, however, after the atmospheric DBD enters into
region B. Now with a positive differential conductivity, the
discharge current starts to decrease while the gas voltage

me traces of the discharge current density and the applied and gas voltages,
ependence of the time derivatives of the current density and the gas voltage,
y and the gas voltage.
�a� ti
oral d
ensit
continues to decrease. Eventually when the plasma enters
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region D, both the discharge current and the gas voltage are
so small that they do not affect plasma stability even though
the differential conductivity is again negative. The direct cor-
relation of plasma stability to differential conductivity is use-
ful as a tool to electrically monitor APGD stability and as an
implement mechanism for any instability control strategy,
both achievable using traditional power electronics tech-
niques.

It is possible to show analytically the association of
negative differential conductivity to the short period of very
large discharge current. To demonstrate this, we reformulate
Eqs. �19� and �20� and obtain the time derivative of the gas
voltage as follows:

dUg

d�
=

Lg

L

1

V0

dV�t�
d�

−
2�rLb

L
�

0

L

Jgdl . �22�

It is evident that the first term on the right hand side of Eq.
�22� represents the displacement current and the second term
represents the conduction current. When the plasma system
is away from the state of electron avalanche, there are few
space charges in the gas gap and the contribution from the
conduction current is very small. So, Eq. �22� can be written
as

dUg

d�
�

Lg

L

1

V0

dV�t�
d�

. �23�

As a result, the temporal change of the gas voltage depends
largely on the displacement current. They increase together
with a positive differential conductivity. As the plasma sys-
tem evolves towards the state of electron avalanche, more
and more electron-ion pairs are produced to result in substan-
tially more space charges in the gas gap. This leads to a rapid
increase in the conduction current: thus the second term on
the right hand side of Eq. �22�, namely, the conduction cur-
rent, becomes dominant. Consequently Eq. �22� can be ap-
proximated as

dUg

d�
� −

2�rLb

L
�

0

L

Jgdl . �24�

Hence dUg /dt is always negative when the current density is
positive and dominated by the conduction current. This sug-
gests negative differential conductivity while conduction cur-
rent is increasing. As the gas voltage continues to decrease
and electrons drifting towards the instantaneous anode be-
come adsorbed there, the electric field in the gas gap reduces.
This leads to an increasing reduction in the level of gas ion-
ization and in turn it reduces the contribution of the conduc-
tion current. Eventually Eq. �24� reverts back to Eq. �23� and
the differential conductivity becomes positive again.

The dynamic evolution of the gas voltage can be seen
more clearly with the surface change on the electrodes. Fig-
ure 2�d� plots the time derivatives of the surface charge den-
sity and the gas voltage, both as a function of time. As the
plasma system approaches the electron avalanche in region A
from region C, more and more electron-ion pairs are pro-
duced resulting in increase in space charges in the gas gap,
and then the surface charges deposited on the dielectric bar-

rier increase. The additional electric fields produced by the

Downloaded 20 Aug 2009 to 158.125.80.71. Redistribution subject to
surface charges reduce the total fields in the gas gap and
hence the gas voltage. While this suppresses gas ionization in
gas gap, the discharge current continues to increase in region
A because of the large number of space charges available in
the gas gap. With the discharge current carrying a large quan-
tity of charged particles to the two electrodes, the time de-
rivative of the surface charges remains positive and increases
rapidly as shown in Fig. 2�d�. Eventually the depletion of
available charged particles in the gas gap combines with a
reducing gas voltage to halt the growth of the discharge cur-
rent and hence that of the surface charges. This occurs at the
boundary between regions A and B. Therefore in dielectric-
barrier discharges, a reduction in the discharge current fol-
lows that of the gas voltage but at a delayed point in time.
The differential conductivity of the ionized gas is negative
during this delayed period of time, and it becomes positive
once sufficient charged particles are adsorbed on the elec-
trodes to suppress current growth.

It is worth revisiting Fig. 2�b� where the relationship
between the discharge current and the gas voltage consists of
two linked and closed loops. From the standpoint of nonlin-
ear dynamical systems,31 this is again a limited cycle because
of the pattern being closed and as such the discharge dynam-
ics are periodic. However, the closed pattern has two inter-
section points and without the aid of arrows the direction of
subsequent dynamical evolution is uncertain. The appearance
of intersections in Fig. 2�b� indicates that a full description of
plasma dynamics requires a third quantity in addition to the
discharge current and the gas voltage. From the foregoing
discussion of Fig. 2�d�, surface charges appear to be an im-
portant physical quantity. To this end, plasma dynamics are
represented in a three-dimensional space of the surface
charge density, the discharge current, and the gas voltage in
Fig. 3. It is evident that the trajectory of the plasma dynamics
is closed without any intersection and is therefore a three-
dimensional limited cycle.31 Hence by increasing the magni-
tude of the applied voltage, the two-dimensional limited
cycle of Fig. 1�b� evolves into the three-dimensional limited
cycle of Fig. 3. This represents a significant change in the
character and periodicity of the plasma system or bifurcation
as discussed comprehensively for nonlinear dynamical
systems.31,32

The general pattern of the three-dimensional limited
cycle in Fig. 3 remains unchanged regardless of the applied
voltage, as long as the classic temporal feature in Fig. 2�a� of
one current pulse per half voltage cycle is retained. However,
when the amplitude of the applied voltage increases further,
it is possible to obtain two or more discharge current pulses
per half voltage cycle.9 An example of such scenarios is
shown for the case of Va=2.0 kV in Fig. 4�a� where four
closed loops are evident. The four loops correspond to two
discharge current pulses in the first half cycle and further two
current pulses in the second half cycle of the applied voltage.
Similar to that in Fig. 2�b�, these loops acquire both positive
and negative differential conductivities. Temporal variations
of the time derivatives of the discharge current, and the gas
voltage are shown in Fig. 4�b�, similar to those in Fig. 2�c�.
The trajectory of plasma dynamics is again described three

dimensionally in Fig. 4�c� by means of the surface charge
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density, the discharge current and the gas voltage. Similar to
that in Fig. 3, this three-dimensional limited cycle is closed
without any intersection. Therefore, the plasma dynamics re-
main periodic even though more than one significant ioniza-
tion event is induced during each half voltage cycle. It is
worth noting that the three-dimensional limited cycle of Fig.
4�c� has two symmetric spiral sections for which plasma evo-
lution occurs largely along the direction of the charge-

FIG. 4. Plasma dynamics at a peak applied voltage of 2.0 kV, described by
dependence of the time derivatives of the current density and the gas volta

space.

Downloaded 20 Aug 2009 to 158.125.80.71. Redistribution subject to
density axis. Each of these two spiral sections has two con-
volutions, corresponding to two current pulses in each half
voltage cycle. This contrasts that in Fig. 3 where there is no
spiral section.

With an increase in the peak applied voltage from
1.5 to 2.0 kV, plasma dynamics undergo an abrupt change in
its three-dimensional limited cycle from Fig. 3 to Fig. 4�c�.
This represents a bifurcation. In fact, additional bifurcation

FIG. 3. Dynamic evolution trajectory of the atmo-
spheric DBDs in the three-dimensional phase space of
the gas voltage, the current density, and the surface
charge density, with the peak applied voltage fixed at
1.5 kV.

e relationship between the current density and the gas voltage, �b� temporal
nd �c� the three-dimensional trajectory in the voltage-current-charge phase
�a� th
ge, a
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events can be induced if the applied voltage is increased still
further. Figure 5 shows �a� the relationship of the gas voltage
and the discharge current density and �b� its corresponding
three-dimensional limited cycle when the peak applied volt-
age is increased to 4.0 kV. There are now five current pulses
per half voltage cycle in the time traces of voltages and cur-
rents �not shown�, corresponding to the two sets of five loops
in Fig. 5�a� and to the two symmetric spiral sections, in the
direction of the charge-density axis and each with five con-
volutions, of the three-dimensional limited cycle in Fig. 5�b�.
It is conceivable that the number of the current pulses per
half voltage cycle increases from 2, through 3 and 4, to 5 as
the peak applied voltage increases from 2.0 to 4.0 kV.
Therefore in the wide range of the applied voltage from
1.5 to 4.0 kV, the atmospheric DBD evolves through a se-
quence of dynamic phases ranging from that characterized by
the simplistic two-dimensional limited cycle in Fig. 1�b�,
through that characterized by the simplest three-dimensional
limited cycle having no spiral section in Fig. 3, and finally to
the complex three-dimensional limited cycles in Figs. 4�c�
and 5�b� having two symmetric spiral sections of increasing
convolutions. Preliminary results of our two-dimensional
simulation34 indicate that the overall spatial appearance of

FIG. 5. Plasma dynamics at a peak applied voltage of 4.0 kV, described by
�a� the relationship between the current density and the gas voltage and �b�
the three-dimensional trajectory in the voltage-current-charge phase space.
the discharge plasma remains largely unchanged. Hence, the

Downloaded 20 Aug 2009 to 158.125.80.71. Redistribution subject to
dynamic evolution of the atmospheric DBDs is through a
sequence of bifurcation changes—phase changes in the time
domain but not in the space domain.

From the above numerical examples as well as reported
experimental data, the dynamic behaviors of nonequilibrium
atmospheric DBDs appear to be of a periodic character.
However, quasiperiodic and chaotic behaviors have been ob-
served in other plasma systems35,36 and we have no reason-
able justification to exclude the existence of such nonperi-
odic trajectories in nonequilibrium atmospheric plasmas.
While a comprehensive discussion is outside the scope of
this work, we have indeed observed period multiplication
from our numerical simulation. Figure 6 shows an example
of period multiplication in which the period of the discharge
current is three times that of the applied voltage when the
peak applied voltage is 2.7 kV and a gap distance of 10 mm.
In other words, the plasma system of Fig. 6 exhibits a so-
called period 3 structure. According to the seminal work of
Li and Yorke,37 a period 3 structure may be indicative of
chaotic behaviors. This is significant as it highlights a prob-
ability of quasiperiodic or even chaotic dynamic behaviors in
nonequilibrium atmospheric plasmas. While this must be ad-
dressed in a separate note, its implication is profound for
stability analysis of nonequilibrium atmospheric plasmas and
for the development of their instability control strategies.

IV. CONCLUSION

In this paper, the complex dynamics behaviors of an at-
mospheric DBD were studied with a one-dimensional fluid
model. In addition to the time traces of the discharge currents
and applied and gas voltages, a three-dimensional phase
space of gas voltage, discharge current density, and
electrode-surface charge density was used as the main analy-
sis tool to unravel and understand the complex dynamic be-
haviors of atmospheric DBDs and their evolution as the ap-
plied voltage increased from prebreakdown to many times
above the breakdown voltage. It was shown that the dynamic
evolution of the atmospheric DBDs passed through a se-
quence of phases ranging from a simplistic two-dimensional

FIG. 6. Observation of a period 3 structure as demonstrated by time traces
of the discharge current density and the applied voltage. The peak applied
voltage is 2.7 kV, the gas gap is 10 mm, and the secondary electron emis-
sion coefficient is 0.01.
limited cycle, through the simplest three-dimensional limited
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cycle, and to a complex three-dimensional limited cycle hav-
ing two symmetric spiral sections of increasing convolutions.
Above the breakdown voltage, the discharge plasma was
shown to acquire negative differential conductivity and as a
result its stability was compromised. This was, however,
mitigated by a rapid accumulation of surface charges on the
electrodes, thus allowing the atmospheric DBD to retain its
character as a glow discharge. At certain values of the peak
applied voltage, a highly complex phenomenon of period
multiplication was observed in which the period of the dis-
charge current is three times that of the applied voltage. This
suggests that nonequilibrium atmospheric DBDs may sup-
port evolution patterns that are quasiperiodic or even chaotic.
These complex dynamic behaviors are likely to be critical to
a full understanding of plasma stability of nonequilibrium
atmospheric plasmas and to the development of their insta-
bility control strategies.
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