Supporting Information

Clathrate Ba₈Au₁₆P₃₀: The "Gold Standard" for Lattice Thermal Conductivity

James Fulmer, ^{Υ} Oleg I. Lebedev, ^{\bot} Vladimir V. Roddatis, ⁹ Derrick C. Kaseman, ^{∇} Sabyasachi Sen, ^{∇} Juli-Anna Dolyniuk, ^{Υ} Kathleen Lee, ^{Υ} Andrei V. Olenev, ^{Υ} Kirill Kovnir^{Υ , *}

[°] Department of Chemistry, and [∇]Department of Chemical Engineering and Materials Science, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA

¹ Laboratoire CRISMAT, ENSICAEN, CNRS UMR 6508, 6 Boulevard du Maréchal Juin, F-14050 Caen, France

⁹ CIC energiGUNE, Albert Einstein 48, 01510 Miñano, Álava, Spain

Atom	Site	x/a	y/b	z/c	$U_{ m so}$
Ba1	4 <i>b</i>	0	0.5	0	0.0139(8)
Ba2	4 <i>c</i>	0	0.0062(3)	0.25	0.0125(8)
Ba3	8 <i>d</i>	0.3757(2)	0.9915(3)	0.18733(9)	0.0287(7)
Ba4	8 <i>d</i>	0.1246(2)	0.0085(3)	0.06050(9)	0.0224(7)
Ba5	8 <i>d</i>	0.2486(2)	0.2540(3)	0.3763(1)	0.0256(6)
Au1	8 <i>d</i>	0.1858(1)	0.1889(2)	0.24960(6)	0.0180(4)
Au2	8 <i>d</i>	0.0020(1)	0.3196(2)	0.09348(5)	0.0180(4)
Au3	8 <i>d</i>	0.3799(1)	0.0045(2)	0.31054(5)	0.0224(4)
Au4	8 <i>d</i>	0.5522(1)	0.3159(2)	0.03118(6)	0.0185(4)
Au5	8 <i>d</i>	0.9014(1)	0.0037(2)	0.14210(5)	0.0180(4)
Au6	8 <i>d</i>	0.7164(1)	0.0100(2)	0.04688(5)	0.0163(4)
Au7	8 <i>d</i>	0.6523(1)	0.3810(2)	0.32760(6)	0.0228(5)
Au8	8 <i>d</i>	0.1612(1)	0.6155(2)	0.07944(6)	0.0182(5)
P1	8 <i>d</i>	0.0050(7)	0.192(1)	0.1603(3)	0.0049(5)
P2	8 <i>d</i>	0.4863(7)	0.309(0)	0.3402(3)	0.0049(5)
P3	8 <i>d</i>	0.6835(7)	0.192(1)	0.9980(3)	0.0049(5)
P4	8 <i>d</i>	0.1881(7)	0.679(1)	1.0002(3)	0.0049(5)
P5	8 <i>d</i>	0.4990(8)	0.179(1)	0.0951(3)	0.0049(5)
P6	8 <i>d</i>	0.2481(9)	0.260(1)	0.1243(4)	0.0049(5)
P7	8 <i>d</i>	0.5623(6)	0.69631)	0.0304(4)	0.0049(5)
P8	8 <i>d</i>	0.5969(6)	0.004(1)	0.1063(3)	0.0049(5)
Р9	8 <i>d</i>	0.2132(6)	0.011(1)	0.2961(3)	0.0049(5)
P10	8 <i>d</i>	0.1822(6)	0.817(1)	0.2570(3)	0.0049(5)
P11	8 <i>d</i>	0.1237(6)	0.018(1)	0.4414(3)	0.0049(5)
P12	8 <i>d</i>	0.1523(7)	0.125(0)	0.1694(3)	0.0049(5)
P13	8 <i>d</i>	0.5537(6)	0.808(1)	0.2209(3)	0.0049(5)
P14	8 <i>d</i>	0.1528(7)	0.3690(9)	0.0769(4)	0.0049(5)
P15	8 <i>d</i>	0.0661(7)	0.7074(9)	0.2830(3)	0.0049(5)

Table SI 1. Atomic coordinates and isotropic displacement parameters for $Ba_8Au_{16}P_{30}\!.$

Atoms		d, Å	Atoms		d, Å
Ba1	Au2	3.302(2)	Au1	P9	2.34(1)
Ba1	Au4	3.511(2)	Au1	P10	2.36(1)
Ba1	Au6	3.448(1)	Au1	P13	2.46(1)
Ba1	Au8	3.511(2)	Au1	P12	2.47(1)
Ba1	P3	3.36(1)	Au2	P1	2.35(1)
Ba1	P4	3.33(1)	Au2	P7	2.43(1)
Ba1	P5	3.34(1)	Au2	P8	2.45(1)
Ba1	P7	3.42(1)	Au2	P14	2.32(1)
Ba1	P8	3.391(8)	Au3	P8	2.44(1)
Ba1	P14	3.44(1)	Au3	P9	2.48(1)
Ba1	P14	3.44(1)	Au3	P13	2.46(1)
Ba2	Au1	3.325(3)	Au3	P15	2.39(1)
Ba2	Au5	3.444(1)	Au4	P3	2.51(1)
Ba2	Au7	3.427(2)	Au4	P5	2.47(1)
Ba2	P1	3.25(1)	Au4	P7	2.45(1)
Ba2	P2	3.32(1)	Au4	P11	2.50(1)
Ba2	P9	3.393(9)	Au5	P1	2.54(1)
Ba2	P10	3.33(1)	Au5	P2	2.42(1)
Ba2	P13	3.36(1)	Au5	P9	2.45(1)
Ba2	P12	3.46(1)	Au5	P11	2.45(1)
Ba2	P15	3.43(1)	Au6	P3	2.42(1)
Ba3	Au1	3.755(4)	Au6	P4	2.44(1)
Ba3	Au2	3.721(3)	Au6	P8	2.45(1)
Ba3	Au3	3.573(3)	Au6	P11	2.36(1)
Ba3	Au3	3.580(3)	Au7	P2	2.58(1)
Ba3	Au7	3.496(3)	Au7	P6	2.38(1)
Ba3	Au8	3.428(3)	Au7	P10	2.58(1)
Ba3	P13	3.38(1)	Au7	P12	2.55(1)
Ba3	P13	3.44(10	Au8	P4	2.43(1)
Ba3	P14	3.48(10	Au8	P5	2.48(1)
Ba4	Au2	3.839(3)	Au8	P6	2.39(1)
Ba4	Au4	3.401(3)	Au8	P14	2.58(1)
Ba4	Au4	3.389(3)	P1	P13	2.30(1)
Ba4	Au7	3.530(3)	P1	P12	2.28(1)
Ba4	Au8	3.374(3)	P2	P5	2.33(1)
Ba4	P7	3.48(1)	P2	P15	2.12(1)
Ba4	P11	3.463(9)	P3	P4	2.31(1)
Ba4	P12	3.40(1)	P3	P14	2.30(1)
Ba5	Au1	3.844(3)	P4	P7	2.42(1)

Table SI 2. Selected interatomic distances in $Ba_8Au_{16}P_{30}$.

Ba5	Au2	3.832(4)	P5	P8	2.35(1)
Ba5	Au3	3.760(3)	Р6	P12	2.38(1)
Ba5	Au3	3.746(3)	P6	P14	2.27(1)
Ba5	Au5	3.458(4)	P7	P11	2.22(1)
Ba5	Au5	3.482(4)	P9	P10	2.36(1)
Ba5	Au6	3.427(3)	P10	P15	2.18(1)
Ba5	Au6	3.516(3)	P13	P13	2.30(1)
Ba5	P8	3.49(1)	P15	P15	2.72(2)
Ba5	P8	3.47(1)			
Ba5	P9	3.49(1)			

Compound	d(Au-P), Å	Au CN	AuP _n fragment	Reference
$Au(PF_3)_2^+$	2.25	2	linear	S1
Au ₂ P ₃	2.33-2.34	2	linear	23
MAu_2P_2 (M = Hg, Tl, Pb)	2.33-2.34	2	linear	S2
K ₅ AuP ₂	2.37	2	linear	\$3
K ₂ AuP	2.40	2	linear	S4
BaAu ₂ P ₄	2.36	2	linear	16
Au ₇ P ₁₀ I	2.32-2.34	2, 3	linear, trigonal planar	S5
CaAuP	2.45	3	trigonal planar	\$6
EuAuP	2.49	3	trigonal planar	S7
BaAuP	2.54	3	trigonal planar	S8
La ₂ AuP ₂ O	2.42-2.48	3	trigonal planar	31b, S9
Au ₃ SnP ₇	2.41-2.55	3	trigonal pyramid	S10
$R_{2}AuP_{3}(R = Ce, Pr, Nd)$	2.46-2.53	3	tetrahedral	S11
$Au_{1-x}Sn_{1+x}P_{14}$	2.46-2.53	4	tetrahedral	S12
Ba ₈ Au ₁₆ P ₃₀	2.34-2.58	4	tetrahedral	current work

Table SI 3. Au-P bond distance, gold coordination number (CN) and shape of AuPn fragments in the selected inorganic compounds.

- [S1] Kuester, R.; Seppelt, K. Z. Anorg. Allgem. Chem. 2000, 626, 236-240.
- [S2] Eschen, M.; Jeitschko, W. J. Solid State Chem. 2002, 165, 238-246.
- [S3] Eisenmann, B.; Klein, J.; Somer, M. J. Alloys Compd. 1992, 178, 431-439.
- [S4] Eisenmann, B.; Klein, J.; Somer, M. Z. Krist. 1991, 197, 277-278.
- [S5] Jeitschko, W.; Möller, M.H. Acta Cryst. B. 1979, 35, 573-579.
- [S6] Iandelli, A. Rev. Chim. Miner. 1987, 24, 28-32.
- [S7] Tomuschat, C.; Schuster, H.U. Z. Naturforsch. B. 1981, 36, 1193-1194.
- [S8] Nuss, J.; Jansen, M. Z. Anorg. Allgem. Chem. 2009, 635, 1514-1516.
- [S9] Eul, M.; Möller, M.H.; Hoffmann, R.D.; Jeitschko, W.; Pöttgen, R. Z. Anorg. Allgem. Chem. 2012, 638, 331-335.
- [S10] Lange, S.; Nilges, T. Z. Naturforsch. B. 2006, 61, 871-881.
- [S11] Eschen, M.; Kotzyba, G.; Künnen, B.; Jeitschko, W.Z. Anorg. Allgem. Chem. 2001, 627, 1699-1708.
- [S12] Eschen, M.; Wallinda, J.; Jeitschko, W. Z. Anorg. Allgem. Chem. 2002, 628, 2764-2771.

 $Figure \ SI \ 1. \ P_{12} \ (left) \ and \ P_{18} \ (right) \ polyphosphide \ fragments \ in \ the \ crystal \ structure \ of \ Ba_8Au_{16}P_{30}.$

 $\label{eq:sigma} Figure SI 2. High resolution HAADF-STEM images along main zone axis and corresponding overlay structural model of Ba_8Au_{16}P_{30}. \\ Only Au (yellow) and Ba(blue) atoms shown for clarity.$

Type of P atoms	Structural ratio	δ, ppm
1 <i>b</i> -P: 3Cu+P	6	132 and 388
2 <i>b</i> -P: 2Cu+2P	22	710 and 364
3 <i>b</i> -P: 1Cu+3P	2	51

Table SI 4. Chemical shifts and relative intensity of the ^{31}P NMR signals for Ba_8Cu_{16}P_{30}.

Figure SI 3. Low resolution HAADF-STEM (upper row) and TEM (bottom row) images illustrating average domain size for Ba₈Au₁₆P₃₀.