figshare
Browse
1/1
8 files

Chiral Bistacrine Analogues: Synthesis, Cholinesterase Inhibitory Activity and a Molecular Modeling Approach

dataset
posted on 2017-12-05, 08:53 authored by João P. B. Lopes, Jessie S. da Costa, Marco A. Ceschi, Carlos A. S. Gonçalves, Eduardo L. Konrath, Ana L. M. Karl, Isabella A. Guedes, Laurent E. Dardenne

Cholinesterase enzymes are important targets for the therapy of Alzheimer’s disease. Tacrine-based dual binding site cholinesterases inhibitors are potential disease-modifying anti-Alzheimer drug candidates. In the present work, we described the synthesis of a series of chiral homo- and heterodimers of bis(7)-tacrine connected by a heptylene chain as a spacer with the methyl substituent at the C-3 position of the alicyclic region of tacrine nucleus and/or a chlorine atom attached to the C-6. Friedländer cyclocondensation between (R) or (S) 3-methylcyclohexanone prepared from monoterpene pulegone and o-aminobenzoic acids in the presence of POCl3 afford 9-chloroacridines as intermediates, which were used to the synthesis of homo- and heterodimers. All compounds demonstrated to be potent inhibitors of acetylcholinesterase (AChE) at low nanomolar concentration and showed selectivity for AChE over butyrylcholinesterase (BuChE). Furthermore, the affinity difference between enantiomeric bis(7)-tacrine analogues series indicated some degree of stereoselectivity in the active site of AChE for chiral bis-cognitin compounds.

History

Usage metrics

    Journal of the Brazilian Chemical Society

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC