figshare
Browse
es9b03394_si_001.pdf (1.17 MB)

Chemical and Physical Controls on Mercury Source Signatures in Stream Fish from the Northeastern United States

Download (1.17 MB)
journal contribution
posted on 2019-08-20, 13:33 authored by Sarah E. Janssen, Karen Riva-Murray, John F. DeWild, Jacob M. Ogorek, Michael T. Tate, Peter C. Van Metre, David P. Krabbenhoft, James F. Coles
Streams in the northeastern U.S. receive mercury (Hg) in varying proportions from atmospheric deposition and legacy point sources, making it difficult to attribute shifts in fish concentrations directly back to changes in Hg source management. Mercury stable isotope tracers were utilized to relate sources of Hg to co-located fish and bed sediments from 23 streams across a forested to urban-industrial land-use gradient within this region. Mass-dependent isotopes (δ202Hg) in prey and game fish at forested sites were depleted (medians −0.95 and −0.83 ‰, respectively) in comparison to fish from urban-industrial settings (medians −0.26 and −0.38 ‰, respectively); the forested site group also had higher prey fish Hg concentrations. The separation of Hg isotope signatures in fish was strongly related to in-stream and watershed land-use indicator variables. Fish isotopes were strongly correlated with bed sediment isotopes, but the isotopic offset between the two matrices was variable due to differing ecosystem-specific drivers controlling the extent of MeHg formation. The multivariable approach of analyzing watershed characteristics and stream chemistry reveals that the Hg isotope composition in fish is linked to current and historic Hg sources in the northeastern U.S. and can be used to trace bioaccumulated Hg.

History