figshare
Browse
tnan-2017-0177-File007.docx (402.39 kB)

Changes in DNA methylation induced by multi-walled carbon nanotube exposure in the workplace

Download (402.39 kB)
journal contribution
posted on 2017-12-01, 07:06 authored by Manosij Ghosh, Deniz Öner, Katrien Poels, Ali M. Tabish, Jelle Vlaanderen, Anjoeka Pronk, Eelco Kuijpers, Qing Lan, Roel Vermeulen, Bram Bekaert, Peter HM Hoet, Lode Godderis

This study was designed to assess the epigenetic alterations in blood cells, induced by occupational exposure to multi-wall carbon nanotubes (MWCNT). The study population comprised of MWCNT-exposed workers (n=24) and unexposed controls (n=43) from the same workplace. We measured global DNA methylation/hydroxymethylation levels on the 5th cytosine residues using a validated liquid chromatography tandem-mass spectrometry (LC-MS/MS) method. Sequence-specific methylation of LINE1 retrotransposable element 1 (L1RE1) elements, and promoter regions of functionally important genes associated with epigenetic regulation [DNA methyltransferase-1 (DNMT1) and histone deacetylase 4 (HDAC4)], DNA damage/repair and cell cycle pathways [nuclear protein, coactivator of histone transcription/ATM serine/threonine kinase (NPAT/ATM)], and a potential transforming growth factor beta (TGF-β) repressor [SKI proto-oncogene (SKI)] were studied using bisulfite pyrosequencing. Analysis of global DNA methylation levels and hydroxymethylation did not reveal significant difference between the MWCNT-exposed and control groups. No significant changes in Cytosine-phosphate-Guanine (CpG) site methylation were observed for the LINE1 (L1RE1) elements. Further analysis of gene-specific DNA methylation showed a significant change in methylation for DNMT1, ATM, SKI, and HDAC4 promoter CpGs in MWCNT-exposed workers. Since DNA methylation plays an important role in silencing/regulation of the genes, and many of these genes have been associated with occupational and smoking-induced diseases and cancer (risk), aberrant methylation of these genes might have a potential effect in MWCNT-exposed workers.

Funding

Manosij Ghosh is the recipient of a European Respiratory Society RESPIRE postdoctoral fellowship (RESPIRE2 – 2014–7310). DÖ would like to acknowledge financial assistance to Stichting Tegen Kanker (agreement no: 2012–218, project no: 3M150270).

History