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Abstract 

Understanding conceptual relationships is an important aspect of learning arithmetic. Most 

studies of arithmetic, however, do not distinguish between children’s understanding of a 

concept, and their ability to identify situations in which it might be relevant. We compared 8- to 

9-year-old children’s use of a computational shortcut based on the inverse relationship between 

addition and subtraction, in problems where it was transparently applicable (e.g. 17 + 11 –

11 = ) and where it was not (e.g. 15 + 11 – 8 – 3 = ). Most children were able to construct 

inverse transformations and apply the shortcut in at least some situations, although they used 

the shortcut more for problems where it was transparently applicable. There were individual 

differences in the relationship between children’s understanding of the inverse relationship and 

computational skill that have implications for theories of mathematical development. 

 

Keywords: arithmetic, conceptual understanding, individual differences, problem solving.
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Can children construct inverse relations in arithmetic? Evidence for individual differences in 

the development of conceptual understanding and computational skill. 

 Learning arithmetic is challenging. Not only must children learn to add, subtract, 

multiply and divide: they must also understand how these operations are related. Sophisticated 

problem solving in mathematics makes use of inferences, analogies and conceptually-based 

shortcuts to reduce the computational challenges of solving problems. For example, children 

use inferences and analogies to develop new strategies and approaches to solve proportional 

relations problems (e.g. Singer-Freeman & Goswami, 2001);  children who understand 

commutativity reduce by half the number of addition or multiplication facts that they must 

learn (e.g. Baroody, Ginsburg, & Waxman, 1983); children who understand associativity are 

able to use decomposition strategies such as 5 + 7 = 5 + 5 + 2 = 10 + 2 = 12 (e.g. Canobi, 

Reeve, & Pattison, 1998); and children who understand the inverse relation between addition 

and subtraction realize that adding and subtracting the same quantity leaves the initial quantity 

unchanged and so no computation is necessary (e.g. Bryant, Christie, & Rendu, 1999).  

 Children’s ability to perform computations and to understand these deeper conceptual 

underpinnings of arithmetic are related in a complex fashion over development. The iterative 

model of mathematical learning suggests that developments in conceptual and procedural 

aspects of mathematics are interrelated (e.g. Baroody & Ginsburg, 1986; Carpenter, 1986; 

Rittle-Johnson & Siegler, 1998; Rittle-Johnson, Siegler, & Alibali, 2001). Improvements in 

conceptual understanding can lead to advances in procedural skill and vice-versa. Thus, there is 

a bidirectional, causal relationship between the developments of each type of knowledge 

(Rittle-Johnson et al., 2001). At any point in time, therefore, children may have partial 

understanding of particular concepts and knowledge of procedures. Conceptual understanding 
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is both a constraint on the development of procedures and a product of this development 

(Sophian, 1997).  

 The aim of mathematical instruction should be to help children to integrate these two 

types of knowledge. Children should be able to select and perform procedures based on an 

understanding of when and why these procedures are appropriate. We can distinguish the 

meaningful use of different strategies (adaptive expertise; cf Baroody & Dowker, 2003; 

Torbeyns, Verschaffel, & Ghesquière, 2005) from the rote application of procedures (routine 

expertise). Furthermore, children should understand how arithmetical concepts may be relevant 

in different situations. With integrated conceptual and procedural knowledge, children would 

be able to judge when they need to compute and when they can use conceptually-based 

shortcuts or inferences to solve a problem.  

Most investigations of children’s conceptual understanding of arithmetic, however, do 

not distinguish between children’s ability to make use of an arithmetical concept from their 

ability to identify when a concept may be relevant. Problem solving in everyday life nearly 

always involves identifying whether a concept is relevant. Problem solvers have to impose their 

solution on the situations confronting them. If the solution depends on an inference, for 

example, the successful problem-solver must be able to make that inference, but usually he or 

she has first to recognize that an inference is possible and then to search for or construct the 

premises that are needed for the inference, in order to make the actual inference. Analogical 

solutions to problems are much the same: the person solving the problem usually has to 

understand that an analogy might be useful and to discern the set of relations that could lead to 

the analogy, as well as to be able to make the analogy itself 

The constructive elements of problem-solving play no part in many of the mathematical 

tasks that psychologists give children in experiments, and which teachers give them in the 
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classroom. When psychologists and teachers give children sums to do, they test the children’s 

ability to make a calculation, but not their ability to organize the information that they have in 

order to make it amenable to the kind of calculation that they have decided to make. The 

constructive part of the task has been done for the children already.  These tasks have their 

value, since we often need to know whether or not children can make particular kinds of 

calculations and whether or not they possess particular kinds of conceptual knowledge. 

However, we also need to find out how children spot the need for specific types of calculation 

when this isn’t presented to them on a plate, and how they actively reconstruct the information 

given to them so that it fits the mathematical solution which they wish to apply. Previous 

research on mathematical development has so far failed to make comparisons between 

children’s ability to perform these two types of tasks. Here we investigate how well children 

can apply conceptual principles both on tasks where they are transparently applicable and on 

more complex tasks where children first have to identify that the concept is relevant and then 

reconstruct the problem in order to make certain conceptually based inferences. 

An interesting illustration of why comparisons between transparent and complex tasks 

are necessary is provided by existing research on children’s understanding of inversion. The 

basis for this research is the quite reasonable assumption that people cannot understand either 

addition or subtraction effectively unless they also understand the inverse relations between 

these two operations (e.g. Bryant et al., 1999; Bryant & Nunes, 2002; Piaget, 1952; Piaget & 

Moreau, 2001). This assumption has led to several studies of performance in tasks in which 

children were given a + b – b =  sums (e.g. 27 + 13 – 13 = ). These studies established signs 

of a patchy understanding of inversion among young school children from four years on: some, 

though not all, of these children were able to solve inverse a + b – b =  problems more 

accurately and more rapidly than control problems, such as a + b – c = , in which an 
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understanding of inversion is no help at all (e.g. Bisanz, LeFevre, & Gilliland, 1989; Bryant et 

al., 1999; Canobi, 2005; Gilmore, 2006; Gilmore & Bryant, 2006; Klein & Bisanz, 2000; 

Rasmussen, Ho, & Bisanz, 2003; Robinson, Ninowski, & Gray, 2006; Siegler & Stern, 1998; 

Stern, 1992).  

The consistent evidence for some understanding of inversion in quite young children is 

important, but it raises new questions. The most important of these concerns the use that 

children and adults can make of this understanding. In everyday life people have to transform 

individual problems that face them in some way in order to take advantage of their knowledge 

of inversion. For example, a problem like 24 + 11 – 7 – 4 = is not on the face of it an inversion 

problem but someone who realizes that –7 – 4 = –11 can actively transform the problem into 

the inversion sum 24 + 11 – 11 = . This is a good and simple example of the additional 

constructive element of problem solving, and it is easy to make the comparison between a 

problem such as this and an equivalent transparent problem. The difference between children’s 

success with a transparent sum, for example 24 + 11 – 11 = ,  and a non-transparent one, for 

example 24 + 11 – 7 – 4 = ,  would give us a measure of how hard it is for children to impose 

their knowledge of inversion on the problem by transforming the problem to suit this 

knowledge. 

There may be strong individual differences among school-children in the extent of the 

extra difficulty that this extra component of tasks impose on them. It has already been 

demonstrated that there are individual differences among children in the relationship between 

their understanding of arithmetical concepts and computational skill. While most children’s 

understanding of arithmetical concepts is related to their ability to perform procedures 

accurately, for other children computational skill may not reflect conceptual understanding of 

underlying principles (Dowker, 1998; Canobi, 2004). In particular, clear patterns of individual 
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differences have been found in children’s performance on transparent inverse and control 

problems (Gilmore & Bryant, 2006). Three groups of children with different profiles of 

performance have been identified.  One possesses a good understanding of inversion, as 

measured by their scores in transparent inversion tasks and also good calculation skill, as 

measured by their performance in control tasks in which they had to calculate the answer. The 

second group is characterized by poor understanding of inversion and poor calculation skill, 

and the third group by good understanding of inversion but poor calculation skill. The most 

interesting of these groups is the third, discrepant, group of children. Given their low 

calculation scores, they are surprisingly good at solving transparent inversion problems. At 

present, it is not clear whether this is because these children have better than expected 

conceptual understanding, or difficulties or delays in acquiring computational skills, and thus 

interpretation of these groups is problematic. These questions may be answered by examining 

children’s performance on more complex tasks in which they must actively transform problems 

so that they are amenable to inversion  

 Gilmore & Bryant (2006) provided the first evidence for the existence of individual 

differences in understanding of inversion and arithmetic skill, however, alternative 

interpretations of the different subgroups could not be disentangled. The present paper extends 

this in several crucial ways. Firstly, it is important to replicate these clusters to demonstrate that 

they are meaningful and not a result of chance variation in the initial sample. Secondly, the 

present work distinguishes between alternative possible interpretations of the clusters by 

examining whether children apply knowledge of inversion in different situations and how this 

ability differs among children in relation to their computational skill.  Finally, the present paper 

is the first study to examine children’s understanding of inversion in situations where the 

inverse relationship is not transparently presented. Children’s understanding of inversion is 
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examined by comparing performance on problems with or without inverse transformations, 

both in situations where the inverse transformation is transparent and where it must be 

constructed. This is an important step in our knowledge of children’s use of conceptual 

principles in arithmetic problem-solving. 

 

Method 

Participants 

Sixty-eight children (33 boys and 35 girls) participated in the study. Their mean age 

was 8 years 7 months (range 8 years 1 month to 9 years 2 months). The children were in Year 4 

classes at two primary schools (48 from School 1 and 20 from School 2). Both schools were in 

suburban areas and had predominantly white students. The percentage of children who 

qualified for free school meals was in line with the national average in School 2 and below the 

national average in School 1. The children were recruited by contacting a wide range of schools 

in the local area and sending letters to all parents in the relevant year group of schools who 

agreed to take part. One child declined to attempt a large number of the problems and so his 

data were discarded. Thus there were complete data from 67 children. All the children spoke 

English as their first language and none had been identified as having special educational 

needs.  

Design and Materials 

Each child completed 24 four-term arithmetic problems (a + b – c = d). Half of the 

questions were transparent inverse problems where b = c (e.g. 15 + 12 – 12 = ), and these 

were matched with a control problem (e.g. 11 + 11 – 7 = ). The children also completed 24 

five-term arithmetic problems (a + b – c – d = e). Half of the questions were complex inverse 

problems where b = c + d (e.g. 15 + 11 – 8 – 3 = ), and these were matched with a control 
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problem (e.g. 13 + 11 – 5 – 4 = ). The matched pairs of inverse and control problems had the 

same missing number and the range of operands for inverse and control problems was matched 

across the whole problem set. In control problems, the addend and subtrahend (or sum of 

subtrahends in 5-term problems) differed by at least 3, to prevent children decomposing the 

problem and using inversion to solve it (cf. Bryant et al., 1999). The problems were designed to 

be at the limit of, or just beyond, what could be solved by this age group when using 

computation.  

The composition of the inverse and control problems was varied in two further ways. 

First, the order of elements in the problem was varied. Order 1 problems had the order used 

typically in previous studies of inversion (i.e. a + b – b = a; a + b – b1 – b2 = a), and the control 

problems were matched to this (i.e. a + b – c = d; a + b – c – d = e). Order 2 problems had the 

inverse elements at the start of the sum (i.e. b – b + a = a; b – b1 – b2 + a = a), and the control 

problems were matched to this (b – c + a = d; b – c – d + a = e). Second, each problem had 

either the ‘a’ term or the sum missing (e.g. a + b – b = or  + b – b = a). The children 

completed three examples of each problem type, see Table 1 for examples.  

INSERT TABLE 1 ABOUT HERE 

The element order and missing number variations were included to test the range of 

problems on which children could identify and make use of the inverse principle. If children 

have a thorough understanding of this concept then they should be able to use it in a variety of 

problem situations, regardless of the surface form of the problem. Previous work has found that 

children recognize inverse transformations more easily when the inverse elements are at the 

start of the sum (i.e. order 2) than when the inverse elements are after the initial term (i.e. order 

1) and more easily when the sum is missing than a term on the left-hand-side of the sum 

(Gilmore, 2006). Including these variations in the present study allows us to test whether the 
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same effects are found for complex as well as transparent inverse problems. Finally, including a 

range of inverse problems prevents children from developing a simple superficial strategy such 

as responding with the initial number. 

Procedure 

The participants were tested individually in two 20-minute sessions. In each session the 

children were given equal numbers of four- and five-term problems, inverse and control 

problems, problems with each element order and problems with the ‘a’ term or the sum 

missing. The order in which the sessions were completed was counterbalanced across 

participants. Within each session the trials were presented in a different random order for each 

participant.  

The problems were presented on a HP laptop running SuperLab Pro (v. 2.0, Cedrus 

Corp). They appeared in the centre of the screen with an empty box in place of the missing 

number. The task was introduced as a numbers game in which the participants had to work out 

the missing number. At the beginning of each session there were four familiarization / practice 

trials which were all control problems. In each trial the problem was presented on the screen 

and the experimenter read it aloud twice. The children were given positive encouragement 

without any specific feedback throughout.  

Results 

 The results are presented in three parts. First, children’s accuracy on inverse and control 

problems is examined for the whole group. Second, a cluster analysis that examines individual 

differences in conceptual understanding and arithmetical skill is described. Finally, children’s 

accuracy on inverse and control problems is examined for each subgroup separately.  

Whole Group Analysis  
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The first analysis examined the effect of different problem factors on accuracy for the 

whole group of children. The main aim of this analysis was to compare performance on 

matched sets of inverse and control problems. More accurate responses on inverse than control 

problems would indicate that children have recognized and exploited the inverse transformation 

in the inverse problems. To do this they must understand the underlying relationship between 

addition and subtraction.  A second aim was to compare performance on four-term 

(transparent) and five-term (complex) problems. Finally, the effect of different problem factor 

(element order, missing element) is considered.  

Initial analyses revealed that there were no effects of sex, session order or school and so 

these factors were removed from the subsequent analyses. The significant effects reported 

below were also significant when analysed by items, indicating that the effects are consistent 

across the problem set. Children’s accuracy (measured as the proportion of correct responses) 

on different types of problems was compared using a four-way ANOVA with problem length 

(four-term, five-term), problem type (inverse, control), element order (order 1, order 2) and 

missing element (a, sum) as repeated-measures factors.  

There was a significant difference between performance on inverse and control 

problems overall (problem type main effect F(1, 66) = 183.15, p < .001, partial eta squared 

ηp
2 = 0.74): children were more accurate on inverse problems (mean = 0.76) than control 

problems (mean = 0.47). This main effect was qualified by a significant interaction between 

problem type, problem length and missing element (F(1, 66) = 17.24, p < .001, ηp
2 = 0.21; 

Figure 1). Simple main effects analysis revealed that children were more accurate on inverse 

than control problems for four-term problems with the ‘a’ term missing (F(1, 66) = 116.45, p 

<.001, ηp
2 = 0.64), four-term problems with the sum missing (F(1, 66) = 100.87, p < .001, ηp

2 = 

0.60),  and five-term problems with the ‘a’ term missing (F(1, 66) = 145.17, p < .001, ηp
2 = 
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0.69). However there was no difference in accuracy between inverse and control problems for 

five-term problems with the sum missing (F(1, 66) = 4.94, n.s.). This pattern of results suggests 

that in general children were aided by the presence of an inverse transformation in the sum. But 

not, however, for five-term inverse problems with the sum missing (e.g. 15 + 11 – 8 – 3 =  

or 9 – 6 – 3 + 15 = ). 

The difference between four- and five-term problems varied between inverse and 

control problems (problem length * problem type interaction F(1,66) = 23.94, p < .001, ηp
2 

=0.27). In the inverse problems the children were more accurate with four- than with five-term 

items (F(1, 66) = 48.82, p < .001, ηp
2 = 0.43), but there was no equivalent effect of problem 

length on accuracy with control problems (F(1, 66) < 1). Thus, while children found transparent 

inverse problems easier than those that involve the active construction of the inverse elements, 

the addition of an extra computation stage had no effect on accuracy for control problems. This 

may be because the five-term problems had smaller addend and subtrahend terms than the four-

term problems and children were as accurate in performing three smaller computations (e.g. 14 

+ 9 – 4 – 2  =) as two larger computations (e.g. 21 + 9 – 13 =). 

Finally, the element order variation had some effect on accuracy. The children were 

more accurate for problems with the inverse elements before the ‘a’ term (order 2) than for 

problems with the inverse elements after the ‘a’ term (order 1; F(1, 66) = 115.99, p < .001, ηp
2 = 

0.64).  For inverse problems, it is possible that children are able to identify and exploit inverse 

transformations more easily when they are at the start of the sum. For control problems, this 

effect may arise from the order of operators. In order 2 control problems, the subtraction 

operation(s) were before the addition operation, while in order 1 control problems the addition 

operation was first. Children find subtraction in general more difficult than addition. Thus, 

children may be more accurate on problems where they perform the subtraction operation first, 
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rather than performing it second, while they are already holding in memory the result of the 

preceding addition operation. 

The whole group analyses described above demonstrate that mean accuracy was higher 

for inverse than control problems. These group effects were not driven just by the performance 

of a small number of participants, the vast majority of children showed an advantage for 

inverse problems (four-term problems: 59 children (88.1%) scored higher on the inverse 

problems, 7 children (10.4%) scored the same and 1 child (1.5%) scored higher on the control 

problems; five-term problems: 58 children (86.6%) scored higher on the inverse problems, 3 

children (4.5%) scored the same and 6 children (9.0%) scored higher on the control problems). 

These observed frequencies are significantly different from those expected by chance (sign test 

four-term z = -6.70, p < .001; five-term z = -6.20, p < .001).  

The analyses of accuracy revealed that at least some of the children recognized and 

exploited the inverse transformations in all types of transparent (four-term) inverse problem. 

They were reliably more accurate on these problems than those which require calculation. 

Furthermore, performance on five-term problems indicated that some children were able to take 

advantage of an inverse transformation even when they had to construct this for themselves. 

Their ability to do so, however, was restricted to certain types of five-term problems. 

Moreover, children were more accurate on inverse problems where the inverse transformation 

is transparent (four-term) than when it has to be constructed (five-term). Put together, these 

findings suggest that children are able to use their understanding of the relationship between 

addition and subtraction more flexibly for problems where it is transparently applicable than for 

problems where they have to reconstruct the problem to make it applicable. It is easier for 

children to use their understanding of conceptual relationships to solve problems than it is for 

them to recognize that the conceptual relations are relevant. 



  Constructing inverse relations    14 

Individual Differences Analysis 

Children show wide individual differences in their conceptual understanding and 

computational skill in arithmetic (Canobi, 2004; Dowker, 1998). These differences may in turn 

lead to further differences in children’s ability to identify when their conceptual understanding 

is relevant for problem-solving. One way to examine individual differences is to look for 

subgroups of participants who may be behaving more similarly. This can be achieved by 

performing cluster analysis. Cluster analysis has been previously used to reveal differences in 

the relationship between children’s conceptual understanding and their procedural skill in 

arithmetic (e.g. Canobi, 2004; Gilmore & Bryant, 2006).  

To investigate individual differences, the children’s accuracy scores on the four-term 

inverse and control problems were entered into a cluster analysis. These scores reflect the 

children’s ability to use inversion on transparent tasks and their general calculation skill. A 

hierarchical cluster analysis was performed using Ward’s method. The two-cluster solution 

accounted for 50.4% of the variance in scores; the three-cluster solution accounted for 68.4% of 

the variance in scores; and the four-cluster solution accounted for 76.9% of the variance in 

scores, but this included one very small group. Therefore, the three-cluster solution was 

interpreted.  

The children in Cluster 1 (n = 26) had high scores on both the inverse and control four-

term problems (thus this cluster was labelled ‘high score’). The children in Cluster 2 (n = 21) 

had the lowest scores on both the inverse and control four-term problems (thus this cluster was 

labelled ‘low score’). The children in Cluster 3 (n = 20) had high scores on the inverse 

problems but low scores on the control four-term problems (thus this cluster was labelled 

‘difference score’).  
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The characteristics of the children in each of these clusters were compared. First, the 

proportion of girls and boys in each cluster was considered. There were 17 boys and 9 girls in 

Cluster 1, 8 boys and 13 girls in Cluster 2, and 7 boys and 13 girls in Cluster 3.  These 

proportions did not significantly differ (χ2(2) = 5.33, n.s.). Second, the age of the children in 

each cluster was compared. The mean age of children in Cluster 1 was 8 years 7 months, in 

Cluster 2 was 8 years 6 months, and in Cluster 3 was 8 years 7 months. There was no 

difference between these ages (F(2,64) < 1). 

Table 2 gives accuracy on inverse and control problems by children in each cluster. The 

children in Cluster 1 ‘high score’ and Cluster 3 ‘difference score’ showed similar levels of 

accuracy as each other for both four- and five-term inverse problems, while the children in 

Cluster 3 had lower levels of accuracy for both four- and five-term control problems. The 

children in Cluster 2 ‘low score’ had the lowest levels of accuracy for all types of problems. 

The similar pattern in accuracy for four-and five-term problems suggests that these were 

meaningful clusters of children, since the cluster-analysis was performed only on scores for 

four-term problems. Moreover, the differences between the clusters apply both to situations in 

which children can simply apply their conceptual understanding and to situations in which they 

must first recognize that it is relevant.  

INSERT TABLE 2 ABOUT HERE 

To find out more about the differences between the groups, children’s accuracy on 

different problem types was examined. Accuracy on inverse and control problems was 

compared separately for each problem length and missing element. Due to potential ceiling and 

floor effects which may limit the interpretation of F-tests, specific non-parametric analyses 

were used.  

Analysis by Groups 
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Cluster 1: ‘High score’. There were 26 children in this group. Children’s accuracy on 

inverse and control problems was compared using Wilcoxon non-parametric tests. The 

children in this cluster were significantly more accurate on inverse than control problems for 

four-term problems with the a-term missing (z = 3.73, p < .001 ) and with the sum missing (z 

= 4.018, p < .001) and for five-term problems with the a-term missing (z = 4.341, p < .001). 

However, they were no more accurate on five-term inverse problems with the sum missing 

than equivalent controls (z = 0.582, n.s.; Figure 3a). 

The children in this group were able to identify and take advantage of inverse 

transformations for all types of transparent inverse problems and solve these without 

calculation. They were also able to recognize and construct inverse transformations for some 

types of complex inverse problem. However, they were not able to make use of their 

understanding of the relationship between addition and subtraction in all situations where it was 

relevant and used calculation to solve some types of complex inverse problems. While in 

general they had good conceptual understanding and accurate computational skill, these 

children were able to use their understanding of inversion more flexibly on transparent tasks 

than on tasks where they first had to recognize that it was relevant. 

Cluster 2: ‘Low score’. There were 21 children in this group. The children in this 

cluster showed the same pattern of results as children in Cluster 1. They were significantly 

more accurate on inverse than control problems for four-term problems with the a-term missing 

(z = 3.457, p = .001), and the sum missing (z = 3.690, p < .001), and for five-term problems 

with the a-term missing (z = 3.485, p < .001). However, there was no difference in accuracy 

between five-term inverse and control problems with the sum missing (z = 1.337, n.s.; Figure 

3b).  
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Despite their low overall levels of accuracy, the children in this group showed evidence 

of understanding the relationship between addition and subtraction. Indeed the pattern of 

performance of this group was similar to the children in Cluster 1, although at much lower 

absolute levels. These children were sometimes able to recognize the inverse transformations 

present in all types of transparent inverse problems and solve these without calculation, 

although the low overall level of accuracy suggests that these children were not able to do so as 

accurately or as consistently as the children in Cluster 1, or only some of them could do so. 

Notwithstanding the inconsistent performance on transparent inverse problems, these children 

were able to identify and exploit inverse transformations even in some problems where these 

were not transparent and had to be constructed. However, they were not able to do this on all 

relevant complex inverse problems. Overall, these children made more use of their conceptual 

understanding for problems where it was transparently applicable than where they had to 

identify that it was relevant and reconstruct the problem before applying it. 

Cluster 3: ‘Difference score’. There were 20 children in this group. The children in this 

cluster showed a different pattern of results than the children in Clusters 1 and 2. They were 

significantly more accurate on all types of inverse problem than equivalent control problems 

(four-term problems a-term missing z = 3.976, p < .001; four-term problems sum missing z = 

2.761, p < .001; five-term problems a-term missing z = 3.946, p < .001; five-term problems 

sum missing z = 2.527, p = .012; Figure 3c). 

The children in this group made use of their conceptual understanding in the widest 

range of situations. They could flexibly apply their understanding of the relationship between 

addition and subtraction to solve inverse problems without calculation both where it was 

transparently applicable and for problems where they had to first recognize that it was relevant, 

and then reconstruct the elements in order to apply it. In contrast to this sophisticated 
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conceptual understanding these children showed lower levels of computational skill than the 

children in Cluster 1. Thus the children in this group had very good understanding of the 

relationship between addition and subtraction despite difficulty performing these operations 

accurately. 

Discussion 

This study has revealed three key aspects of children’s conceptual and procedural 

understanding of arithmetic. First, that children aged 8 to 9 years have, on the whole, 

sophisticated understanding of the relationship between addition and subtraction and not only 

can they use this to aid problem-solving in situations where it is transparently applicable, but 

they can also actively construct inverse transformations in order to apply this understanding. 

Second, that there are clear individual differences among children in the relationship between 

their conceptual understanding and computational skill in arithmetic, and these differences may 

shed light on how conceptual and procedural knowledge are related over development. Finally, 

that children find it more difficult to recognize situations where conceptual understanding may 

be relevant to problem-solving than to simply apply conceptually-based inferences. This has 

implications for both the teaching and assessment of arithmetical skill. Each of these 

conclusions will be examined in turn. 

Previous research has demonstrated that children develop understanding of the inverse 

relation between addition and subtraction over many years. While some children show nascent 

understanding of this relationship at age 4 (Klein & Bisanz, 2000; Rasmussen et al., 2003) 

other children fail to take advantage of inverse transformations in a problem at age 9 – 10 

(Gilmore & Bryant, 2006). Furthermore, the format, presentation conditions or characteristics 

of the problem can substantially affect children’s ability to exploit the presence of inverse 

transformations in a problem (Bryant et al., 1999; Stern, 1992; Gilmore, 2006). This study has 
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demonstrated for the first time that children can do a great deal more than just recognize 

inverse transformations. They can actively construct an inverse relationship in order to aid 

problem solving. In many situations, children can use their understanding of inversion in a 

sophisticated manner and go far beyond simply applying a shortcut in response to a recognized 

pattern of numbers. 

These findings are supported by some previous evidence that children may be able to be 

active users of inversion in a limited sense. This comes from a study by Bryant et al. (1999) in 

which children (aged 6- to 8-years-old) were given inversion/decomposition problems. In these 

problems the inverse relationship was not complete but could be created by using 

decomposition (i.e. a + b – (b + 1) =  or a + b – (b – 1) =  e.g. 12 + 7 – 8 =  or 12 + 7 –

6 = ).  Thus these problems tested whether children could extend understanding of inversion 

to problems that are not on the surface inverse problems.  The children were more accurate on 

these inversion/decomposition problems than on standard control problems. The present study 

advances this finding by demonstrating that children can use their understanding of inversion in 

an active way on problems that require the inverse elements to be constructed using addition.  

The body of literature on children’s understanding of arithmetical inversion shows 

many of the features of conceptual knowledge suggested by Vergnaud (1982, 1990, 1997, 

1998) and Baroody (Baroody and Ginsburg, 1986; Baroody and Tiilikainen, 2003). Vergnaud 

(1982, 1990, 1997, 1998) proposed the theory of conceptual fields of knowledge. He suggested 

that children acquire different properties of the same concept, or are able to apply a concept in 

different situations over a long period of time. Some aspects of a concept may be mastered 

many years before other. Baroody and colleagues (Baroody and Ginsburg, 1986; Baroody and 

Tiilikainen, 2003) described the development of children’s conceptual knowledge as a 

progression of increasingly abstract schemata. At first children’s conceptual knowledge is 
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example-driven and context-based, later it becomes increasingly principle-driven, generalized 

and abstract. Some aspects of a concept may develop later than others. Both these theories 

highlight that children will often have partial understanding of concepts and so at any point in 

time it may be inappropriate to try and judge whether children do or do not ‘have’ a concept. 

As the present study reveals, children develop the ability to apply the concept of inversion to 

complex problem solving situations many years after they may initially display understanding 

of this relationship.  

This formalization of conceptual knowledge is also consistent with the iterative model 

of arithmetical development. According to this model, conceptual and procedural knowledge 

develop together, with advances in one leading to advances in the other. As a result, children 

may have partial knowledge and procedures, which at first may not be integrated (Bisanz & 

LeFevre, 1992; Carpenter, 1986). As this study has demonstrated, however, as well as changes 

in the relationship between conceptual and procedural knowledge within an individual over 

time there may also be differences in this relationship among individuals.  

Using cluster analysis this study revealed that there were three subgroups of children 

with different patterns of performance. Most children showed conceptual understanding that 

was in line with their computational skill. However, a subgroup of children had good 

understanding of the relationship between addition and subtraction despite difficulty 

performing these operations. Previous research that found evidence of these subgroups 

(Gilmore & Bryant, 2006) was unable to determine whether this group of children had good 

conceptual understanding given their computational skills, or poor computational skills given 

their conceptual understanding. This study revealed that these children showed more 

sophisticated and flexible use of the inverse relationship on complex inverse problems than 

children in the other groups. They were the only group to show evidence of recognizing and 
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exploiting the inverse transformations present in all problem types. This suggests that the 

discrepant performance of the children in this group is due to advanced conceptual 

understanding rather than delayed or deficient calculation skills. 

An important question to arise from this study concerns the meaning of the three 

clusters. We need to consider why children fall into these groups. There are two main 

alternatives. The first possible explanation is that these groups represent progression along a 

single path of development. Children may initially have low conceptual understanding and low 

calculation skills. Their conceptual understanding may then develop first. Later there may be an 

improvement in their computational skills. Thus the children in the difference score group are 

at a particular point on this developmental trajectory with respect to learning inversion and 

proficiency with addition and subtraction. If this explanation were correct we would expect to 

see children moving from low scores on both measures of inversion and computation to having 

high scores on inversion and low scores on computation and then finally having high scores on 

both measures. There are two findings from the present study that suggest this may be the 

wrong interpretation of the groups. First, the children in Cluster 3 ‘difference score’ made more 

sophisticated use of inversion than the children in Cluster 1 ‘high score’. Thus, it is unlikely 

that Cluster 1 is a later stage of development than Cluster 3. One way this could happen, 

however, is if the children in Cluster 1 have as sophisticated understanding of inversion as the 

children in Cluster 3 but choose not to use it in all situations, perhaps because of their more 

advanced computational skill. This does not explain why these children would apply their 

conceptual understanding in most situations but choose to use computation for certain 

problems. A second piece of evidence that does not support the interpretation that these groups 

form a single path of development is that there was no difference in the age of the children in 

each group. A wider range of ages, however, might be needed to find this difference. 
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The second possible explanation of the three clusters is that these groups represent 

individual differences among children and alternative developmental paths. It could be that for 

most children conceptual understanding and computational skill develop together. These 

children would move from having low scores on both measures of inversion and computation 

to having high scores on both measures. At the same time a substantial subgroup of children 

show a different pattern. Their conceptual understanding is more advanced than their 

computational skill. In this case, either these children have surprisingly good conceptual 

understanding or they are failing to learn efficient computation. There is evidence from this 

study that these children may have better than expected conceptual understanding. These 

children may follow this alternative developmental path due to either educational experiences, 

or a particular cognitive profile (e.g. memory capacity, IQ, language skills) or the fit between 

the two.  

Canobi (2005) provides further evidence to suggest that there may be individual 

differences in the development of understanding of inversion. She demonstrated that some 

children may learn about inversion through understanding that an addition transformation and a 

subtraction transformation cancel each other out (i.e. 15 + 8 – 8 = 15) while other children may 

learn about inversion by recognizing the relationship between a given addition sum and a 

complementary subtraction sum (i.e. 5 + 3 = 8 implies that 8 – 5 = 3). Thus, there may be 

different routes to developing inversion understanding.  

If the clusters represent stable individual differences this would have implications for 

theories of mathematical development. At present, developmental theories (e.g. Baroody & 

Ginsburg, 1986; Fuson, 1992; Rittle-Johnson et al., 2001; Vergnaud, 1997) do not consider 

individual differences in the way that children develop mathematical expertise. Instead these 

theories tend to propose just a single developmental path. Theories about mathematical 
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development will need to be expanded to incorporate the possibility of alternative 

developmental paths.  

The final conclusions of the present study concern the distinction between being able to 

make a conceptually-based inference, and realizing that one is relevant. This study showed that 

children find it more difficult to use conceptual understanding in problem-solving when they 

have to identify that it is relevant, and reconstruct the elements of the problem to make it 

applicable first. Since problem solving in everyday life almost always involves the extra 

elements of identifying relevant situations and reconstructing elements, to get a true picture of 

children’s conceptual competence, we must do more than just use artificial tasks on which a 

concept is transparently applicable. Moreover, arithmetical instruction should encourage 

children to consider different ways in which a problem might be solved, and whether different 

conceptually-based inferences or analogies might provide shortcuts. As highlighted by 

Vergnaud (1990) it is important to consider the application of arithmetical concepts in a range 

of situations. This will help children to develop conceptual understanding that is generalized 

and abstracted rather than tied to particular situations. The aim of mathematical instruction 

should be to help children integrate their procedural and conceptual knowledge, so that they 

approach new problems by considering how they might simplify the problem on the basis of 

their conceptual understanding, rather than performing procedures in a rote and meaningless 

fashion. 
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Table 1. Example four- and five-term inverse and control problems with each element order 

and the ‘a’ term or sum missing. 

Problem type Inverse Control 

4-term Order 1 a + 9 – 9 = 26 + 11 – 6 = 31 

  Sum 17 + 11 – 11 =  21 + 9 – 13 =  

 Order 2 a 12 – 12 + = 26 8 – 4 + = 30 

  Sum 12 – 12 + 17 =  12 – 7 + 12 =  

5-term Order 1 a + 12 – 9 – 3 = 18  + 11 – 5 – 2 = 20 

  Sum 15 + 11 – 8 – 3 =  13 + 11 – 5 – 4 =  

 Order 2 a 13 – 8 – 5 + = 18 11 – 3 – 3 + = 23 

  Sum 9 – 6 – 3 + 15 =  9 – 5 – 2 + 13 =  
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Table 2. Mean accuracy (proportion correct) on four-term and five-term inverse and control 

problems for each cluster. 

Group Four-term Five-term 

 Inverse Control Inverse Control 

Cluster 1  

Mean  

SD 

 

0.95 

0.07 

 

0.73 

0.12 

 

0.83 

0.14 

 

0.67 

0.14 

Cluster 2 

Mean  

SD 

 

0.58 

0.21 

 

0.21 

0.19 

 

0.42 

0.24 

 

0.24 

0.24 

Cluster 3 

Mean  

SD 

 

0.94 

0.07 

 

0.38 

0.11 

 

0.81 

0.12 

 

0.43 

0.16 
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Figure Captions 

Fig 1: Mean accuracy for different problem types for the whole group (error bars show s.e.m.) 

Fig 2: Mean accuracy for different problem types by children in a) Cluster 1 ‘high score’, b) 

Cluster 2 ‘low score’ and c) Cluster 3 ‘difference score’ (error bars show s.e.m.) 
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* significant difference between accuracy on inverse and control problems (p < .05) 
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* significant difference between accuracy on inverse and control problems (p < .05) 

a) 

b) 

c) 


