am9b16151_si_001.pdf (1.03 MB)

CaO-Promoted Graphene-Supported Palladium Nanocrystals as a Universal Electrocatalyst for Direct Liquid Fuel Cells

Download (1.03 MB)
journal contribution
posted on 14.01.2020 by Umair Shamraiz, Zeeshan Ahmad, Bareera Raza, Amin Badshah, Sajid Ullah, Muhammad Arif Nadeem
Here, we present the fabrication of a reduced graphene oxide-supported PdCa (PdCa/rGO) alloyed catalyst via a NaBH4 reduction method for direct alcohol fuel cells in basic medium and direct formic acid fuel cells in acidic medium. Powder X-ray diffraction, energy-dispersive X-ray spectroscopy, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller, inductively coupled plasma mass spectrometry, and Raman spectroscopy are used to characterize the PdCa/rGO catalyst. We proved that the calcium oxide significantly enhances the electrocatalytic methanol, ethanol, and formic acid oxidation over the Pd/rGO surface. The obtained mass activities for PdCa/rGO are 4838.06, 4674.70, and 3906.49 mA mg–1 for formic acid, methanol, and ethanol, respectively. Long-term stability, high activity, and high level of tolerance to CO poisoning of the PdCa/rGO electrocatalyst are attributed to the presence of calcium oxide. These results prove that the PdCa/rGO catalyst has improved electrocatalytic performance for the oxidation of formic acid, methanol, and ethanol with reference to the Pd/rGO.