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Abstract

Building energy models are increasingly used for the analysis and prediction of

a building’s energy consumption, to evaluate various energy conservation measures

(ECMs), and for measurement and verification (M&V). To ensure their reliability,

model calibration has been recognized as an integral component of the overall anal-

ysis. In particular, there has been increasing interest in the application of Kennedy

and O’Hagen’s Bayesian calibration framework to building energy models because

of it’s ability to naturally incorporate uncertainties. This includes three aspects: 1)

uncertainties in calibration parameters; 2) model inadequacy that can be revealed

by any discrepancies between model predictions and observed values; as well as

3) observation errors. However, despite several successful applications of Bayesian

calibration to building energy models, it has been limited to monthly aggregated data

because current methods are computationally prohibitive with hourly or daily cali-

bration data. Current methods also consider a model to be calibrated when its coeffi-

cient of variation of the root mean square error (CVRMSE) or normalized mean bias

threshold (NMBE) falls below a prescribed threshold set by standards and guide-

lines such as ASHRAE Guideline 14 (ASHRAE, 2002) and IPMVP (EVO, 2012).

However, CVRMSE and NMBE do not check for convergence. If the Markov Chain

Monte Carlo (MCMC) algorithm has not proceeded long enough, the generated sam-

ples may be grossly unrepresentative of the posterior distribution, and may make

interpretation of the posterior distribution for the calibration parameters misleading

(Gelman et al., 2014).

In this thesis, a Bayesian calibration method that is computationally acceptable

with higher dimension data and large sample sizes is proposed, therefore extending

its application to daily and hourly calibration data. This is achieved by: 1) sampling

a representative subset of the entire dataset and using the sampled subset for the cal-

ibration; and 2) using a more effective MCMC algorithm, the No-U-Turn-Sampler



(NUTS) (Hoffman and Gelman, 2014) to explore the high dimensional posterior dis-

tribution. For greater rigor in assessing the calibrated model, we evaluate the model

for both accuracy (agreement between observed values and calibrated predictions on

test data) and convergence (multiple MCMC chains have converged to a common

stationary distribution).

The application of the proposed method is demonstrated using three case stud-

ies. In all three case studies, the CVRMSE and NMBE computed with test data

were below 15% and 5% respectively. Trace plots of multiple independent chains

and Gelman-Rubin statistics ˆR (Gelman et al., 2014) also suggests convergence to

a common stationary distribution. Through the case studies, the influence of the

discrepancy term �(x) was also investigated. Results from the case studies show

that �(x) was able to reduce overall model bias, resulting in a better match between

calibrated predictions and observations. Lastly, in the comparison of three MCMC

algorithms (NUTS, random-walk Metropolis and Gibbs sampling), NUTS was found

to be more effective in generating samples from the posterior distribution.
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Chapter 1

Introduction

1.1 Background

Building energy modeling or building energy simulation is the use of computer-based simula-

tions to predict and assess a building’s energy consumption. Originally intended for use during

the design phase, energy models are increasingly used throughout a building’s life-cycle (design,

commissioning, operations and controls). To ensure reliability and accuracy of the energy model,

model calibration has been recognized as an integral component to the overall analysis. Calibra-

tion is the process of adjusting model parameters so that the simulation predictions matches the

measured data reasonably well.

Over the past decade, there has been growing interest in the calibration of building energy

models. A calibrated model can be used to support an energy auditor’s recommendations for

cost-effective energy conservation measures (ECMs) (Reddy, 2006). Calibrated simulation is

also appropriate for measurement and verification (M&V) (ASHRAE, 2002; EVO, 2012) where:

1) pre or post-retrofit data are unavailable or unreliable, but needed to determine the energy sav-

ings due to ECMs; 2) there is complex interactions between ECMs and other building systems,

making it impractical or impossible to isolate and monitor each subsystem; 3) performance of

each ECM needs to be estimated but the cost to isolate and monitor each ECM is prohibitively

expensive; 4) only whole-building energy use data is available but savings from each ECM need

1



to be quantified; 5) adjustments to baseline energy use need to be made in order to account for

future changes in the building’s energy use and demand (e.g., changes in hours of operation,

weather conditions, space usage, etc.). Simulation can also be coupled with a building’s con-

trol system, adjusting model parameters through continuous calibration and using the calibrated

model to find an optimal control and response strategy (Augenbroe, 2002).

However, despite the uses and potential benefits of a calibrated model, challenges remain in

widespread adoption. Models are only as accurate as the inputs provided. Errors in measured

data, the choice of calibration method and model errors make calibration non-trivial. This is mag-

nified by the large number of model parameters as simulation programs become increasingly so-

phisticated in a trend to include more sub-systems in the model. Consequently, calibrating these

models with limited data can often lead to overparameterization and equifinality (i.e., the model

parameters are not uniquely identifiable) (Beven, 2006). Since different parameter combination

sets can result in similar and reasonably good agreement with measured data, it is important that

sources of uncertainty are identified and quantified so that risks are considered when using these

models in the decision-making process. This was demonstrated by Heo et al. (2012), where it

was shown that by incorporating uncertainty, different ECMs might be preferred depending on

the decision-makers’ willingness to take risks. For instance, a risk-conscious decision-maker

would prefer an ECM that yields a higher probability of guaranteed savings while a risk-taking

decision-maker would prefer an ECM that yields the highest expected value.

Due to its ability to naturally incorporate uncertainties, Bayesian calibration has been increas-

ingly employed in the calibration of building energy models. In particular, a Bayesian approach

that follows that of Kennedy and O’Hagan (2001) has been increasingly used for the calibration

of building energy models (Heo et al., 2012; Riddle and Muehleisen, 2014; Heo et al., 2015a,b;

Li et al., 2016). This is because the formulation proposed by Kennedy and O’Hagan (2001)

explicitly quantifies uncertainties in the calibration parameters, uncertainty due to discrepancy

between the model and the actual physical system, as well as observation errors. Bayesian ap-

proaches also make use of prior probabilities, which can be used to represent expert knowledge
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or the current state of knowledge. However, the specification of prior probabilities requires a lot

of thought and analysis. This is because if the priors have not been properly specified, the result-

ing posterior distribution of the calibration parameters can be misleading. This is especially true

if small amounts of data are used since the posterior would be largely influenced by the prior.

With the emergence of Internet of Things (IoT) and as increasing number of sensors get

deployed in buildings, there is an opportunity to investigate methods that effectively use this data

within a calibration framework. This would include continuous calibration for M&V, operations

and controls, adding another motivation towards a Bayesian approach for calibration. Such an

approach provides a flexible framework for dynamically updating the calibrated model. As new

data arrive, the old data is not discarded but instead assimilated to the new data through the use

of priors. In other words, the previous posterior density acts the prior for the current calibration,

thus providing a very systematic framework for the continuous calibration or updating of the

energy model.

However, despite several successful applications of Bayesian calibration to building energy

models, challenges remain in its application to building energy models. First, Bayesian cali-

bration is typically carried out using random-walk Metropolis or Gibbs sampling (Heo et al.,

2015b; Li et al., 2016). An inherent inefficiency of these algorithms can be attributed to their

random walk behavior as the Markov Chain Monte Carlo (MCMC) simulation can take a long

time zig-zagging while moving through the target distribution (Gelman et al., 2014).

Second, current application of Kennedy and O’Hagan (2001) uses a Gaussian process (GP)

model to emulate the building energy model (Riddle and Muehleisen, 2014; Heo et al., 2015a,b).

Although accurate, training GP models with large datasets is computationally prohibitive and

thus has been limited to monthly calibration data. An alternative would be to apply the formu-

lation to the original simulation model if the simulation can be made to run sufficiently fast,

circumventing the use of an emulator as demonstrated in Higdon et al. (2004). Although this

could help remove any uncertainty arising from using an emulator, it is cumbersome to auto-

mate the entire process. This is because an intermediary platform would need to be developed
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to enable data exchange between the simulation tool and the calibration process. For instance,

to calibrate an energy model using a Bayesian approach, Chong and Lam (2015) reprogrammed

two EnergyPlus objects in Python. Given the large variety of simulation tools currently available

and the complexity of some tools, the platform can be difficult or impossible to develop. Further-

more, it would be hard to maintain such a platform since it would need to be constantly revised to

keep up with any version updates of different tools. On the contrary, using a GP model provides

the flexibility for users to specify the inputs and output to a calibration framework without the

need of an intermediate platform between the simulation tool and the calibration process. There-

fore, the use of an emulator or a surrogate model to represent the original simulation model is an

important step for an automated calibration framework.

Third, model validation procedures do not place enough emphasis on evaluating model fit-

ness. Currently, the quantification of uncertainties in input parameters is considered correct when

the model’s output meets the error criteria set out by ASHRAE Guideline 14 (ASHRAE, 2002).

However, if the MCMC algorithm has not proceeded long enough, the generated samples may

not be representative of the target distribution (Gelman et al., 2014). Evaluating model conver-

gence statistics provides more confidence that the samples generated are representative of the

posterior distribution of the calibrated parameters.
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1.2 Building energy simulation tools

To date, a large number of building energy simulation tools have been developed. These tools

are used by engineers, architects and researchers to model energy consumption in buildings and

usually require large number of inputs from its users. Different tools provide users with vary-

ing levels of flexibility and thus need a different perspective on calibration. Generally, building

energy simulation tools can be categorized as being either open or closed tools. Open tools are

softwares that are usually open source and expose all of their internal parameters and calcula-

tion methods. As a result, these tools are more suitable for calibration because users typically

have access to the source code and thus are able to better understand the underlying interaction

between different model parameters. This is particularly important if the objective of the calibra-

tion is not only for accurate predictions but also to gain a better understanding of the calibration

parameters. On the contrary, closed tools only expose certain parameters and thus the calibration

is typically handicapped. Here, tools such as EnergyPlus is categorized as open. This is because

although some parameters are hidden from users and despite the fact that it is cumbersome to

make changes to these hidden parameters, it is not impossible given that they are open source.

Therefore, examples of open tools are:

• DOE-2 (Winkelmann et al., 1993): a building energy simulation tool that predicts the

hourly energy use of a building given hourly weather information, and a description of

the building’s geometry and HVAC system. Funded by the U.S. Department of Energy,

DOE-2 has been extensively used in the past with more than 20 interfaces created to make

it easier to use (Crawley et al., 2008).

• EnergyPlus (Crawley et al., 2001; LBNL, 2016b): a whole building energy modeling

tool developed based on the best features and capabilities of DOE-2 and Building Loads

Analysis and System Thermodynamics (BLAST) (Hittle, 1979). EnergyPlus provides an

integrated solution where the building loads and the HVAC systems are tightly coupled.

It also provides sub-hourly, user-definable time steps for interactions between the thermal
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zones and the HVAC systems. Other features include the ability to model multi-zone

airflow and a wide variety of building and HVAC design options.

• TRNSYS (Klein et al., 2012): a transient systems simulation program designed with a

modular structure. Energy calculations were solved by breaking them into a series of

individual components. Components may vary from simple systems such as parts of a

HVAC system (a pump or chiller) to more complex systems such as multi-zone buildings.

• ESP-r (ESRU, 1974): a building performance simulation tool equipped with the capabil-

ity to model heat, air, moisture, light and electrical power flows at spatial and temporal

resolutions specified by the user. It has been in development since 1974 with the intention

to enable an integrated assessment of all aspects of building performance.

Examples of closed tools are:

• IESVE (Integrated Environment Solutions, 2015): The IES virtual environment is an inte-

grated suite of applications linked by a common user interface and a single integrated data

model. With a single model, the tool provides a platform for an analysis of a building’s

integrated performance.

• Sefaira (Trimble Buildings, 2017): Sefaira is designed so that project teams can quickly

explore design options and understand their impact on building performance (energy and

daylight outputs). It uses a proprietary Scala based Fulcrum engine to calculate the hourly

energy use.
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1.3 Uncertainty in building energy simulation

Buildings are complex systems composed of many components interacting with one another

(Figure 1.1). Additionally building energy models are representations of the actual physical

systems. Therefore, no single model is beyond dispute. To model these complex interaction,

building energy models are increasing in complexity, requiring more parameters to be defined

as inputs to the model. These inputs include but is not limited to a detailed description of the

building’s geometry, it’s associated HVAC system, the quantification of various internal loads

(occupancy, lighting, equipment loads, etc.), as well as weather conditions. However, in many

cases, direct measurement of many parameters is impractical or impossible. Thus, in most prac-

tical situations, calibrating an energy model is an inverse problem that is ill-posed because the

data that is available is typically insufficient for identifying a unique solution. As a result, cal-

ibrating these models with limited data might lead to identifiability issues (different parameter

sets might give reasonable matching results with measured data) and a wide variety of model

uncertainties despite the model having been calibrated. One possible approach is to recognize

that the available data is not enough to determine a single solution and then generate equally

possible candidates to represent the actual solution.

According to (De Wit and Augenbroe, 2002) uncertainty in building energy models can be

classified as:

• Specification uncertainty: arising from incomplete or inaccurate specification of the build-

ing or systems being modeled.

• Modeling uncertainty: arising from simplifications and assumptions of complex physical

processes. These simplifications and assumptions could be explicit to the modeler (such

as thermal zoning) or hidden within the tool (calculation algorithms)

• Numerical uncertainty: arising from errors introduced in the discretization and simulation

of the model

• Scenario uncertainty: arising from external conditions imposed on the building. Examples
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include outdoor weather conditions and occupant behavior.

Several studies have been carried out focusing on uncertainty quantification. Sun et al. (2014)

provided a procedure to quantify uncertainties in the microclimate variables used by building

energy models. Macdonald and Strachan (2001) reviewed uncertainties in the thermophysical

properties of construction materials and incorporated them into the building energy simulation

tool ESP-r using Monte Carlo Analysis. Eisenhower et al. (2012a) modeled 1009 EnergyPlus

input parameters as uncertain by varying them ±20% of their nominal value. Using sensitivity

analysis, they provided insights to how uncertainty in input parameters may affect model output.

To make the evaluation of retrofits more reliable, IPMVP has also published a document that

provides guidance on uncertainty quantification (EVO, 2014).

Figure 1.1: Building energy flowpaths, taken from (Clarke, 2001)
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1.4 Current calibration approaches

Many approaches for calibrating building energy models have been proposed, requiring various

degrees of automation, manual tuning and expert judgment. According to Coakley et al. (2014),

calibration approaches for building energy simulation can be broadly defined as either manual or

automated.

1.4.1 Manual calibration approaches

Calibration approaches that fall under this category typically requires the energy modeler to per-

form iterative manual tuning (Reddy, 2006; Coakley et al., 2014) and to have in-depth knowledge

of the building and its operation. Therefore, manual calibration approaches usually involve ei-

ther 1) detailed energy audits to gain a better understanding of the building systems and their

operations (Ian Shapiro, 2009; Pedrini et al., 2002; Yoon et al., 2003); 2) intrusive tests where

groups of end-use loads are turned on and off in a controlled sequence to provide information

on their end-use impact (Soebarto, 1997); 3) collection of high-resolution and high-quality data

for empirical validation (Clarke et al., 1993); or 4) a protocol of short-term end-use monitor-

ing to gather data that would help explain the differences between measured and simulated data

(Subbarao, 1988; Manke et al., 1996).

Manual tuning processes are usually facilitated by analytical tools such as graphical plots.

Examples include time-series plots, box and whisker plots and scatter plots (Reddy, 2006).

Graphical plots of calibration signature and characteristic signature have also been proposed

to guide the parameter tuning process (Liu and Liu, 2011). Due to its iterative nature, the use of

version control to keep track of model changes and the reasons for the change has been identified

as an important process in order to improve the reproducibility of manual calibration methods

(Raftery et al., 2011).

Although shown to be successful in several case studies, manual approaches suffer from sev-

eral drawbacks. First, it is time consuming and labor intensive to calibrate a model based on trial

and error, iterating between tuning model parameters and checking the accuracy of its predic-
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tions against measured data. Second, the calibration process relies largely on the expertise and

skills of the modeler, making its reproducibility questionable, and thus restricting its widespread

adoption. Third, they do not consider model uncertainties.

1.4.2 Automated calibration approaches

To overcome the drawbacks of manual calibration approaches, there has been increasing research

towards the development of modern algorithms to automate or partially automate the calibration

process. Compared to manual approaches that require the modeler to adjust model parameters

in a heuristic and iterative manner, analytical or mathematical methods automatically select the

parameters to tune and the amount they are adjusted by (Reddy, 2006). These approaches usually

involve one or more of the following techniques: 1) meta-modeling; 2) optimization with an

objective or penalty function; and 3) Bayesian calibration.

Meta-modeling involves the use of data-fit models as surrogates for the computationally com-

plex building energy models such as those mentioned in Chapter 1.2. The use of meta-models

as surrogates was aimed at reducing the cost of forward simulations. This is because advance

calibration methods such as those that employ optimization algorithms and Bayesian calibra-

tion frameworks are typically iterative processes that require a large number of simulation runs

(Reddy, 2006). Although building energy simulations have become less computationally inten-

sive, it is still time consuming to run large number of simulations, especially if these simulations

are to be run sequentially (output of current simulation is required to determine the inputs for the

next simulation would be varied). Therefore, a key element of many optimization and Bayesian

calibration approaches is the use of meta-models to carry out the inference during the calibra-

tion process, mapping the energy model’s input parameters to the model’s output. Examples of

meta-modeling techniques that have been used to model building energy models include multi-

ple linear regression (Li et al., 2016), support vector regression (Dong et al., 2005; Eisenhower

et al., 2012b), neural networks (Neto and Fiorelli, 2008) and Gaussian Processes (Heo et al.,

2012; Manfren et al., 2013).

Optimization can be used to automate the calibration process by defining an objective func-
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tion that minimizes the monthly or hourly mean squared difference between simulation predic-

tions and measured data. However, there may be an issue of identifiability, where many solution

sets meet the defined objective function. To address this issue, penalty functions (functions that

penalize solutions that differ significantly from its preferred value) can be defined to prevent un-

reasonable parameter values during the calibration process (Carroll and Hitchcock, 1993). The

use of optimization programs such as GenOpt (LBNL, 2011) developed to couple optimization

algorithms (e.g., genetic algorithms and particle swarm optimization) with building energy sim-

ulation have also been used to aid calibration efforts (Taheri et al., 2012).

More recently, there have been increasing efforts in a Bayesian approach for the calibration

of building energy models. This is because of its ability to quantify model uncertainties while at

the same time reducing discrepancies between simulation output and physical measurements. In

reality, detailed information are seldom available. Availability of high quality data might also be

limited where the installation of large number of sensors are prohibitively expensive or imprac-

tical. Arguably, uncertainty quantification becomes an important process in the use of building

energy models. Consequently, issues related to prediction accuracy and prediction uncertainty

would be of particular interest when using these models to make decisions. Probabilistic predic-

tions also offer decision-makers greater confidence when using the model for decision-making.

In the next section, we provides a review of the current state of the art with respect to the Bayesian

calibration of building energy models.

1.4.3 Bayesian approach to calibration

Bayesian calibration was first applied to building energy models by (Heo et al., 2012) using the

formulation proposed by Kennedy and O’Hagan (2001). The formulation represents the rela-

tionship between the observations y and the output of the simulator ⌘(., .) by explicitly modeling

uncertainty in the calibration parameters as well as uncertainty due to discrepancy between the

simulator and actual physical system, and observation errors (Equation 1.1).

y(x) = ⌘(x, t) + �(x) + ✏(x) (1.1)
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where,

y(x) is the observed value,

⌘(x, t) is the output from the building energy model given the input vector (x, t),

x is the known input factors,

t is the unknown calibration parameters,

�(x) is the discrepancy between the simulation output and the observed output,

✏(x) is the observation error.

The application of Kennedy and O’Hagan (2001) formulation to building energy models

was first seen in Heo et al. (2012), where a reduced order quasi-steady-state energy model was

calibrated against monthly measured gas energy consumption. The method proposed by Heo

et al. (2012) can be summarized by the following steps: 1) define prior probability distributions

of uncertain parameters; 2) screen parameters to reduce the number of calibration parameters;

3) utilize a Gaussian process (GP) model to carry out the inference; and 4) explore the posterior

distributions using Markov Chain Monte Carlo (MCMC). The same approach was also applied

to a large portfolio of buildings (Heo et al., 2015a). To extend the method proposed by Heo et al.

(2012) to more complex dynamic building energy models, Li et al. (2016) utilized a multiple

linear regression emulator instead of a GP emulator, reducing computation cost with a slight loss

in accuracy. Through this simplification, an EnergyPlus model was calibrated against monthly

observations.

Another formulation that has been applied to building energy models does not separate dif-

ferent sources of uncertainty but instead combines them under a single additive model error ✏(x)

in the form:

y(x) = ⌘(x, t) + ✏(x) (1.2)

Using this formulation, Manfren et al. (2013) calibrated a Gaussian process meta-model that

has been trained on simulation data. The single model error formulation was also used to apply a
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Bayesian approach in the calibration of an EnergyPlus boiler and chiller model (Chong and Lam,

2015). More recently, Equation 1.2 has been used to calibrate a set of energy models in an urban

context (Sokol et al., 2017). It is important to note that the formulation proposed by Kennedy

and O’Hagan (2001) (Equation 1.1) improves on the single additive model error formulation

(Equation 1.2) by accounting for the discrepancy between the model predictions and the actual

observations.

1.4.4 Assessing calibration performance

Presently, a building energy simulation model is considered “calibrated” when its predetermined

statistical index falls below a specified threshold. Table 1.1 lists the thresholds set out by different

standards and guidelines. Commonly used statistical indices used to evaluate the performance of

an energy model include the normalized mean bias error (NMBE) (Equation 1.3), the root mean

squared error (RMSE) (Equation 1.4), and the coefficient of variation of the root mean squared

error (CVRMSE) (Equation 1.5).

NMBE also known as mean bias error (MBE) is computed as the sum of differences between

measured and simulated data. The sum is then normalized by the sum of measured data (Equa-

tion 1.3). NMBE serves as a good indicator of overall bias in the simulated data, providing an

indication as to whether the predicted values tend to overestimate or understimate the actual val-

ues (EVO, 2012; ASHRAE, 2002). However, positive bias may be compensated by negative bias

resulting in a cancellation of bias (Coakley et al., 2014). Hence, another indicator of model error

should be used in conjunction with NMBE.

RMSE provides a measure of the variability in the data, or the amount of spread existing in

the data (ASHRAE, 2002). It is computed as the sum of squared differences between measured

and simulated data (Equation 1.4). The sum is then normalized by the number of data points and

a square root of the result gives the RMSE.

CVRMSE is computed by dividing RMSE by the mean of the measured data (Equation 1.5).

The CVRMSE provides a measure of how well the simulated data fits the actual values. Unlike

NMBE, both RMSE and CVRMSE do not suffer from the cancellation effect since the errors are
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squared before summing. According to ASHRAE (2002), it is easier to achieve low NMBE than

CVRMSE. NMBEs are typically reported to be in the range of ±5% to ±10%. On the contrary,

the best empirical models of building energy use performance were only capable of producing

CVRMSE in the range of 10% to 20%.

NMBE(%) = 100⇥
P

n

i=1 (ŷi � y
i

)

(n� 1)⇥ ȳ
(1.3)

RMSE(%) = 100⇥
sP

n

i=1 (ŷi � y
i

)

2

n� 1

(1.4)

CV RMSE(%) = 100⇥
pP

n

i=1 (ŷi � y
i

)

2 / (n� 1)

ȳ
(1.5)

where,

n is the number of observations,

y
i

is the iith observation,

ŷ
i

is the iith prediction,

ȳ is the mean of the observations.

Table 1.1: Error criteria for model to be deemed calibrated

Standard/Guideline
Monthly Criteria (%) Hourly Criteria (%)

NMBE CVRMSE NMBE CVRMSE

ASHRAE Guideline 14 (ASHRAE, 2002) 5 15 10 30

IPMVP (EVO, 2012) - - 5 20

FEMP (DOE, 2008) 5 15 10 30

However, one caveat is that the “calibrated” model may not be representative of the actual

building performance since various combinations of inputs can still produce reasonable agree-

ment between measured and simulated data, i.e., there can be several models that can be con-

sidered as “calibrated” (Coakley et al., 2014). Furthermore, since these calibration criteria are
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based solely on energy consumption and do not account for uncertainties and inaccuracies of the

input parameters, this makes their reliability questionable. Calls have also now been made to use

hourly measured data for calibration purposes for the reason that the model would better rep-

resent the building’s actual performance, since calibration with monthly data could easily miss

significant errors at a daily or hourly resolution (Reddy, 2006; Raftery et al., 2011).

15



1.5 Objective and hypothesis
The objectives of this thesis are to:

• Propose a Bayesian calibration method that is computationally acceptable for calibrating

building energy models against daily or hourly calibration data, with a focus on improve-

ments to the implementation of Bayesian calibration to building energy models.

• Improve the reproducibility and repeatability of the Bayesian calibration of building en-

ergy models by providing guidelines on calibration procedure and the evaluation of model

fitness

The hypotheses of this thesis are:

• Using a representative subset D
sub

of the entire dataset D, determined based on infor-

mation divergence (Kullback and Leibler, 1951) between D
sub

and D, in the Bayesian

calibration of building energy models can provide sufficient accuracy with lower compu-

tation cost, according to the thresholds of CVRMSE and NMBE specified by ASHRAE

Guideline 14 (ASHRAE, 2002).

• Using the No-U-Turn sampler (NUTS), an extension of Hamiltonian Monte Carlo (HMC)

would improve computation efficiency of the Bayesian calibration of building energy mod-

els because (compared to random-walk Metropolis and Gibbs sampling) NUTS is able to

achieve faster convergence in high-dimensional problems, based on convergence tests us-

ing the Gelman-Rubin statistics ˆR (Gelman et al., 2014) and trace plots of multiple MCMC

chains.
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1.6 Organization of thesis
This thesis is outlined as follow:

• Chapter 1 describes the motivation behind a Bayesian approach to calibration and a Bayesian

calibration method that is not computationally prohibitive when applied to hourly or daily

calibration data or when applied to commonly used dynamic building energy simulation

tools.

• Chapter 2 describes the proposed method and the additions to the current Bayesian cali-

bration method so that computationally it is scalable to larger datasets, i.e. daily or hourly

calibration data; and high-dimensional problems, i.e. greater number of calibration param-

eters of a complex building energy model.

• Chapter 3 demonstrates the application of the proposed Bayesian calibration approach to

three case studies. Using the three case studies, we show that the proposed method is

sufficiently accurate but at the same time its computation cost does not prohibit calibration

with daily or hourly data.

• Chapter 4 empirically compares the effectiveness of three MCMC algorithms (NUTS,

RWM and Gibbs sampling) within the proposed Bayesian calibration method described

in Chapter 2. The comparison is done using the three case studies described in Chapter 3 .

• Chapter 5 summarizes the main findings of the thesis, draw conclusions and provides sug-

gestions for future research.
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Chapter 2

Proposed Bayesian Calibration Method

2.1 Overview

Figure 2.1 shows an overview of the proposed method. The proposed method is an extension

of the Bayesian calibration method first applied to building energy models by Heo et al. (2012)

and is based on Kennedy and O’Hagan (2001) Bayesian approach for calibrating computer mod-

els. The additions (highlighted in red in Figure 2.1) include: 1) sampling a representative subset

from the entire dataset and using the sampled subset for the calibration; 2) using the No-U-Turn

Sampler (NUTS), an extension to Hamiltonian Monte Carlo (HMC), to explore the posterior

distribution; and 3) evaluating the calibrated model for both accuracy (agreement between obser-

vations and calibrated predictions on test data) and convergence (multiple MCMC chains have

converged to a common stationary distribution).

The proposed Bayesian calibration method can be summarized as follows:

1. Create an energy model based on information that provides a preliminary understanding of

the building, which includes construction drawings, design specifications, measured data,

site visits, operation documents, etc.

2. Conduct sensitivity analysis to discern the influential calibration parameters t from the set

of uncertain parameters ✓ that has been identified.

18



3. Run a fixed number of simulations m at the same observable input factors x. Using the

simulation predictions ⌘(x, t) and the observed values y(x), a field dataset DF

=

⇥
y(x) x

⇤

and a simulation dataset DS

=

⇥
⌘(x, t) x t

⇤
is defined.

4. Use information theory to select a representative subset of the field data DF

sub

and a repre-

sentative subset of the simulation data DS

sub

.

5. Combine DF

sub

and DS

sub

in a Gaussian process (GP) emulator using the approach proposed

by Higdon et al. (2004).

6. Use NUTS (Hoffman and Gelman, 2014) to explore the posterior distribution of the cali-

bration parameters t, correlation hyperparameters of the GP model �⌘ and ��, and variance

hyperparameters of the GP model �
⌘

, �
�

and �
✏

.

7. Evaluate performance of the calibrated model using two performance metric, which in-

cludes: 1) goodness of fit between model predictions and observations on a test data

(CVRMSE and NMBE); and 2) convergence of the generated samples (Gelman-Rubin

Statistics ˆR and trace plots of multiple chains).

A detailed explanation of the proposed method is provided in Chapters 2.2 and 2.4.
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Figure 2.1: Overview of proposed approach.
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2.2 Current Bayesian calibration method

2.2.1 Sensitivity analysis (parameter screening)

Building energy models require a large number of parameters as inputs, many of which are

impractical or impossible to directly measure. As a result, these models often contain a large

number of uncertain parameters. Calibrating such a model with limited data can often lead

to overparameterization and issues of identifiability, i.e., different combinations of calibration

parameters could result in the same model output. Additionally, it is also computationally costly

to calibrate a model with a large number of uncertain parameters. A solution is to use sensitivity

analysis to identify and screen non-sensitive parameters from the set of uncertain parameters ✓.

The resulting influential parameters which we denote with t are then subsequently use for the

Bayesian calibration of the model.

Sensitivity analysis was carried out using the Morris method (Morris, 1991). This was ex-

ecuted using R sensitivity package (Pujol et al., 2016). The method of Morris belongs to the

class of One-factor-At-a-Time (OAT) design (only one parameter changes values between con-

secutive simulations) and is suitable when the number of input factors are so large that other

variance-based approaches are computationally prohibitive (Saltelli et al., 2008). Therefore, it is

a common technique for carrying out sensitivity analysis in building energy models (Heo et al.,

2012; De Wit and Augenbroe, 2002; Tian, 2013; Menberg et al., 2016; Kristensen and Petersen,

2016). The main advantage of the Morris method is its relatively lower computation cost as

compared to other global sensitivity analysis methods, making it particularly well-suited for use

with building energy models where the number of uncertain parameters is high.

The Morris method is based on calculating the elementary effects of each uncertain parameter

✓. Then, the overall effect and interaction effect of each parameter is computed to determine each

parameter’s sensitivity. Suppose there are k parameters and each parameter space is divided into

h levels. In other words, the parameter space is a k-dimensional h-level orthogonal grid. For

each given value of parameter ✓, the elementary effect of the ith input is defined as:
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d
i

(✓) =

✓
f(✓1, ✓2, ..., ✓i�1, ✓i +�, ✓

i+1, ..., ✓n)� f(✓)

�

◆
(2.1)

where,

d
i

(✓) is the ith elementary effect,

n is the number of parameters,

✓
i

is the ith parameter,

� is a predetermined multiple of 1/(h� 1) and as suggested by Morris (1991), h is even and �

is set equal to h/[2(h� 1)].

For sampling with the Morris method, r points are first randomly generated from the k-

dimensional h-level grid. Each of the r points are then perturbed one dimension at a time with a

step size of h/[2(h � 1)] until all k parameters have been varied once (Figure 2.2). The cost of

the experiment is thus r ⇥ (k + 1).

Using the r trajectories, the commonly used sensitive measures that includes the modified

mean µ⇤ (Campolongo et al., 2007) and the standard deviation � of each of the ith parameter can

then be computed by:

µ⇤
i

=

rX

j=1

|d
ij

(✓)|/r (2.2)

�
i

=

vuut
rX

j=1

(d
ij

(✓)� µ
i

)

2/r (2.3)

where,

r is the number of trajectories,

µ⇤
i

is the modified mean of the ith elementary effect d
i

(✓),

µ
i

is the mean of the ith elementary effect d
i

(✓),

�
i

is the standard deviation of the ith elementary effect d
i

(✓).

22



!1

!2

!3

!(1) !(2)
!(3)

!(4)

Figure 2.2: Example of a trajectory with h = 5 levels and k = 3 parameters/factors (✓1, ✓2, ✓3),

adapted from Saltelli et al. (2008).

In order to better interpret the sensitivity measures µ⇤ and �, a graphical plot of µ⇤ against

� will be used (Saltelli et al., 2008). Parameters with low µ⇤ and � are deemed non-influential

and not used in the calibration process. Campolongo et al. (2007) defines µ⇤ as the mean of the

distribution of the absolute values of the elementary effects. In other words, µ⇤ evaluates the

overall influence of the input factor on the output. On the other hand, � evaluates the factor’s

effect that is due to either interactions with other factors or/and curvature (Saltelli et al., 2008).

In other words, a high � indicates that the factor’s elementary effect is strongly affected by the

values of other factors and a low � indicates that the factor’s elementary effect is independent of

the values of other factors.

2.2.2 Bayesian calibration statistical formulation

This study is based on Kennedy and O’Hagan’s (2001) Bayesian approach for calibrating com-

puter models. In this approach, the statistical formulation explicitly models uncertainty in the
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calibration parameters, the discrepancy between the simulator and the actual behavior of the

building, as well as observation errors (Equation 2.4 below).

y(x) = ⇣(x) + ✏(x) = ⌘(x, t⇤) + �(x) + ✏(x) (2.4)

where,

y(x) is the observed value,

⇣(x) is the true behavior of the building,

⌘(x, t) is the output from the building energy model given the input vector (x, t),

x is the observable input factors,

t is the unknown calibration parameters,

�(x) is the discrepancy between the simulation output and the observed output,

✏(x) is the observation error.

In Equation 2.4, t⇤ is used to represent the true but unknown values of the calibration param-

eters t. This suggests that even in an ideal situation where t = t⇤, the building energy model

⌘(x, t⇤) would still be a biased representation of the true behavior of the building. Since the

energy model is an approximation of reality, �(x) is used to account for any model inadequacy

that could be revealed by the discrepancy between the model predictions ⌘(x, t) and the true

behavior of the building ⇣(x). To learn about the calibration parameters t, m simulations with

different values of t were run, where each simulation is run at the same observable input factors

x. Maximin latin hypercube sampling (Stein, 1987) was used to generate different values of t for

each simulation. This sampling approach tries to cover as much parameter space as possible by

maximizing the minimum distance between design points.

Since the energy model could be computationally expensive to evaluate during the calibration

process, a key element of this method is the use of a Gaussian process (GP) model as an emulator,

mapping the input parameters of the model to the output of interest. To specify the GP model,

a mean function µ(x, t) and a covariance function Cov((x, t), (x0, t0)) needs to be defined. First,
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the GP model for the simulator ⌘(x, t) is defined with a mean function that returns the zero vector

and a covariance function of the form (Higdon et al., 2004):

Cov((x, t), (x0, t0)) =

1

�
⌘

exp

⇢
�

pX

j=1

�⌘
j

|x
ij

� x0
ij

|2 �
qX

k=1

�⌘
p+k

|t
ik

� t0
ik

|2
� (2.5)

where,

�
⌘

is the variance hyperparameter of this GP model,

�⌘1 , ...�
⌘

p+q

are the correlation hyperparameters of this GP model,

p is the number of input factors x,

q is the number of calibration parameters t.

The discrepancy term �(x) is also modeled using a GP model. This GP model is defined with

a mean function that returns the zero vector and a covariance function of the form (Higdon et al.,

2004):

Cov(x, x0
) =

1

�
�

exp

⇢
�

pX

j=1

��
j

|x
ij

� x0
ij

|2
�

(2.6)

where,

�
�

is the variance hyperparameter of this GP model,

��1 , ..., �
�

p

are the correlation hyperparameters of this GP model,

p is the number of input factors x.

Field data and simulation data is then combined using additive decomposition as proposed

by Higdon et al. (2004). In other words, given that there are n observations and m simulation

runs, the observed output is combined with the simulation output in a single n + nm vector

z =

⇥
y(x1), ..., y(xn

), ⌘(x1, t1), ..., ⌘(xnm

, t
nm

)

⇤
. Note that because each simulation is run at

the same observed input factors x1, ..., xn

, running m simulations would produce a simulation
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dataset containing nm = n ⇥m samples. The corresponding likelihood function is then given

by:

L(z | t, �⌘,�
⌘

, ��,�
�

,�
✏

) / |⌃
z

|� 1
2
exp

⇢
� 1

2

(z � µ)T⌃�1
z

(z � µ)

�
(2.7)

⌃

z

= ⌃

⌘

+

2

4⌃�

+ ⌃

y

0

0 0

3

5 (2.8)

where,

⌃

⌘

is a (n+ nm)⇥ (n+ nm) matrix computed based on Equation 2.5,

⌃

�

is a n⇥ n matrix computed based on Equation 2.6,

⌃

y

is the n⇥ n covariance matrix used to account for observation errors and is given by I
n

/�
✏

.

MCMC is then used to estimate the calibration parameters t, correlation hyperparameters (�⌘

and ��), and variance hyperparameters (�
⌘

, �
�

and �
✏

).

2.2.3 Markov Chain Monte Carlo (MCMC) Algorithms

In any Bayesian calibration approach, MCMC is typically used to explore and generate samples

from the posterior distribution. Its widespread use can be attributed to its ease of use in a wide

variety of problems because it can readily handle large dimensions in the posterior. Two MCMC

algorithms that have been used for the Bayesian calibration of building energy models are the

random-walk Metropolis (RWM) (Metropolis et al., 1953) and the Gibbs sampling (Geman and

Geman, 1984).

The RWM algorithm can be summarized as follows (Metropolis et al., 1953):

1. Arbitrarily select a valid initial starting point  0.

2. Suppose  0, 1, ..., i have been generated. Generate a candidate value  cand from a sym-

metric proposal distribution given  i.

3. Calculate the Metropolis acceptance probability ↵, i.e., the probability of transitioning to
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the new candidate value

↵ = min

⇢
P ( cand|y)
P ( i|y) , 1

�
(2.9)

4. Accept and set  i+1 to the new candidate value with probability ↵ or stay at the same point

with probability 1� ↵.

 i+1
=

8
>><

>>:

 cand with probability ↵

 i with probability 1� ↵
(2.10)

Another popular MCMC algorithm commonly used within the Bayesian calibration frame-

work is Gibbs sampling (Geman and Geman, 1984). The algorithm proceeds by sampling each

parameter from its conditional distribution while holding the remaining parameters fixed at their

current values. To illustrate, suppose there are d parameters  1, 2, ..., d

. At each iteration i,

Gibbs sampling cycles through each parameter  
j

, and samples it from its conditional distribu-

tion given the current value of the other parameters. This can be expressed by the following

equation:

 i

j

⇠ P ( 
j

| i

1, ..., 
i

j�1, 
i�1
j+1, ..., 

i�1
d

) (2.11)

where  i

1, ..., 
i

j�1, 
i�1
j+1, ..., 

i�1
d

represents all other parameters at their current values except

 
j

.

Despite their simple implementation, one drawback of random walk Metropolis and Gibbs

sampling algorithm is that they suffer from the ”curse of dimensionality”, i.e. in complicated

problems, these algorithms may require an unacceptable large number of iterations (too time

consuming) to converge to the posterior distribution.

2.3 Limitations of current bayesian calibration method
Although Bayesian calibration has been successfully applied to building energy models, chal-

lenges remain in its application to commonly used building energy simulation tools (section 1.2),

daily or hourly calibration data, and a large number of calibration parameters. This is because
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the current Bayesian calibration method does not scale well to datasets with high dimensions and

large sample sizes. This can be attributed to the following reasons:

• Gaussian process (GP) models have a runtime complexity of O(N3
) where N is the sample

size of the data used to train the GP model. In other words, if twice as many samples

were used, it would take eight times longer to train the GP model. To put into context,

the sample size of hourly and daily data is approximately 730 and 30 times larger than

monthly aggregated data collected over the same time period. Given n observations and

m simulation runs, running each simulation at the same observable input factors x1, ..., xn

would produce a simulation dataset of size nm and a combined field and simulation dataset

of size n + nm. Therefore, the number of samples used to train the GP model is N =

n + nm. Correspondingly, it would take approximately (730 + 730m)

3 and (30 + 30m)

3

times longer to train the GP model with hourly and daily calibration data respectively.

A common approach to overcome this would be to use heuristics to select representative

subsets of the data. However, such an approach requires significant data analytics and

expert knowledge, making the process difficult to replicate in an autonomous framework.

• The random-walk Metropolis (RWM) and the Gibbs sampling algorithms are routinely

used for Bayesian calibration because of their simple implementation. However, these al-

gorithms suffer from the “curse of dimensionality” and may take an unacceptable large

number of iterations (longer runtimes) to achieve convergence for high-dimensional poste-

rior distribution. In addition, fitting a large dataset to a GP model can be computationally

challenging per iteration of RWM or Gibbs sampler. It is important to note that for the

Bayesian calibration framework, the posterior distribution is typically high-dimensional

and can easily involve more than 10 dimensions because of the GP correlation and vari-

ance hyperparameters (Equation 2.7).

Besides challenges associated with computation cost and the ability for the calibration pro-

cess to be automated, current assessment of the calibrated model do not place enough emphasis

on the evaluation of model performance. Currently, a model is considered calibrated when the
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coefficient of variation of the root mean squared error (CVRMSE) or the normalized mean bias

error (NMBE) falls below the error criteria set by various guidelines or standards such as those

listed in Table 1.1. To begin with, CVRMSE or NMBE is typically calculated using data that was

used to calibrate the model. However, such a performance evaluation protocol is biased and may

overfit the model, producing a calibrated model that is biased and performs poorly on unseen

data. Moreover, CVRMSE and NMBE do not check for convergence of the iterative MCMC

simulations. If a MCMC simulation has not proceeded long enough, the generated samples may

be grossly unrepresentative of the target distributions (Gelman et al., 2014). Figure 2.3 shows

an example of convergence issues. In the left plot, both chains appear stable and when looked at

separately, convergence is seemingly achieved. However looking at both chains together shows

a clear lack of convergence. The plot on the right shows that the two chains appear to cover

a common distribution. However, to achieve convergence, each individual chain must achieve

stationarity.

Figure 2.3: Examples of two challenges in assessing convergence of samples generated from

MCMC methods, taken from Gelman et al. (2014)
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2.4 Additions to current Bayesian calibration method

2.4.1 Overview

2 strategies were employed to overcome the computation challenge of applying Bayesian cali-

bration to high-dimensional datasets and large samples sizes. As mentioned in Section 2.3, large

sample sizes occur when calibrating against daily or hourly data. High dimensionality typically

occurs from fitting the calibration parameters and the hyperparameters that define a GP emulator.

The 2 approaches employed include:

1. Reducing the sample size by sampling a representative subset of the data from the entire

dataset. The sampled subset is then be used for the calibration of the building energy model

instead of the full dataset.

2. Using a more effective MCMC algorithm, the No-U-Turn Sampler (NUTS) (Hoffman and

Gelman, 2014), which is an extension of Hamiltonian Monte Carlo (HMC) (Gelman et al.,

2014). NUTS requires no manual tuning, is more efficient and converges more quickly in

high-dimensional problems.

In addition, the following were also included to improve the rigor in assessing the performance

of the calibrated model:

1. Assess accuracy (agreement between measured and predicted) using a hold-out test dataset

that was not used in the calibration process.

2. Assess convergence of iterative MCMC simulations (i.e., multiple MCMC chains have

converged to a common stationary distribution).

2.4.2 Sampling a representative subset

The traditional design of experiments involves specifying inputs through which the correspond-

ing output can then be observed. However, unlike the traditional design of experiments, energy

modelers are not provided with the flexibility to configure the input factors x that may affect the

observed output y. Instead, energy modelers are typically provided with historical data contain-
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ing measured values of y and x for the calibration of the energy model. Therefore, the design

space is the set of x values at which the building has been operated and the experimental design

corresponding to the field observations is a dataset DF

=

⇥
y x

⇤
that is made up the observed

values y1, ..., yn 2 R and the corresponding observed input factors x 2 Rn⇥p.

To learn about the calibration parameters t, m simulations are run at different combinations of

(x, t). Therefore, the corresponding design of experiments is a simulation dataset DS

=

⇥
⌘ x t

⇤

containing the simulator output ⌘1, ..., ⌘nm 2 R and the corresponding input factors x 2 Rnm⇥p

and the calibration parameters t 2 Rnm⇥q. 1

Having access to massive volumes of data does not imply that the calibration algorithm

should be applied to the entire dataset. Since buildings are typically operated the same way

throughout the year, there is significant redundancy in building data. This implies that a small

sample of the large dataset would provide sufficient accuracy with significantly lower computa-

tion cost. Traditionally, the approach has been to manually select representative parts of the data

(e.g., one week of summer and winter data) for the calibration and the analysis. However, such a

process typically requires expert knowledge and is subjective, making it harder to be replicated

and hence automated. Therefore, the proposed approach uses random samples from the dataset.

However, determining the correct sample size is often not intuitive. To overcome this, a statis-

tical approach that is based on information theory is used. Such an approach is more intuitive,

repeatable and less prone to lost of available information. The approach uses Kullback-Leibler

divergence (Kullback and Leibler, 1951) to measured the “distance” or “divergence” of the se-

lected subset from the whole dataset. More specifically, it uses a metric known as sample quality

Q (Gu et al., 2001). Suppose there is a dataset D with R attributes and the sample quality of its

subset D
sub

needs to be calculated. The sample quality of D
sub

is used to measure how similar

1Since each simulation is run at the same observed input factors x 2 Rn⇥p, running m simulations would result

in a simulation dataset DS containing n ⇥ m samples. As mentioned in Chapter 2.3, the resulting sample size

N = n + nm that the GP model is trained on can increase very quickly as more observations n is used. Together

with its O(N3) runtime complexity, this can make the calibration process computationally prohibitive with hourly

or daily data.
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D
sub

is to D and is given by Equation 2.12.

Q(D
sub

) = exp(�J) (2.12)

J =

1

R

RX

i=1

J
i

(D
sub

, D) (2.13)

J
i

(D
sub

, D) =

cX

j=1

�
PDsub
j

� PD

j

�
log

PDsub
j

PD

j

(2.14)

where,

D is the entire dataset,

D
sub

is a subset of D,

J is the averaged information divergence,

J
i

(D
sub

, D) is the Kullback-Leibler divergence (of the ith attribute) between D
sub

and D,

PDsub
j

is the probability of occurrence of the jth value in D
sub

,

PD

j

is the probability of occurrence of the jth value in D,

Q is the sample quality,

R is the number of attributes.

By definition, J is always larger than 0 (Kullback and Leibler, 1951; Gu et al., 2001). There-

fore, 0 < Q  1 and Q = 1 indicates no divergence between the subset D
sub

and the entire

dataset D. The larger the information divergence J , the lower the sample quality Q and vice

versa. In calculating J
i

(D
sub

, D), each continuous attribute is first discretized. However, with

the sampled dataset containing significantly less samples than the entire dataset, there may be

zero entries in the sampled data D
sub

. Kullback-Leibler divergence is only defined when all en-

tries are non-zero. Therefore, a Bayesian prior is used to smooth the distribution. In this study,

a Dirchlet prior was used to smooth the distribution. This results in a posterior distribution that

is also Dirchlet (Equation 2.15) (Hausser and Strimmer, 2009). Table 2.1 shows the common

choices for the flattening constant a
j

when using a Dirichlet prior to smooth the sampled data.
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Table 2.1: Common choices for a Dirichlet prior that can be used to smooth the sampled data

(Equation 2.15), taken from Hausser and Strimmer (2009).

a
j

Cell frequency prior

0 no prior

1/2 (Jeffreys, 1946)

1 Bayes-Laplace uniform prior

1/p Perks prior (Perks, 1947)
p
n/p minimax prior (Trybula, 1958)

P
j

=

a
j

+ b
jP

c

j=1 aj +
P

c

j=1 bj
(2.15)

where,

a
j

is a flattening constant and acts as a pseudo-count,

b
j

denotes the observed counts for each bin,

c is the number of bins or categories.

Then, using this definition of sample quality Q, a sampling schedule S is used to determine

the sample size of the subset D
sub

. In this study, a geometric sampling schedule is used (Equation

2.16) (Provost et al., 1999).

S = {s0, A · s0, A2 · s0, A3 · s0, ...} (2.16)

where,

S is the sampling schedule,

s0 > 0 is the starting sample size,

A > 1 is the increment ratio.

Subsequently, a learning curve is used to depict the relationship between sample size and
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sample quality (Figure 2.4). The horizontal axis represents the number of random samples and

the vertical axis represents the sample quality. From the case studies (Chapter 3), these curves

typically increase very rapidly at the start and then gradually levels out to a plateau. This indicates

that a small sample size would be sufficiently representative of the entire dataset and that when n
i

is sufficiently large, adding more samples adds small accuracy improvements. Using the learning

curve, an appropriate sample size n
sub

is selected taking into consideration both sample quality

and computation cost of the calibration algorithm.

0.0
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Number of samples
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Figure 2.4: Curve depicting relationship between sample quality Q and sample size n
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2.4.3 No-U-Turn Sampler (NUTS) MCMC algorithm

Instead of the commonly used random-walk Metropolis (RWM) (Metropolis et al., 1953) or

Gibbs sampler (Geman and Geman, 1984), the No-U-Turn Sampler (NUTS) (Hoffman and Gel-

man, 2014), an extension of Hamiltonian Monte Carlo (HMC) algorithm is used to explore the

posterior distribution during the MCMC sampling. HMC is a variant of the MCMC algorithm

that avoids the random walk behavior and correlation between successive sampled states that

plague many MCMC methods, allowing faster convergence to high-dimensional posterior dis-

tributions (Duane et al., 1987; Neal, 1993, 2011; Gelman et al., 2014). To avoid the random

walk behavior, HMC borrows a concept from Hamiltonian dynamics, which describes an ob-

ject’s motion in terms of its position  and its momentum ⌧ . In the context of applying HMC to

Bayesian calibration as described in Chapter 2.2.2, the location variables  corresponds to the

parameters of the posterior distribution, i.e., the calibration parameters t and the hyperparameters

�⌘1 , ..., �
⌘

p+q

, ��1 , ..., ��p , �
⌘

, �
�

and �
✏

that define the GP emulator. To make the algorithm move

faster in the parameter space, HMC introduces an auxiliary momentum variable ⌧
i

for each vari-

able  
i

. The goal is to use Hamiltonian dynamics to find a more efficient proposal or jumping

distribution. A basic implementation of HMC is shown in Listing 2.1.

As shown in Listing 2.1, the main part of HMC is the simultaneous update of ( ,⌧ ). This up-

date is carried out during each of the N iterations and involves L leapfrog steps. In other words,

the function Leapfrog( ,⌧,✏) is called L times during each iteration. A useful insight be-

hind the leapfrog algorithm is that, when the values of  is at a flat portion of the posterior and the

log-posterior density is 0, the momentum ⌧ will remain constant and the algorithm moves within

the parameter space at constant velocity (Gelman et al., 2014). As the algorithm moves towards a

region of lower probability density, the log-posterior density is negative and the algorithm slows

down. On the contrary, if the algorithm moves towards a region of higher probability density,

the log-posterior density is positive and the algorithm moves through the parameter space more

rapidly. A downside is the longer computation time for each iteration of HMC because its gradi-

ent needs to be computed during each of the L leapfrog steps, which according to Hoffman and
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Gelman (2014) is the most computationally intensive part of the algorithm.

Listing 2.1: Hamiltonian Monte Carlo (HMC), adapted from Hoffman and Gelman (2014)

1 Given  

0 , ✏ , L , N

2 f o r i = 1 t o N

3 Sample ⌧

0 ⇠ N (0, I)

4 S e t  

i =  

i�1 ,  ̃ =  

i�1 , ⌧̃ = ⌧

0

5 f o r j = 1 t o L

6  ̃ , ⌧̃ = L e a p f r o g (  ̃ , ⌧̃ ,✏ )

7 end

8 ↵ = min

⇢
1,

exp{L( ̃)� 1
2 ⌧̃ .⌧̃}

exp{L( i�1)� 1
2 ⌧

0
.⌧

0}

�

9 S e t ⌧

i = ⌧̃ ,  

i = � ̃ wi th p r o b a b i l i t y ↵

10 end

11

12 f u n c t i o n L e a p f r o g ( ,⌧ ,✏ )

13 ⌧̃ = ⌧ + (✏/2)r
q

L( )
14  ̃ =  + ✏⌧̃

15 ⌧̃ = ⌧̃ + (✏/2)r
 

L( )
16 r e t u r n  ̃ , ⌧̃

From the pseudocode above, it can be seen that to run HMC, users need to provide values for

1) the scaling factor ✏ (leapfrog step size), and 2) the number of leapfrog steps per iteration L.

Therefore, like most MCMC methods, the use of HMC requires time consuming initial runs to

tune both ✏ and L. Poor choices of either parameter can result in an ineffective implementation

of HMC (Hoffman and Gelman, 2014). To mitigate the challenges involved in tuning L, NUTS

uses a recursive algorithm to automatically select the number of leapfrog steps L per iteration. It

also automatically determines a value for the scaling factor ✏ through a dual averaging scheme,

thus making it possible to run NUTS without requiring any user intervention. Details on its

implementation can be found in Hoffman and Gelman (2014).
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To summarize, NUTS is used for the following reasons:

• NUTS, an extension of HMC is more efficient in high-dimensional problems because the

algorithm is guided by the log-posterior gradient, suppressing random-walk behavior that

exists in most commonly used MCMC methods such as RWM and Gibbs sampling. This

makes it suitable for the Bayesian calibration of building energy models, which usually

involves exploring high-dimensional posterior distributions comprising of the calibration

parameters t, correlation hyperparameters (�⌘ and ��), and variance hyperparameters (�
⌘

,

�
�

and �
✏

).

• NUTS automatically tunes the HMC parameters ✏ and L. Therefore NUTS can be used

without any time consuming initial runs to tune the hyperparameters of HMC (i.e., the

number of leapfrog steps L and the leapfrog stepsize ✏).

Despite these advantages, neither NUTS or HMC has ever been utilized for the Bayesian

calibration of building energy models. For this study, Bayesian inference with NUTS was im-

plemented in R version 3.2.3 (R Core Team, 2015) with the package rstan (Stan Development

Team, 2016). Appendix B provides details for implementing NUTS in a Bayesian calibration

framework.

2.4.4 Model evaluation

Two categories of performance metrics were used to assess the performance of the calibrated

model and they include: 1) assessing accuracy on a test dataset using standard metrics of agree-

ment between model predictions and observed values; and 2) assessing convergence of multiple

MCMC chains to a common stationary distribution

The coefficient of variation of the root mean squared error (CVRMSE) and the normalized

mean bias error (NMBE) were used to assess the accuracy of the calibrated model. To prevent

bias in the evaluation process, CVRMSE and NMBE is calculated on a hold-out test dataset that

was not used in the calibration process. CVRMSE (Equation 1.5) provides a measure of how well

the simulated data fits the actual values while NMBE (Equation 1.3) serves as a good indicator
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of overall bias in the simulated data, providing an indication as to whether the predicted values

tend to overestimate or underestimate actual values. For hourly calibration data, a CVRMSE

below 30% and NMBE below 10% is considered acceptable according to ASHRAE Guideline 14

(ASHRAE, 2002). With monthly calibration data, the thresholds are stricter at 15% (CVRMSE)

and 5% (NMBE) respectively. See Table 1.1 for the acceptable limits of CVRMSE and NMBE

set by different standards and guidelines.

Trace plots of multiple MCMC chains and Gelman-Rubin statistics ( ˆR) (Gelman et al., 2014)

were used to assess convergence. Looking at the trace plots allows us to determine if the chains

are well-mixed and if different chains have converged to a common stationary distribution. Well-

mixed chains indicate faster convergence to the stationary distribution and therefore faster com-

putation. ˆR is the ratio of between-chain variance to within-chain variance and is calculated as

follows:

ˆR =

r
ˆvar( |y)
W

, where ˆvar( |y) = N � 1

N
W +

1

N
B (2.17)

B =

N

M � 1

MX

j=1

( 
.j

�  
..

)

2, where  
.j

=

1

N

NX

i=1

 
ij

,  
..

=

1

M
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j=1

 
.j
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W =

1

M

MX

j=1


1

N � 1

NX

i=1

( 
ij

�  
.j

)

2

�
(2.19)

where,

B is the between chain vairance,

W is the within chain variance,

M is the number of chains,

N is the number of iterations per chain,

 is the estimate.

ˆR is based on the concept that if multiple chains have converged, there should be little vari-

ability between and within the chains. For convergence, ˆR should be 1 ± 0.1. It is important
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to check for convergence because if the MCMC algorithm has not proceeded long enough, the

generated samples may be grossly unrepresentative of the actual posterior distributions (Gelman

et al., 2014). Therefore, assessing the convergence of all variables of the posterior distribution (t,

�⌘, ��, �
⌘

, �
�

and �
✏

) is recommended. This would make the assessment of the calibrated model

more rigorous and provide greater confidence that the generated samples are representative of

the target posterior distribution.
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Chapter 3

Case Studies

In this chapter, the effectiveness of the proposed method is evaluated using three different case

studies. To demonstrate its flexibility, the case studies were selected to range from a single chiller

component to a whole building energy model. The three case studies include: 1) a TRNSYS

model of a water-cooled chiller component; 2) an EnergyPlus model of the cooling system of a

ten story office building; and 3) a whole building EnergyPlus model of a mixed-use building.

To simplify the specification of the prior probability distributions, the outputs were standard-

ized to have zero mean and unit variance and the inputs scaled to the range [0,1] (See Listing

B.2 in Appendix B). Standardization also helps obtain better estimates of GP hyperparameters

and ease maximum likelihood estimation. Priors for the following calibration parameters and GP

hyperparameters were then specified as:

• Calibration paramaters t1, ..., tq ⇠ U(min = 0,max = 1). This is consistent with the

earlier normalization that puts them in the range between 0 and 1.

• Correlation hyperparameters �⌘1 , ..., �
⌘

p+q

: These correlation hyperparameters were repa-

rameterized using ⇢⌘
i

= exp(��⌘
i

/4), i = 1, ..., p + q so that 0 < ⇢⌘
i

< 1 since �⌘
i

> 0

(Higdon et al., 2008; Guillas et al., 2009). Independent Beta(a = 1, b = 0.5) priors were

then specified for each ⇢⌘
i

. Setting a = 1 and 0 < b < 1 places most of the prior support

near 1, indicating an expectation that only a subset of the inputs have an effect on the sim-
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ulation output. Smaller values of b indicate an expectation that the output depends on an

even smaller number of inputs.

• Correlation hyperparameters ��1 , ..., ��p: Similarly, these correlation hyperparameters were

reparameterized using ⇢⌘
i

= exp(��⌘
i

/4), i = 1, ..., p. A more conservative independent

Beta(a = 1, b = 0.4) prior was assigned to each ⇢⌘
i

because an even smaller subset of the

inputs was expected to have an effect on the discrepancy term �(x).

• Variance hyperparameter �
⌘

: A Gamma(a = 5, b = 5) prior was assigned to this hyperpa-

rameter. Here, a represents the shape and b is the rate. Since the outputs were standardized

to have unit variance, �
⌘

is expected to be close to one. Therefore, a Gamma prior with

a = b = 5 is suitable. In addition, a Gamma(a = 5, b = 5) prior helps to stabilize the

correlation hyperparameters (Higdon et al., 2008; Kern, 2000).

• Variance hyperparameters �
�

and �
✏

: Gamma(a = 1, b = 0.0001) priors were specified

for both �
�

and �
✏

. This results in a prior that is quite uninformative. Therefore, if the data

is uninformative about these parameters, the posterior would be large, resulting in a small

discrepancy and observation error respectively.

3.1 Case study 1 - mixed-use building in a college in Singapore

3.1.1 Case study and model description

In case study 1, the proposed method (Figure 2.1) was applied to a water-cooled chiller of a

mixed-use building located in a college in Singapore. The chiller provides cooling to indoor

spaces that include classrooms, offices, auditoriums, and mixed-use spaces. Singapore is located

near the equator and has a tropical climate. Therefore the predominant energy consumption in

buildings is for dehumidification and space cooling.

The water-cooled chiller was modeled using the TRNSYS “Type 666: Water Cooled Chiller”

component. Due to its modular structure, TRNSYS is particularly suited for the modeling of a

single chiller component. We use the following notations to define this chiller component.
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The “Type 666: Water Cooled Chiller” component relies on catalog data to determine a

chiller’s performance at different operating conditions (Thornton et al., 2014). Catalog data is

provided in the form of lookup tables that include: 1) the chiller capacity ratio [�] at varying

chilled water setpoint temperatures T
chw,set

[�C] and entering chilled water temperature T
chw,in

[�C]; 2) the chiller Coefficient of Performance (COP) ratio [�] at varying chilled water setpoint

temperatures T
chw,set

[�C] and entering chilled water temperature T
chw,in

[�C]; and 3) the chiller

fraction of full load power FFLP at varying part load ratios PLR. Figure 3.1 shows a simplified

representation of the cooling process.

Measurements used for this study include the chiller energy consumption, the entering chilled

water temperature T
chw,in

, the chilled water mass flow rate ṁ
chw

and the entering condenser water

temperature T
cw,in

. Data for the scheduled chilled water setpoint T
chw,set

was also obtained from

the building management system. High accuracy temperature sensors (±0.03�C) were used for

the chilled and condenser water temperature measurements. For greater precision, thermowells

were used to allow direct contact of the sensors with the water in the pipes. Chilled water flow

rates were measured using full bore electromagnetic flow meters with an accuracy of ±0.5%.

At each time step, the simulation takes as inputs, the chilled water set point temperature

T
chw,set

and the entering condenser water temperature T
cw,in

to determine the current capacity

ratio and COP ratio from the lookup tables. The chiller capacity and nominal COP can then be

calculated using the rated capacity and the rated COP which we take as calibration parameters t

(Equations 3.1 and 3.4).

COP
nom

= COP
rated

· COP
ratio

(3.1)

where,

COP
nom

is the chiller nominal COP at current conditions [�],

COP
rated

is the chiller rated COP at current conditions [�],

COP
ratio

is the chiller COP at current conditions divided by the rated COP [�].
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compressorexpansion
valve

condenser

evaporator

Tcw,in

Tchw,set
Tchw,in

ṁchw

chilled water loop

condenser water loop

Figure 3.1: Case study 1: schematic showing cooling process of a water cooled chiller. Inputs

at each time step include 1) entering chilled water temperature T
chw,in

[�C]; 2) chilled water

mass flow rate ṁ
chw

[kg/h]; 3) chilled water setpoint temperature T
chw,set

[�C]; and 4) entering

condenser water temperature T
cw,in

[�C].

Capacity = Capacity
rated

· Capacity
ratio

(3.2)

where,

Capacity is the chiller capacity at current conditions [kJ/h],

Capacity
rated

is the chiller rated capacity [kJ/h],

Capacity
ratio

is the chiller capacity at current conditions divided by the rated capacity [�].
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Then, the chiller load Q
load

and the part load ratio PLR can be calculated using Equations

3.3 and 3.4 respectively.

˙Q
load

= ṁ
chw

· Cp
chw

· (T
chw,in

� T
chw,set

) (3.3)

PLR = max(1,
˙Q
load

Capacity
) (3.4)

where,

˙Q
load

is the current load on the chiller [kJ/h],

m
chw

is the flow rate of fluid entering the chilled water stream [kg/hr],

Cp
chw

is the specific heat of fluid entering the cooling water stream [kJ/kg.K],

T
chw,in

is the temperature of water entering the chilled water stream [�C],

T
chw,set

is the desired outlet temperature of water in the chilled water stream [�C],

PLR is the chiller Part Load Ratio (the ratio of the current load to the rated load) [�].

Although specific heat capacity Cp
chw

is a parameter in the model, it is given a value of 4.19

kJ/kg.K and not modeled as a random variable. This is because it is a well known property of

water. Using catalogue data provided through a lookup table, the calculated PLR (Equation 3.4)

is used to determine the fraction of full load power FFLP . Chiller power at a given time step

can then be calculated using Equation 3.5.

P =

Capacity

COP
nom

FFLP (3.5)

where,

P is the power drawn by the chiller at current conditions [kJ/h],

Capacity is the chiller capacity at current conditions [kJ/h],

COP
nom

is the chiller nominal COP at current conditions [�],

FFLP is the fraction of full load power [�].
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The energy consumption of the chiller is then calculated as power over time. In this example,

sensitivity analysis was not carried out because only two parameters were identified as uncertain.

Therefore, the inputs and output used for the calibration of the chiller model can be summarized

as:

• Observed output y(x): Measured energy consumption of water cooled chiller [kJ].

• Simulation output ⌘(x, t): Predicted energy consumption of water cooled chiller [kJ].

• Observed inputs x:

(a) x1: entering chilled water temperature T
chw,in

[�C].

(b) x2: chilled water mass flow rate ṁ
chw

[kg/h].

(c) x3: chilled water setpoint temperature T
chw,set

[�C].

(d) x4: entering condenser water temperature T
cw,in

[�C].

• Calibration parameters t:

(a) t1: Chiller rated capacity [kJ/h].

(b) t2: Chiller rated COP [�].

3.1.2 Bayesian calibration

Bayesian calibration as described in Chapter 2.2.2 was used for the calibration. Data collection

took place between January 1, 2016 and April 30, 2016. After removing erroneous data and all

instances for which the outcome or any of the inputs are missing, the dataset contained n = 1130

samples. Of the data collected, 30% (339 samples) were used as a test hold-out dataset and the

remaining 70% (791 samples) were used for calibrating the model. Hourly data was used for the

calibration.

To reduce computation cost, 2 strategies were employed and they include using informa-

tion theory to reduce the number of samples (Chapter 2.4.2) and using NUTS (a more efficient

MCMC algorithm) to explore the posterior distribution (Chapter 2.4.3). The observed input

factors x is four dimensional with components corresponding to: 1) x1: entering chilled water
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temperature T
chw,in

; 2) x2: chilled water mass flow rate ṁ
chw

; 3) x3: chilled water setpoint tem-

perature T
chw,set

; and 4) x4: entering condenser water temperature T
cw,in

. The observed output

y is the measured energy consumption of the chiller. Therefore the experimental design corre-

sponding to the field observations is a dataset DF

=

⇥
y x1 x2 x3 x4

⇤
where DF 2 R791⇥5

(there are 791 samples because only 70% of the data was used for the calibration).

To learn about the calibration parameters t, m = 200 TRNSYS simulations were run at

different combinations of (x, t). Maximin LHS (Stein, 1987) was used to generate values for the

calibration parameters, chiller rated capacity t1 and chiller rated COP t2. To be conservative, an

upper and lower bound that is ± 20% of the initial values was assigned. Running each simulation

at the same input factors x produced 791⇥ 200 = 158200 samples. Therefore, the experimental

design for the simulations is a dataset DS

=

⇥
⌘(x, t) x1 x2 x3 x4 t1 t2

⇤
where DS 2 R158200⇥7.

To sample a representative subset DF

sub

from the field dataset DF and a representative sub-

set DS

sub

from the simulation dataset DS , random samples of varying sizes were generated and

their corresponding sample quality computed (Chapter 2.4.2). Figure 3.2 shows the relationship

between sample size and sample quality. Taking into consideration both sample quality and com-

putation cost, a sample size of 160 for DF

sub

and 640 for DS

sub

was used. Then, DF

sub

and DS

sub

was

used for the calibration of the building energy model instead of the entire dataset DF and DS .

Using the formulation by Higdon et al. (2004), DF

sub

and DS

sub

were combined in a Gaussian

process (GP) model. Following Chapter 2.2.2, a GP model for ⌘(., .) was specified using a mean

function that is set to return the zero vector and a covariance function of the form:

Cov((x, t), (x0, t0)) =

1

�
⌘

exp

⇢
�

4X

j=1

�⌘
j

|x
ij

� x0
ij

|2 �
2X

k=1

�⌘
p+k

|t
ik

� t0
ik

|2
� (3.6)

The GP model for the discrepancy term �(x) was also specified with a mean function that is

set to return the zero vector and a covariance function of the form:
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Figure 3.2: Case study 1: number of samples against sample quality for different subsets of

simulation data DS (left plot) and field data DF (right plot). 640 random samples from simulation

data DS and 160 random samples from field data DF is sufficient to represent the whole dataset.

Cov(x, x0
) =

1

�
�

exp

⇢
�

4X

j=1

��
k

|x
ij

� x0
ij

|2
�

(3.7)

Given that there are 2 calibration parameters and 4 input factors, parameters of the posterior

that need to be estimated include: 1) the calibration parameters t1, t2; 2) the correlation hyper-

parameters of the GP model �⌘1 , ..., �
⌘

6 , �
�

1 , ..., �
�

4; and 3) the variance hyperparameters of the GP

model �
⌘

, �
�

and �
✏

. NUTS, an extension of HMC was used to explore the posterior distribu-

tions. Four independent chains of 500 iterations per chain were run. To be conservative, the first

250 iterations (50%) values were discarded as warmup/burn-in to reduce the influence of starting

values.

Table 3.1 shows the prior probability distribution that was assigned to the calibration param-

eters as well as summarizes their posterior estimates. From Table 3.1, it can be seen that the

chiller’s rated capacity t1 has a posterior 95% confidence interval of (2166341,2330755). This
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is narrower than the initial prior (t1 ⇠ U(1795434, 2688586)) that was assigned. The same ob-

servation is made for the chiller’s COP t2 where the posterior 95% confidence interval (7.1,8.3)

is narrower than the initial prior (t2 ⇠ U(5.6, 8.4)) that was assigned. Figure 3.3 shows that the

posterior estimates for t1 and t2 are normally distributed with mean 2166341 kJ/h and 7.7 re-

spectively. Also, the 2 dimensional histogram in Figure 3.3 illustrates that t1 and t2 are positively

correlated. This is not surprising since the chiller’s power consumption is directly proportional

to the ratio of its capacity and its COP (Equation 3.5).

Table 3.1: Case study 1: Prior distribution and summary statistics for posterior distribution of

calibration parameters.

Parameter [units] Prior Posterior

mean 2.5 Percentile 50 Percentile 97.5 Percentile

t1 [kJ/h] U(1795434, 2688586) 2166341 2009712 2168428 2330755

t2 [�] U(5.6, 8.4) 7.7 7.1 7.6 8.3

1900000 2000000 2100000 2200000 2300000 2400000
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7.
5

8.
0

2000000 2200000 2400000
t1

6.
5
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0
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5

8.
0
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5

t 2

Figure 3.3: Case study 1: posterior distribution (excluding warmup) of calibration parameters:

chiller rated capacity t1 [kJ/h], chiller rated COP t2 [�].
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3.1.3 Model evaluation

Given the focus on prediction accuracy, it is important to evaluate the prediction accuracy of the

calibrated model. To assess prediction accuracy, predictions by the calibrated model is compared

to measurements in the hold-out test dataset. Figure 3.4 shows the 339 hold-out samples and

how they compare with the 95% confidence interval of the predictions. These are predictions

by the calibrated model at input settings that were not part of the data used to calibrate or train

the model. It can be observed that there is a good match between the calibrated predictions and

the field observations, with most measurements being within the 95% confidence interval of the

predictions.

Table 3.2: Case study 1: CVRMSE and NMBE computed with posterior mean estimates with

and without the discrepancy term �(x).

Statistical Formulation CVRMSE (%) NMBE (%)

⌘(x, t) + ✏(x) 12.0 -0.8

⌘(x, t) + �(x) + ✏(x) 9.4 -0.7

Over a total of 339 hold-out samples, CVRMSE (9.4%) and NMBE (-0.7%) with the mean

posterior predictions is also within the acceptable thresholds for hourly calibration data set by

various standards and guidelines (See Table 1.1). This is also illustrated in Figure 3.5, which

shows a histogram of residuals for the calibrated predictions standardized by the observed values

and their standard deviation. The figure shows that most residuals are within ±1�
y

. However,

there are a few predictions that lies further to the right of zero, suggesting that they overestimate

their corresponding observed values. These overestimation occur for measurement points that

have high entering chilled water temperature (T
chw,in

) and low chilled water temperature setpoint

(T
chw,set

) (Figure 3.6). When the inlet chilled water temperature is high and the chilled water

setpoint temperature is low, a high chiller energy consumption is expected. Figure 3.6 illustrates

that this is true for most measurement points with the exception of the outliers (i.e., data that
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were overestimated by the calibrated model). A possible explanation is that the chiller is not

operating as expected, and the chilled water supply temperature is significantly higher than the

setpoint. Therefore, it might be useful to introduce operation of the chiller as a model parameter

to determine if it is indeed due to the chiller’s operation. Nonetheless, such operational data is

currently unavailable and thus cannot be tested in the current study.
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Figure 3.5: Case study 1: histogram of residuals (test data) standardized by standard deviation

of observed output.
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Figure 3.6: Case study 1: outliers in testing dataset.
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Figure 3.7 shows the resulting mean posterior predictions1 with and without the discrepancy

term �(x), as well as how they compare with the observed values y(x) of the hold-out test dataset.

To gain a better understanding of the simulator’s prediction, Figure 3.7 shows how the predic-

tions and discrepancies varies against different input factors, including entering chilled water

temperature T
chw,in

, chilled water mass flow rate ṁ
chw

, and entering condenser water tempera-

ture T
cw,in

. As mentioned in Chapter 2.2.2, the discrepancy term �(x) is used to estimate how

well the model predictions matches actual observed values. Overall, it can be seen that the sim-

ulator ⌘(x, t) underestimates (negative bias) the chiller’s energy at low T
chw,in

and ṁ
chw

, and

overestimates (positive bias) the chiller’s energy at high T
chw,in

and ṁ
chw

. This compensation

between positive and negative bias explains why the NMBE is relatively small at 3.7% (Table

3.2).

A closer look at Figure 3.7 shows that the discrepancy term is slightly positive when T
chw,in

<

12.5�C and ṁ
chw

< 250000 kg/h. However, the discrepancy term flips and becomes negative

when T
chw,in

> 15

�C and ṁ
chw

> 300000 kg/h. This suggests that the simulator predictions

⌘(x, t) tend to underestimate chiller energy consumption when T
chw,in

< 12.5�C and ṁ
chw

<

250000 kg/h and overestimate chiller energy consumption when T
chw,in

> 15

�C and ṁ
chw

>

300000 kg/h. Figure 3.7 also shows that including the discrepancy term �(x) reduces the overall

bias across different T
chw,in

and ṁ
chw

. Additionally, a decrease in CVRMSE from 12% to 9.4%

was also observed .

Trace plots and ˆR of the calibration parameters (t1, t2), correlation hyperparameters (�⌘1 , ..., �
⌘

6

and ��1 , ..., ��4), and variance hyperparameters (�
⌘

, �
�

, and �
✏

) were used to assess convergence.

See Chapter 2.4.4 for a description of both metrics. From Figures A.1 and A.2, it can be seen that

all components of the posterior distribution are well mixed and have converged to a common sta-

tionary distribution. ˆR is also within 1± 0.1 for all calibration parameters and hyperparameters

of the GP model.

1The mean posterior predictions are computed by taking the mean of the predictions at input settings given by

the hold-out test dataset
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Figure 3.7: Case study 1: posterior mean estimates for the field observations y(x) (chiller en-

ergy consumption), the calibrated simulator output ⌘(x, t), the discrepancy term �(x) and the

calibrated prediction with discrepancy term ⌘(x, t) + �(x).
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3.2 Case study 2 - office building in Pennsylvania U.S.A

3.2.1 Case study and model description

In case study 2, the proposed method (Figure 2.1) was applied to the cooling system of a ten-story

office building located in Pennsylvania U.S.A.

LoadProfile:Plant

Chilled 
Water Pump

Chiller 1

Chiller2

Cooling 
Tower 1

Cooling 
Tower 2

Condenser 
Water Pump

Chilled Water Loop

Condenser Loop

Figure 3.8: Case study 2: simplified representation of cooling system modeled using EnergyPlus.

The cooling system was modeled using EnergyPlus version 8.5 and consists of the follow-

ing functional parts (Figure 3.8): (a) loads from a cooling coil that transfers heat from air to

water; (b) two chillers connected in parallel that cools the water; (c) chilled water distribution

pumps that send chilled water to the cooling coil; (d) condenser water pumps for circulation in

the condenser loop; and (e) two cooling towers in parallel that reject heat from the chillers to the
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atmosphere. The following EnergyPlus objects were used to model this cooling system (LBNL,

2016c): (a) LoadProfile:Plant; (b) Chiller:Electric:EIR; (c) Pump:VariableSpeed; and (d) Cool-

ingTower:SingleSpeed. The calibration was carried out using cooling electricity consumption as

the output of interest, which was calculated as the sum of electricity consumption by the chillers,

chilled water pumps, condenser water pumps and cooling towers. Table 3.3 shows a list of the

data points used in this study as well as the sensors used for their measurements.

Table 3.3: Case study 2: List of measurements and sensors.

Description Metering instrument

Cooling coil inlet water temperature Onicon System 10 Btu Meter

Cooling coil outlet water temperature Onicon System 10 Btu Meter

Chilled water flow rate Onicon System 10 Btu Meter

Chiller 1 power WNC-3D-480-MB

Chiller 2 power WNC-3D-480-MB

Chilled water pump power WNC-3D-480-MB

Condenser water pump power WNC-3D-480-MB

Cooling tower 1 fan power WNC-3D-480-MB

Cooling tower 2 fan power WNC-3D-480-MB

The EnergyPlus LoadProfile:Plant object was used to simulate a scheduled demand profile

when the coil loads are already known (LBNL, 2016c). This makes it possible to isolate and cal-

ibrate the HVAC system without any propagation of uncertainties due to calculation of building

loads. Demanded loads were calculated based on measured water mass flow rate and temper-

ature difference across the cooling coil according to Equation 3.8 (LBNL, 2016a). Given the

coil load Q
load

(Equation 3.8) and the fraction of peak flow rate (Equation 3.9) at a given time-

step, the simulation then steps through the code of each HVAC component to calculate its power

consumption.
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Q
load

= ⇢V
chw

C
p

(T
in

� T
out

) (3.8)

where,

Q
load

is the scheduled coil load [W ],

⇢ = 1.225 is the density of water [kg/m3],

V
chw

is the volumetric flow rate [m3/s],

C
p

is the specific heat of water [J/kg�C],

T
in

is the inlet water temperature [�C],

T
out

is the outlet water temperature [�C].

V
frac

=

V
chw

V
chw,max

(3.9)

where,

V
frac

is the fraction of peak flow rate [�],

V
chw

is the volumetric flow rate [m3/s],

V
chw,max

is the maximum chilled water flow rate that was measured [m3/s].

The EnergyPlus Chiller:Electric:EIR object uses performance information at reference con-

ditions along with three performance curves to determine a chiller’s performance at off-reference

conditions (LBNL, 2016a). The three performance curves are: (1) Cooling Capacity Function

of Temperature Curve (Equation 3.10); (2) Energy Input to Cooling Output Ratio Function of

Temperature Curve (Equation 3.11); and (3) Energy Input to Cooling Output Ratio Function of

Part Load Ratio Curve (Equation 3.12).

CapFT = a1 + b1(Tcw,l

) + c1(Tcw,l

)

2
+ d1(Tcond,e

) + e1(Tcond,e

)

2
+ f1(Tcw,l

)(T
cond,e

) (3.10)

where,

CapFT is the cooling capacity factor, equal to 1 at reference conditions [�],

57



T
cw,l

is the leaving chilled water temperature [�C],

T
cond,e

is the entering condenser fluid temperature [�C].

EIRFT = a2 + b2(Tcw,l

) + c2(Tcw,l

)

2
+ d2(Tcond,e

) + e2(Tcond,e

)

2
+ f2(Tcw,l

)(T
cond,e

) (3.11)

where,

EIRFT is the energy input to cooling output factor, equal to 1 at reference conditions [�],

T
cw,l

is the leaving chilled water temperature [�C],

T
cond,e

is the entering condenser fluid temperature [�C].

EIRFPLR = a3 + b3(PLR) + c3(PLR)

2 (3.12)

where,

EIRFPLR is the energy input to cooling output factor, equal to 1 at reference conditions [�],

PLR =

cooling load
chiller’s available cooling capacity is the part load ratio [�].

Using the outputs from Equations 3.10 to 3.12, chiller power can then be calculated by Equa-

tion 3.13.

P
chiller

=

Q
ref

COP
ref

(CapFT )(EIRFT ) (3.13)

where,

P
chiller

is the chiller power at a specific PLR [W ],

Q
ref

is the chiller capacity at reference conditions [W ],

COP
ref

is the chiller’s coefficient of performance (COP) at reference conditions [�].
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The parameters of this chiller model (Q
ref

, COP
ref

, regression coefficients of Equations

3.10, 3.11 and 3.12) were determined based on measured data using the reference-curve method

that was proposed by Hydeman and Gillespie Jr (2002).

The EnergyPlus Pump:VariableSpeed object calculates the power consumption of a variable

speed pump using a cubic curve (Equation 3.14) (LBNL, 2016c).

FFLP = a5 + b5(PLR) + c5(PLR)

2
+ d5(PLR)

3 (3.14)

where,

FFLP is the fraction of full load power [�],

PLR =

Flow Rate
Design Flow Rate is the part load ratio [�].

Using the FFLP calculated by Equation 3.14, pump power is then calculated by Equation

3.15. The value of P
design

is set based on measurements of the pump’s flow rate and power. A

value of 1 was assigned to motor efficiency because pump motor inefficiencies are already ac-

counted for in the measurements of flow and power. Least squares regression is used to compute

the coefficients of Equation 3.14, with FFLP and PLR calculated by Equations 3.16 and 3.17

respectively.

P
pump

= (P
design

)(FFLP )(Eff
motor

) (3.15)

where,

P
pump

is the pump power [W ],

P
design

is the design pump power consumption [W ],

FFLP is the fraction of full load power [�],

Eff
motor

is the pump motor efficiency [�].

FFLP
i

=

power
i

max(power1, power2, ..., powern)
(3.16)
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where,

FFLP
i

is the fraction of full load power for the ith measurement [�],

power
i

is the ith measured pump power [W ].

PLR
i

=

flow
i

max(flow1, f low2, ..., f lown

)

(3.17)

where,

PLR
i

is the part load ratio for the ith measurement [�],

flow
i

is the ith measured pump flow rate [m3/s].

Taken over time, the total energy consumption of the cooling system is then calculated as the

sum of the energy consumption for each individual component.

3.2.2 Uncertainty quantification and sensitivity analysis

Before calibrating the model, sensitivity analysis was used to screen out non-influential parame-

ters. The aim is to mitigate over-parameterization and reduce computational cost without affect-

ing model accuracy. Table 3.4 shows the uncertain parameters ✓ as well as their respective initial,

minimum and maximum values. 10 parameters were modeled as uncertain. Although the set of

uncertain parameters ✓ are specific to this case study, they correspond to the set of parameters

typically selected as random variables for a centralized cooling system.

Design fan power ✓9 and nominal capacity ✓10 of cooling towers 1 and 2 were modeled as

a single random variable because they have the same make and model and were installed at the

same time. On the contrary, based on the measured data, chillers 1 and 2 have very different

capacity (✓1 and ✓3) and COP (✓2 and ✓4) at reference conditions. Therefore, these parameters

were modeled as separate random variables. The initial value for each parameter was assigned

based on either 1) measured data (as described in the previous section); or 2) as-built architectural

and mechanical drawings. Pump motor efficiency was assigned a wide range of 0.6 to 1.0 because

no information on pump motor efficiency was available. To be conservative, the remaining 8
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parameters were varied ±20% of their initial values.

Table 3.4: Case study 2: list of model parameters and their range.

Model parameter Symbol Initial Value Min Max

Chiller 1:

Reference Capacity (W ) ✓1 653378 522702 784053

Reference COP (�) ✓2 6.86 5.49 8.23

Chiller 2:

Reference Capacity (W ) ✓3 243988 195190 292785

Reference COP (�) ✓4 2.32 1.85 2.78

Chilled water pump:

Design Power Consumption (W ) ✓5 18190 14552 21828

Motor Efficiency (�) ✓6 1.0 0.6 1.0

Condenser water pump:

Design Power Consumption (W ) ✓7 11592 9274 13911

Motor Efficiency (�) ✓8 1.0 0.6 1.0

Cooling Tower 1 and 2:

Design Fan Power (W ) ✓9 11592 9274 13911

Nominal Capacity (W ) ✓10 549657 439726 659589

The Morris method was used to carry out the sensitivity analysis. Detailed description of

the method can be found in Chapter 2.2.1. Implementation was carried out using R sensitivity

package (Pujol et al., 2016). All uncertain parameters ✓ were assigned a uniform distribution.

The Morris method was applied with 10 parameters (✓1 to ✓10), 20 trajectories and 16 levels. This

led to an experimental design of 20 ⇥ (10 + 1) = 220 simulation runs. Using results from the

simulation runs, we generate a graphical plot of µ⇤ against � (Figure 3.9) to better interpret the

sensitivity measures.

From Figure 3.9, it can be seen that parameters ✓5 to ✓9 have µ⇤ and � close to zero, indicating
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that these parameters have negligible influence on the simulation output (total cooling energy

consumption). Considering both µ⇤ and �, we can conclude that parameters ✓1, ✓2, ✓3, ✓4, and

✓10 are important with ✓2, ✓3 and ✓4 appearing to have effects that involve either curvature or

interactions. This result is not surprising because parameters ✓1 to ✓4 are parameters of the

chiller component (Table 3.4), and therefore is expected to have the greatest influence on cooling

energy.

θ1

θ2 θ3

θ4

θ10

0.000

0.025

0.050

0.075

0.0 0.1 0.2 0.3 0.4
µ*

σ influential

non−influential

Figure 3.9: Case study 2: graphical plot of sensitive measures µ⇤ and � for parameters ✓1 to ✓10

(Table 3.4). The closer the parameters are to the upper right, the more sensitive the parameter.

Parameters close to the bottom left are non-influential parameters.

Based on the sensitivity analysis, only parameters ✓1, ✓2, ✓3, ✓4, and ✓10 would be used for

the Bayesian calibration of the EnergyPlus model. Note that the notation t is used to denote

the calibration parameters, i.e., the influential parameters that were selected from the set of un-

certain parameters ✓. Therefore, the inputs and output used for the Bayesian calibration of this

EnergyPlus model can be summarized as:
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• Observed output y(x): Measured energy consumption of the cooling system [kWh].

• Simulation output ⌘(x, ✓): Predicted energy consumption of the cooling system [kWh].

• Observed inputs x:

(a) x1: Load of cooling coil Q
load

[W ].

(b) x2: Fraction of peak chilled water flow rate [�].

• Calibration parameters t:

(a) t1 = ✓1: Chiller 1 reference capacity [W ].

(b) t2 = ✓2: Chiller 1 reference COP [�].

(c) t3 = ✓3: Chiller 2 reference capacity [W ].

(d) t4 = ✓4: Chiller 2 reference COP [�].

(e) t5 = ✓10: Nominal capacity of cooling towers [W ].

3.2.3 Bayesian calibration

Bayesian calibration as described in Chapter 2.2.2 was used for the calibration. Data collection

took place between June 1, 2014 and August 31, 2014. After removing erroneous data and all

instances for which the outcome or any of the inputs are missing, the dataset contained 719

samples. Of the data collected, 30% (219 samples) were used as a test hold-out dataset and the

remaining 70% (503 samples) were used for calibrating the model. Hourly data was used for the

calibration.

To reduce computation cost, 2 strategies were employed that include using information theory

to reduce the number of samples (Chapter 2.4.2) and using NUTS (a more efficient MCMC

algorithm) to explore the posterior distribution (Chapter 2.4.3). The observed input factors x is

two dimensional with components corresponding to: 1) x1: cooling coil load; and 2) x2: fraction

of peak chilled water flow rate. The observed output y(x) is the measured energy consumption

of the cooling system. Therefore the experimental design corresponding to the field observations

is a dataset DF

=

⇥
y x1 x2

⇤
where DF 2 R503⇥3 (there are 503 samples because only 70% of
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the data was used for the calibration).

To learn about the calibration parameters t, m = 200 EnergyPlus simulations were run at

different combinations of (x, t). Maximin LHS (Stein, 1987) was used to generate values for

the calibration parameters t1, t2, t3, t4, and t5. Running each of the 200 simulations at the same

input factors x generates 503 ⇥ 200 = 100600 samples. Therefore, the experimental design for

the simulations is a dataset DS

=

⇥
⌘(x, t) x1 x2 t1 t2 t3 t4 t5

⇤
where DS 2 R100600⇥8.

To sample a representative subset DF

sub

from the field dataset DF and a representative subset

DS

sub

from the simulation dataset DS , random samples of varying sizes were generated and their

corresponding sample quality computed (Chapter 2.4.2). Figure 3.10 shows the relationship

between sample size and sample quality. Taking into consideration both sample quality and

computation cost, a sample size of 80 for DF

sub

and 640 for DS

sub

was used. Then, DF

sub

and DS

sub

was used for the calibration of the building energy model instead of the entire dataset DF and

DS .
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Figure 3.10: Case study 2: number of samples against sample quality for different subsets of

simulation data DS (left plot) and field data DF (right plot). 640 random samples from simulation

data DS and 80 random samples from field data DF is sufficient to represent the whole dataset.
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Using the formulation by Higdon et al. (2004), DF

sub

and DS

sub

were combined in a Gaussian

process model. Following Chapter 2.2.2, the GP model for ⌘(., .) was specified using a mean

function that returns the zero vector and a covariance function of the form:

Cov((x, t), (x0, t0)) =

1

�
⌘

exp

⇢
�

2X

j=1

�⌘
j

|x
ij

� x0
ij

|2 �
5X

k=1

�⌘
p+k

|t
ik

� t0
ik

|2
� (3.18)

The GP model for the discrepancy term �(x) was also specified with a mean function that

returns the zero vector and a covariance function of the form:

Cov(x, x0
) =

1

�
�

exp

⇢
�

2X

j=1

��
k

|x
ij

� x0
ij

|2
�

(3.19)

Given that there are 5 calibration parameters and 2 input factors, parameters of the posterior

that need to be estimated include: 1) the calibration parameters t1, ..., t5; 2) the correlation hy-

perparameters of the GP model �⌘1 , ..., �
⌘

7 , �
�

1 , �
�

2; and 3) the variance hyperparameters of the GP

model �
⌘

, �
�

and �
✏

. NUTS, an extension of HMC was used to explore the posterior distribu-

tions. Four independent chains of 500 iterations per chain were run. To be conservative, the first

250 iterations (50%) values were discarded as warmup/burn-in to reduce the influence of starting

values.

Figure 3.11 shows the posterior distribution of the calibration parameters t. From the Figure,

it can be observed that the posterior estimates suggest that chiller 1 and chiller 2 have a lower

rated capacity (t1 and t3) as compared to its initial estiamte (Table 3.4). This is based on the

observation that the histogram for the posterior estimates for t1 and t3 are right-skewed (Figure

3.11). Similarly, the posterior estimates for t2 and t4 are left-skewed, suggesting that chillers 1

and 2 have a higher rated COP than initially expected. On the contrary, the posterior distribution

for the nominal capacity of the the cooling tower t5 appears to be uniformly distributed. Also,

the posterior distribution for t3 and t4 appears to be more skewed as compared to the posterior

estimates for t1 and t2. In fact, the posterior distribution for t1 and t2 are as wide as their prior
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probabilities, suggesting little to no reduction in their uncertainties. This suggests that only t3

and t4 had an effect on the output and the remaining parameters (t1, t2 and t5) adds little to the

overall uncertainty.

Table 3.5: Case study 2: Prior distribution and summary statistics for posterior distribution of

calibration parameters.

Parameter [units] Prior Posterior

mean 2.5 Percentile 50 Percentile 97.5 Percentile

t1 [W ] U(522702, 784053) 631815 525887 624418 766085

t2 [�] U(5.5, 8.2) 7.1 5.7 7.2 8.2

t3 [W ] U(195190, 292785) 225232 196741 219819 278445

t4 [�] U(1.9, 2.8) 2.5 2.0 2.6 2.8

t5 [W ] U(439726, 659589) 559549 447494 563538 653525
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Figure 3.11: Case study 2: posterior distribution (excluding warmup) of calibration parameters:

t1 chiller 1 reference capacity [W ], t2 chiller 1 reference COP [�], t3 chiller 2 reference capacity

[W ], t4 chiller 2reference COP [�], and t5 cooling tower nominal capacity [W ].
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3.2.4 Model evaluation

First, prediction accuracy is assessed using standard metrics of agreement and a visual compar-

ison of model predictions and observed values. To prevent bias, predictions by the calibrated

model is compared to measurements in the hold-out test dataset. Of the 719 observations that

were collected, 30% of the data (216 samples) was withheld and not used for the calibration.

Figure 3.13 shows the hold-out samples and how they compare with the 95% confidence interval

of the predictions. Overall, the figure shows good agreement between the calibrated predictions

and the measurements in the hold-out dataset with some overestimation and underestimation, i.e.,

some observed values were slightly below or above the 95% confidence interval of the calibrated

predictions. Over all 216 hold-out samples, CVRMSE and NMBE were 6.0% and -0.3% re-

spectively, meeting the acceptable thresholds for hourly calibration data set by various standards

and guidelines (See Table 1.1). Agreement between predictions and observations in the hold-out

dataset is also illustrated in Figure 3.5, which shows a histogram of residuals for the calibrated

predictions standardized by the observed values and its standard deviation. The histogram shows

that the residuals are centered around zero with all residuals being within ±1�
y

.
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Table 3.6: Case study 2: CVRMSE and NMBE computed with posterior mean estimates with

and without the discrepancy term �(x).

Statistical Formulation CVRMSE (%) NMBE (%)

⌘(x, ✓) + ✏(x) 15.2 11.9

⌘(x, ✓) + �(x) + ✏(x) 6.0 -0.3

0

20

40

60

−1.0 −0.5 0.0 0.5 1.0
(y − y) σy

co
un
t

Figure 3.13: Case study 2: histogram of residuals (test data) standardized by standard deviation

of observed output.

Figure 3.14 shows the resulting mean posterior predictions2 with and without the discrep-

ancy term �(x), as well as how they compare with the observed values y(x) of the hold-out test

dataset. To gain a better understanding of the simulator’s prediction, Figure 3.14 shows how

the predictions and discrepancies varies against different input factors, which include, cooling

coil load Q
load

and fraction of peak chilled water flow rate V
flow

. It is interesting to note that

the range of V
frac

is above 0.95 a majority of the time, i.e., the pumps are operating close to
2The mean posterior predictions are computed by taking the mean of the predictions at input settings given by

the hold-out test dataset
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maximum flow rates most of the time. Since the chilled water pumps installed are variable speed

pumps, this indicates an opportunity for operating the cooling system more efficiently.
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Figure 3.14: Case study 2: posterior mean estimates for the field observations y(x) (cooling

system energy consumption), the calibrated simulator output ⌘(x, t), the discrepancy term �(x)

and the calibrated prediction with discrepancy term ⌘(x, t) + �(x).

From Figure 3.14, it can be seen that the discrepancy term is negative across various values

of Q
load

and V
frac

. This suggests that the simulator ⌘(x, t) tends to overestimate the energy

consumption of the cooling system. This also explains a positive NMBE of 11.9%. A closer

look at Figure 3.14 reveals that the discrepancy between model predictions and observed values

are the largest when 2.5 ⇥ 10

5 W < Q
load

< 5 ⇥ 10

5 W and gradually decreases towards
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zero as Q
load

increases. On the contrary, discrepancy between model predictions and observed

values are relatively constant across different V
chw

values. From Figure 3.14, it can be seen that

the varying bias across different values of Q
load

is well adjusted by the discrepancy term �(x).

This is obvious from a downward shift of the simulation predictions (grey squares), resulting

in calibrated predictions (blue crosses) that better match observed values (yellow circles). The

decrease in overall bias can also be observed by a decrease in NMBE from 11.9% to -0.3% (Table

3.2). In addition, CVRMSE is also reduced by more than one-half from 15.2% to 6.0%.

Although the discrepancy term �(x) is able to account for the differences between the cali-

brated simulation and the observed values y, care should be taken when interpreting the posterior

estimates for the calibration parameters t. This is because the discrepancy term �(x) is fairly large

and does not stay constant over x. This large discrepancy leads to a high degree of uncertainty

regarding the calibration parameters t. This suggests investigating aspects of the model that deal

with the cooling load to ensure that the model is well calibrated and that the discrepancy term

�(x) is not being overfitted by the data.

Trace plots and ˆR of the calibration parameters (t1, ..., t5), correlation hyperparameters (�⌘1 , ..., �
⌘

7

and ��1 , ��2), and variance hyperparameters (�
⌘

, �
�

, and �
✏

) were used to assess convergence. See

Chapter 2.4.4 for a description of both metrics. From Figures A.3 and A.4, it can be seen that all

components of the posterior distribution are well mixed and have converged to a common sta-

tionary distribution. ˆR is also within 1± 0.1 for all calibration parameters and hyperparameters

of the GP model.
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3.3 Case Study 3 - mixed-use building on a university campus

in Singapore

3.3.1 Case study and model description

In case study 3, the proposed method (Figure 2.1) was applied to a whole building energy model

of a mixed-use building located on a university campus in Singapore. The building is a three

story mixed-use building located at the National University of Singapore (Figure 3.15).

1st Story Floor Plan

2nd Story Floor Plan 3rd Story Floor Plan

Figure 3.15: Case study 3: Model view and floor plans of mixed-use building located on a

university campus in Singapore.

The model was created with EnergyPlus version 8.5 based on the following information to

gain a preliminary understanding of the envelope properties, the spatial layout and the HVAC

system: 1) as-built architectural drawings; 2) HVAC drawings and specifications; and 3) elec-

trical line drawings. Figure 3.15 shows the floor plans of the building. Altogether, eleven zone

73



types were identified (Table 3.7). Given weather information, a description of the building’s

geometry and its HVAC system, EnergyPlus is able to predict the energy consumption of the

building. Measured data used for this study includes 1) the outdoor dry-bulb temperature, 2) the

outdoor relative humidity and 3) the cooling energy consumption of the building. Measurements

of the outdoor dry-bulb temperature and relative humidity were measured at a height of about 90

meters above sea level. The Vaisala CS500 temperature sensor (±0.5�C) and the Vaisala CS500

relative humidity sensor (±2.5%) were used to measure the outdoor dry-bulb temperature and

relative humidity respectively.

Table 3.7: Case study 3: Initial values for parameters of internal load components of EnergyPlus

model.

Space Type Occupancy Density Lighting Power Density Equipment Power Density

[m2/person] [W/m2] [W/m2]

Circulation 0 11.54 0

Computer room 5.8 16.65 23.47

General office 83.9 15.01 6.45

Geographical Information Systems lab 5.4 17.57 23.47

Library 26.2 7.96 23.47

Research lab 55.7 8.34 13.99

Architecture studio 21.4 13.03 18.44

Multimedia lab 10.8 6.03 23.47

Research room 11 5.94 13.99

Seminar room 10.8 12.28 0

Staff room 46 22.13 6.74

To better quantify the inputs to the EnergyPlus model, an energy audit was carried out. This

energy audit included a site walkthrough amongst other data collection efforts. Given limited

resources, it is impractical to collect data over a long period of time. Table 3.7 shows the peak

occupancy density, peak lighting power density and the peak equipment power density for each

zone type. Lighting loads were determined based on: 1) spot measurements of representative

fixtures and the frequency of their usage over a period of one week; and 2) the fixture type and
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its wattage. In a similar way, equipment loads were determined by taking into consideration: 1)

spot measurements of representative zone types and the frequency of their usage over a period of

one week; and 2) electrical line drawings. Occupancy levels were determined by recording the

number of people in a representative zone type across a period of two weeks. A high infiltration

rate of 2 ACH was assumed given that the building is old and that there is a high occurrence of

cracks and poorly sealed windows.

3.3.2 Uncertainty quantification and sensitivity analysis

Before calibrating the model, sensitivity analysis was used to screen out non-influential param-

eters (Section 2.2.1). The aim is to mitigate over-parameterization and reduce computational

cost without affecting model accuracy. Table 3.8 lists the uncertain parameters ✓ as well as their

respective initial, minimum and maximum values. 17 parameters were modeled as uncertain.

Thermal properties of the opaque envelope ✓1 to ✓9 were varied ± 2 standard deviations �, where

� = 5%, 1% and 12.25% for conductivity, density, and specific heat respectively (Macdonald,

2002). Uncertainties for window U-value ✓10 and window SHGC ✓11 were determined taking

into account that the glass installed is a 6mm clear glass. Metabolic rate ✓17 was assigned based

on the fact that the occupants were seated and carrying out light work (Macdonald, 2002). To be

conservative, the remaining parameters were varied ±20% of their initial values. Since different

zones have different occupancy density, equipment power density and lighting power density,

they were varied by applying a multiplier to their initial values (Table 3.7).

The Morris method was used to carry out the sensitivity analysis. Detailed description of

the method is provided in Chapter 2.2.1. Implementation was carried out using R sensitivity

package (Pujol et al., 2016). All uncertain parameters ✓ were assigned a uniform distribution.

The Morris method was applied with 17 parameters (✓1 to ✓17), 30 trajectories and 16 levels. This

led to an experimental design with 30⇥ (17 + 1) = 540 simulation runs. Using results from the

simulation runs, a graphical plot of µ⇤ against � (Figure 3.16) was used to better interpret the

sensitivity measures.
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Table 3.8: Case study 3: list of model parameters and their range.

Model parameter Symbol Initial Value Min Max

Opaque Envelope Thermal Properties:

Gypsum conductivity [W/m ·K] ✓1 0.16 0.144 0.176

Gypsum density [kg/m] ✓2 785 769 801

Gypsum specific heat [kJ/kg ·K] ✓3 830 623 1038

Brick conductivity [W/m ·K] ✓4 0.675 0.608 0.743

Brick density [kg/m] ✓5 1602 1570 1634

Brick specific heat [kJ/kg ·K] ✓6 790 593 988

Gypsum board conductivity [W/m ·K] ✓7 0.16 0.144 0.176

Gypsum board density [kg/m] ✓8 800 784 816

Gypsum board specific heat [kJ/kg ·K] ✓9 1090 818 1363

Glazing Thermal Properties:

Window U-value [W/m ·K] ✓10 5.778 5.49 6.067

Window SHGC [�] ✓11 0.862 0.82 0.91

Ventilation:

Infiltration rate [ACH] ✓12 2.0 1.6 2.4

Internal loads:

Occupancy density multiplier [�] ✓13 1.0 0.8 1.2

People metabolic rate [W ] ✓14 150 130 250

Equipment power density multiplier [�] ✓15 1.0 0.8 1.2

Lighting power density multiplier [�] ✓16 1.0 0.8 1.2

Cooling System:

Chiller COP [�] ✓17 3.35 2.68 4.02
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Figure 3.16: Case study 3: graphical plot of sensitive measures µ⇤ and � for parameters ✓1 to ✓17

(Table 3.8). The closer the parameters are to the upper right, the more sensitive the parameter.

Parameters close to the bottom left are non-influential parameters.

From Figure 3.16, it can be seen that the parameters infiltration rate ✓12, occupancy density

multiplier ✓13, people metabolic rate ✓14 and lighting power density multiplier ✓16 are separate

from the remaining parameters that have µ⇤ and � very close to zero. Parameters ✓12, ✓14 and

✓16 have � that is close to zero. On the contrary, ✓13 has µ⇤ that is smaller than that of ✓12 but �

that is substantially larger than all the other parameters. Considering both µ⇤ and �, we conclude

that parameters ✓12, ✓13, ✓14 and ✓16 are important, and that ✓12 have effects that involve either

curvature or interactions with other parameters.

Based on the sensitivity analysis, only parameters ✓12, ✓13, ✓14 and ✓16 would be used for

the Bayesian calibration of the EnergyPlus model. Note that we use the notation t to denote

the calibration parameters, i.e., the influential parameters that were selected from the set of un-

certain parameters ✓. Therefore, the inputs and output used for the Bayesian calibration of this
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EnergyPlus model can be summarized as:

• Observed output y(x): Measured whole building cooling energy consumption [kWh].

• Simulation output ⌘(x, ✓): Predicted whole building cooling energy consumption [kWh].

• Observed inputs x from local weather station:

(a) x1: Outdoor dry-bulb air temperature [�C].

(b) x2: Outdoor relative humidity [%].

• Calibration parameters ✓:

(a) t1 = ✓12: Infiltration rate [ACH].

(b) t2 = ✓13: Occupancy density multiplier [�].

(c) t3 = ✓14: People metabolic rate [W ].

(d) t4 = ✓16: Lighting power density multiplier [�].

3.3.3 Bayesian calibration

Bayesian calibration as described in Chapter 2.2.2 was used for the calibration. Data collection

took place between January 1, 2013 and December 31, 2013. After removing erroneous data and

all instances for which the outcome or any of the inputs are missing, the dataset contained 242

samples. Of the data collected, 50% (121 samples) were used as a test hold-out dataset and the

remaining 50% (121 samples) were used for calibrating the model. Daily data was used for the

calibration.

To reduce computation cost, 2 strategies were employed that include using information the-

ory to reduce the number of samples (Chapter 2.4.2) and using NUTS (a more efficient MCMC

algorithm) to explore the posterior distribution (Chapter 2.4.3). The observed input factors x is

two dimensional with components corresponding to: 1) x1: outdoor dry-bulb air temperature;

and 2) x2: outdoor relative humidity. The observed output y(x) is the measured whole build-

ing cooling energy consumption. Therefore the experimental design corresponding to the field

observations is a dataset DF

=

⇥
y x1 x2

⇤
where DF 2 R121⇥3.
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To learn about the calibration parameters t, m = 200 EnergyPlus simulations were run at

different combinations of (x, t). Maximin LHS (Stein, 1987) was used to generate values for the

calibration parameters t1, t2, t3 and t4. Running each of the 200 simulations at the same input

factors x generates 121 ⇥ 200 = 24200 samples. Therefore, the experimental design for the

simulations is a dataset DS

=

⇥
⌘(x, t) x1 x2 t1 t2 t3 t4

⇤
where DS 2 R24200⇥7.

To sample a representative subset DF

sub

from the field dataset DF and a representative subset

DS

sub

from the simulation dataset DS , random samples of varying sizes were generated and their

corresponding sample quality computed (Chapter 2.4.2). Figure 3.17 shows the relationship

between sample size and sample quality. Taking into consideration both sample quality and

computation cost, a sample size of 16 for DF

sub

and 640 for DS

sub

was used. Then, DF

sub

and DS

sub

was used for the calibration of the building energy model instead of the entire dataset DF and

DS .
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Figure 3.17: Case study 3: number of samples against sample quality for different subsets of

simulation data DS (left plot) and field data DF (right plot). 640 random samples from simulation

data DS and 16 random samples from field data DF is sufficient to represent the whole dataset.
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Using the formulation by Higdon et al. (2004), DF

sub

and DS

sub

were combined in a Gaussian

process model. Following Chapter 2.2.2, the GP model for ⌘(., .) was specified using a mean

function that returns the zero vector and a covariance function of the form:

Cov((x, t), (x0, t0)) =

1

�
⌘

exp

⇢
�

2X

j=1

�⌘
j

|x
ij

� x0
ij

|2 �
4X

k=1

�⌘
p+k

|t
ik

� t0
ik

|2
� (3.20)

The GP model for the discrepancy term �(x) was also specified with a mean function that

returns the zero vector and a covariance function of the form:

Cov(x, x0
) =

1

�
�

exp

⇢
�

2X

j=1

��
k

|x
ij

� x0
ij

|2
�

(3.21)

Given that there are 4 calibration parameters and 2 input factors, parameters of the posterior

which need to be estimated is 17 dimensional and include: 1) the calibration parameters t1, ..., t4;

2) the correlation hyperparameters of the GP model �⌘1 , ..., �
⌘

6 , �
�

1 , �
�

2; and 3) the variance hyper-

parameters of the GP model �
⌘

, �
�

and �
✏

. NUTS, an extension of HMC was used to explore

the posterior distributions. Four independent chains of 500 iterations per chain were run. To be

conservative, the first 250 iterations (50%) values were discarded as warmup/burn-in to reduce

the influence of starting values.

Figure 3.18 shows the posterior distribution of the calibration parameters t. The posterior

distribution for the calibration parameters t1, ..., t4 appear to be uniformly distributed across the

range defined by the prior probability distribution (Table 3.9), suggesting that the uncertainty due

to the calibration parameters is still relatively large given the data. In addition, the 95% confi-

dence intervals for the calibration parameters have lower and upper bounds that are very close to

the minimum and maximum values specified for the uniform prior probability distributions.
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Figure 3.18: Case study 3: posterior distribution (excluding warmup) of calibration parameters:

t1 infiltration rate [ACH], t2 occupancy density multiplier [�], t3 people metabolic rate [W ], t4

lighting power density multiplier [�].
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Table 3.9: Case study 3: Prior distribution and summary statistics for posterior distribution of

calibration parameters.

Parameter (units) Prior Posterior

mean 2.5 Percentile 50 Percentile 97.5 Percentile

t1 (�) U(1.60, 2.40) 2.04 1.62 2.06 2.38

t2 (�) U(0.80, 1.20) 1.02 0.81 1.04 1.19

t3 (W ) U(130, 250) 192 135 192 247

t4 (�) U(0.80, 1.20) 0.99 0.81 0.98 1.19

3.3.4 Model evaluation

Similar to case studies 1 and 2, prediction accuracy of the calibrated model was assessed using a

visual comparison of the calibrated predictions against a hold-out test dataset (Figure 3.19). Of

the 242 observations that were collected, 50% of the data (121 samples) was withheld and not

used for the calibration. Figure 3.19 shows the hold-out samples and how they compare with the

95% confidence interval of the predictions. Overall, it can be observed that most of the observed

values falls within the 95% confidence interval. However, the figure also shows that compared

to case studies 1 (Figure 3.4) and 2 (Figure 3.12), predictions for case study 3 is not as precise

and has a larger 95% confidence interval. A histogram of the residuals for case study 3 (Figure

3.20) also has a wider deviation as compared to case studies 1 and 2. Nonetheless, the histogram

shows that the residuals are centered around zero and appears to be normally distributed, with

most of the residuals within ±2�
y

. Over all 121 hold-out samples, CVRMSE and NMBE were

11.9% and 0.7% respectively, meeting the acceptable thresholds for hourly calibration data set

by various standards and guidelines (See Table 1.1). Since the standards and guidelines do not

provide any criteria for evaluating daily calibration data, the stricter monthly error criteria for

assessing the calibrated model was used.
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Table 3.10: Case study 3: CVRMSE and NMBE computed with posterior mean estimates with

and without the discrepancy term �(x).

Statistical Formulation CVRMSE (%) NMBE (%)

⌘(x, ✓) + ✏(x) 11.9 0.5

⌘(x, ✓) + �(x) + ✏(x) 11.9 0.7

0

10

20

−3 −2 −1 0 1 2 3
(y − y) σy

co
un
t

Figure 3.20: Case study 3: histogram of residuals (test data) standardized by standard deviation

of observed output.

Figure 3.21 shows the resulting mean predictions3 with and without the discrepancy term

�(x), as well as how they compare with the field observations y(x). To gain a better under-

standing of the simulator’s prediction, Figure 3.21 shows how the predictions and discrepancies

varies against different input factors including outdoor dry-bulb temperature and outdoor rela-

tive humidity (RH). It can be seen that the discrepancy term �(x) is close to zero across different

values of dry-bulb temperature and relative humidity. Since the discrepancy is nearly zero, the
3The mean posterior predictions are computed by taking the mean of the predictions at input settings given by

the hold-out test dataset
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model predictions ⌘(x, t) are very similar to the calibrated predictions ⌘(x, t)+�(x). This is also

illustrated by a CVRMSE and NMBE that is very similar (Table 3.19). Although the discrep-

ancy term is very small (approximately zero), overall uncertainty of the calibration parameters

remains about the same, with the prior probability distribution and the 95% confidence interval

of the posterior distribution having approximately the same range (Table 3.9). This suggests that

the data is non-informative about the calibration parameters and cautions users against interpret-

ing a small discrepancy term as greater confidence in the posterior distribution of the calibration

parameters.

Trace plots and ˆR of the calibration parameters (t1, ..., t4), correlation hyperparameters (�⌘1 , ..., �
⌘

6

and ��1 , ��2), and variance hyperparameters (�
⌘

, �
�

, and �
✏

) were used to assess convergence. See

Chapter 2.4.4 for a description of both metrics. From Figures A.5and A.6, it can be seen that all

components of the posterior distribution are well mixed and have converged to a common sta-

tionary distribution. ˆR is also within 1± 0.1 for all calibration parameters and hyperparameters

of the GP model.
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Figure 3.21: Case study 3: posterior mean estimates for the field observations y(x), the calibrated

simulator output ⌘(x, t), the discrepancy term �(x) and the calibrated prediction with discrepancy

term ⌘(x, t) + �(x).
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Chapter 4

Comparison of MCMC Algorithms

4.1 Overview

In this chapter, three MCMC algorithms were empirically compared. This include comparing

the effectiveness of NUTS (a variant of HMC) that was outlined in Chapter 2.4.3 with the more

commonly used random-walk Metropolis (RWM) and Gibbs sampling (both described in Chap-

ter 2.2.3). The comparison was carried out using the three case studies that was described in

Chapter 3. The algorithms were compared using trace plots and the Gelman-Rubin statistics ˆR

(Gelman et al., 2014) to check for mixing and convergence to the posterior distribution.

In an earlier study by Chong and Lam (2017), using Gelman-Rubin statistics ˆR to assess

convergence, it was shown that for the same number of iterations, NUTS was more effective in

generating samples from the posterior distribution as compared to RWM and Gibbs sampling. In

addition, it was shown in the same study that NUTS was able to achieve adequate convergence

with as little as 500 iterations. Therefore, for this study, NUTS was run with 500 iterations. To

be conservative, the comparison is made based on the number of gradient evaluations instead

of the number of iterations. In other words, if there are 10000 gradient evaluations when 500

iterations are run, RWM and Gibbs sampling would be run with 10000 iterations. This is because

each iteration of NUTS contains L leapfrog steps and gradient is evaluated once during each

leapfrog step (See Listing 2.1 in Chapter 2.4.3). According to Hoffman and Gelman (2014), the
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computation cost of an MCMC algorithm is dominated by the number of likelihood or gradient

evaluations. Therefore, number of gradient evaluations is used as a normalized comparison of

computation cost. Table 4.1 shows the number of iterations run for each algorithm with reference

to case studies 1, 2 and 3 (see Chapter 3 for a detailed description of each case study).

Table 4.1: Number of iterations run for each algorithm for different case studies

NUTS RWM Gibbs

Case Study 1 500 9000 9000

Case Study 2 500 10000 10000

Case Study 3 500 12000 12000

For all three case studies, NUTS was run for 500 iterations. This corresponds to about 9000,

10000, and 12000 gradient evaluations for case studies 1, 2 and 3 respectively. Consequently,

RWM and Gibbs sampling was run for 9000, 10000, and 12000 iterations for case studies 1,

2 and 3 respectively. An additional tuning of the acceptance ratio is required for RWM. It is

generally accepted that the optimal acceptance rate of the Metropolis algorithm is about 23%

(Gelman et al., 1996). For RWM, a normal proposal or jumping distribution was used. Then,

its variance is tuned until an acceptance rate of between 20% and 25% was achieved. Gibbs

sampling was run for the same number of iterations as RWM although this typically required

more time to run since each iteration of the Gibbs sampler cycles through each parameter and

samples it from its conditional distribution while holding the other parameters fixed (Equation

2.11). Nonetheless, following Hoffman and Gelman (2014), the Gibbs sampler was run for the

same number of iterations as RWM since there are many variants of Gibbs sampling where the

alternating conditional sampling could be done more efficiently.

To assess convergence, four independent chains was run for each MCMC algorithm. As

a conservative choice, the first 50% iterations were discarded to diminish the influence of the

starting values. ˆR and trace plots of the calibration parameters t, variance hyperparameters �
⌘

,

�
�

and �
✏

, and correlation hyperparameters �⌘ and �� is then used to assess convergence.
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4.2 Assessing convergence
Tables 4.2, 4.3 and 4.4 show the comparison of ˆR values with different MCMC algorithms for

case studies 1, 2, and 3 respectively. From the tables, it can be seen that running 500 iterations

using NUTS is sufficient to achieve adequate convergence, with ˆR being within 1 ± 0.1 for

all parameters of the posterior distribution. This observation is consistent across all three case

studies. The low number of iterations can be attributed to rapid mixing as illustrated by the trace

plots in Appendix A.1.

On the contrary, ˆR values computed with samples generated by RWM indicates a lack of

convergence. In all three case studies, ˆR exceeds the threshold of 1.1 for all 15 parameters (Tables

4.2, 4.3 and 4.4). The trace plots (Appendix A.2) also show that the different MCMC chains are

not traversing the same distribution and that more iterations is needed before convergence is

achieved. The trace plots also show poor mixing, indicating that more tuning of the proposal

distribution is necessary for better mixing and thus faster convergence.

Gibbs sampling performs substantially better than RWM but not as well as NUTS. Tables

4.2, 4.3 and 4.4 show that, compared to RWM, significantly less parameters have ˆR exceeding

the threshold of 1± 0.1. In case study 2, only one parameter (�
✏

) has ˆR exceeding the specified

limit (Table 4.3). This increases to four parameters (�⌘2 , �⌘4 , �⌘5 , �⌘6 , �
⌘

, and �
✏

) in case study

3 (Table 4.4). The trace plots for case study 3 (Figures A.17 and A.18) also show convergence

issues. When looked at separately, all four chains appear stable and convergence is seemingly

achieved. However, looking at all chains together show that one chain (yellow chain) is traversing

a different distribution. This is particularly obvious in the trace plot for �
⌘

(Figure A.17). In

addition, the trace plots for �
✏

(Figures A.13, A.15 and A.17) show that it is moving through the

parameter space relatively slowly, suggesting poor mixing and that a more iterations is needed

before adequate convergence can be achieved.
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Table 4.2: ˆR of calibration parameters and GP hyperparameters with different MCMC algorithms

for case study 1. Values exceeding 1 ± 0.1 are highlighted in red.

Components of Posterior Distribution RWM Gibbs Sampling NUTS (HMC)

Calibration Parameters

t1 20.9 1.00 1.00

t2 142 1.01 1.00

Correlation Hyperparameters of GP model

�⌘1 1.98 1.01 1.00

�⌘2 18.1 1.00 1.00

�⌘3 29.5 1.00 1.00

�⌘4 23.4 1.01 1.00

�⌘5 3.70 1.00 1.00

�⌘6 16.2 1.01 1.00

��1 14.5 1.00 1.00

��2 8.54 1.00 1.00

��3 13.9 1.00 1.00

��4 29.4 1.01 1.00

Variance Hyperparameters of GP model

�
⌘

399 1.00 1.00

�
�

1488 2.21 1.00

�
✏

28225 40.6 1.00
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Table 4.3: ˆR of calibration parameters and GP hyperparameters with different MCMC algorithms

for case study 2. Values exceeding 1 ± 0.1 are highlighted in red.

Components of Posterior Distribution RWM Gibbs Sampling NUTS (HMC)

Calibration Parameters

t1 37.4 1.00 1.00

t2 25.4 1.00 1.00

t3 18.6 1.00 1.00

t4 30.5 1.01 1.00

t5 25.6 1.01 1.00

Correlation Hyperparameters of GP model

�⌘1 1.21 1.03 1.00

�⌘2 9.31 1.00 1.00

�⌘3 6.98 1.04 1.00

�⌘4 10.5 1.03 1.00

�⌘5 20.4 1.05 1.00

�⌘6 5.41 1.02 1.00

�⌘7 10.5 1.02 1.00

��1 15.0 1.00 1.00

��2 12.4 1.00 1.00

Variance Hyperparameters of GP model

�
⌘

197 1.00 1.00

�
�

3509 1.02 1.00

�
✏

16649 25.3 1.00
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Table 4.4: ˆR of calibration parameters and GP hyperparameters with different MCMC algorithms

for case study 3. Values exceeding 1 ± 0.1 are highlighted in red.

Components of Posterior Distribution RWM Gibbs Sampling NUTS (HMC)

Calibration Parameters

t1 10070 1.00 1.00

t2 17313 1.00 1.00

t3 4246 1.00 1.00

t4 5341 1.00 1.00

Correlation Hyperparameters of GP model

�⌘1 5329 1.06 1.00

�⌘2 1941 10.6 1.00

�⌘3 23.6 1.10 1.00

�⌘4 72.4 1.36 1.00

�⌘5 1573 1.13 1.00

�⌘6 10933 1.23 1.00

��1 6101 1.03 1.00

��2 2158 1.02 1.00

Variance Hyperparameters of GP model

�
⌘

66971 2.15 1.00

�
�

1176365 1.09 1.00

�
✏

6748269 4.41 1.00
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Chapter 5

Conclusion

5.1 Discussion and recommendations
The present study demonstrated a systematic framework (See Chapter 2 ) for the application of

Kenndy and O’Hagen’s (2001) formulation to building energy models. This study focuses on the

improvement of the current implementation of Bayesian calibration to building energy models.

This was achieved using 2 approaches, which include:

• Reducing the number of samples used for the calibration by selecting a representative sub-

set of the entire dataset. This was carried out by considering the sample quality (Equation

2.12) of the subset.

• Using a more efficient MCMC algorithm, the No-U-Turn Sampler (NUTS) (Hoffman and

Gelman, 2014) that is an extension to Hamiltonian Monte Carlo (HMC) to explore param-

eters of the posterior distribution.

In all three case studies, visual plots (Figures 3.4, 3.12 and 3.19) comparing the calibrated

predictions and a hold-out test dataset showed good agreement between the predictions and the

observations, with most observations being within the 95% confidence intervals of the predic-

tions. CVRMSE and NMBE were also within the acceptable thresholds set by various standards

and guidelines (Table 1.1).

This study also investigated the impact of including the discrepancy term �(x) in the sta-
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tistical formulation used for the Bayesian calibration of building energy models. Based on the

three case studies, it was found that as intended, the discrepancy term �(x) was able account for

varying bias as a function of the input factors x. Results from case studies 1 and 2 showed that

the discrepancy term can reduce overall bias, leading to a better agreement between the observed

values and the calibrated predictions. At the same time, in case study 3 where there is little or no

discrepancy between the model output and the observed output, the discrepancy term does not

overcompensate and the resulting discrepancy is also approximately zero.

When the discrepancy term �(x) is fairly large such as in case study 2, it makes interpre-

tation of the posterior distribution of the calibration parameters difficult. This is because, as

mentioned previously, the discrepancy term is an indication of how well the simulation model

matches reality. Therefore, a large discrepancy provides caution when interpreting the posterior

distribution of the calibration parameters. It is also important to note that a low CVRMSE and

NMBE indicates that there is a good fit between the calibrated predictions and the observations,

but does not justify that the resultant posterior estimates for the calibration parameters are a good

approximation of its true value.

Although a large discrepancy is indicative of large model bias and suggests caution for the

interpretation of the calibration parameters, the same is not true about its inverse. A small dis-

crepancy does not suggest greater confidence in the posterior distribution of the calibration pa-

rameters. This was illustrated in case study 3. In case study 3, although the discrepancy term is

approximately zero, the data is non-informative about the calibration parameters, with the prior

and the posterior distribution of the calibration parameters having approximately the same range

and distribution.

Using a statistical approach that is based on Kullback-Leibler divergence (Kullback and

Leibler, 1951) to measure sample quality (Equation 2.12), it was found that a relatively small

number of samples was sufficiently representative of the whole dataset. This suggests that a

significantly smaller subset of the entire dataset is adequate for the calibration process, substan-

tially reducing computation cost while still maintaining prediction accuracy. This is because
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buildings are usually operated the same way, resulting in large redundancies in building data.

Figures 5.1 and 5.2 show the data for two different HVAC systems. From Figure 5.2, it can be

observed that the chiller is only operating over a very small range of chilled water temperature

(T
chw,in

⇡ 15

�C) and chilled water mass flow rate (ṁ
chw

⇡ 325000 kg/h). Similarly, from

Figure 5.2 it can be seen that the cooling system only operates at close to maximum flow rate

(V
frac

⇡ 1) and with a coil load Q
load

of approximately 800000 W .

This study also compared the effectiveness of using different MCMC algorithms within the

proposed method. In particular, NUTS was compared with the more commonly used random-

walk Metropolis (RWM) and Gibbs sampling. Two metrics were used to assess convergence and

they include the Gelman-Rubin statistics ˆR and visual inspection of trace plots to ensure that

multiple sequences have mixed and are traversing the same distribution. Compared to RWM

and Gibbs sampling, NUTS was found to achieve better convergence for all parameters of the

posterior distribution. RWM was unable to achieve adequate convergence for almost all param-

eters. Trace plots also reveal that a substantially larger number of iterations is required before

adequate convergence can be achieved. Overall, Gibbs sampling showed adequate convergence

in most parameters. However, in all three case studies, ˆR exceeded 1 ± 0.1 for the variance

parameters �
�

and �
✏

. Trace plots for �
✏

further revealed that it is moving through the parameter

space very slowly, indicating poor mixing and that more iterations is required before conver-

gence. Therefore, based on this comparative study, we recommend using NUTS over RWM and

Gibbs sampling. This conclusion is consistent with the results of an earlier study (Chong and

Lam, 2017), which showed that for the same number of iterations, NUTS was more effective

than RWM and Gibbs sampling.

Based on our findings, we recommend the following:

• Use a smaller representative subset (based on sample quality) of the entire dataset when

calibrating against daily or hourly data.

• Use NUTS for the MCMC sampling.

• Use results with respect to the posteriors of the calibration parameters and the discrepancy
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term to determine if interpreting the posterior distribution of the calibration parameters

should be treated with caution.

5.2 Suggestions for future work
While this thesis has demonstrated the application of Bayesian calibration to large datasets,

which can result when calibrating against hourly or daily data (large sample sizes) or when

calibrating a large number of model parameters (high dimensions), many opportunities for ex-

tending the scope of this thesis remain. This section presents some of these opportunities, which

include:

• Effectiveness of different emulators: In this thesis, we use a Gaussian process (GP) em-

ulator to map the model’s input parameters to it’s output. Training of a GP model can

be computationally expensive. We overcome this challenge but selecting a representative

subset for the calibration. However, it would be useful to test and compare the outcomes

with alternative emulators to determine the scenarios when a particular emulator would be

appropriate.

• Specification of prior probabilities: Currently, the proposed method relies on the modeler

to specify the prior probability distributions for the calibration parameters and hyperpa-

rameters that define the GP model. The use of appropriate prior probability distributions

for the calibration parameters can help prevent unreasonable parameter values during the

calibration process. However, there is currently no guidelines on the specification of prior

probability distributions for the hyperparameters that defines the GP model. Therefore,

there needs to be increased effort towards the development of guidelines to increase the

consistency and transparency of applying Bayesian calibration to building energy mod-

els. An extensive study that investigates the effect of prior probabilities on the calibration

result would also help guide the calibration process thus informing users regarding the

consequence of assigning wrong priors.
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Figure 5.1: 2 dimensional histogram of the entering chilled water temperature T
chw,in

(�C) and

the chilled water mass flow rate ṁ
chw

(kg/h) of Chiller.
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Figure 5.2: 2 dimensional histogram of the cooling coil load Q
load

(W ) and the raction of peak

chilled water flow rate (dimensionless).
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Appendix A

Trace Plots for Case Studies

A.1 No-U-Turn-Sampler (HMC)

A.1.1 Case study 1 - mixed-use building in a college in Singapore
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Figure A.1: Case study 1: Trace plots of calibration parameters (t) and variance hyperparameters

(�
⌘

, �
�

, and �
✏

) using No-U-Turn-Sampler
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Figure A.2: Case study 1: Trace plots of calibration parameters correlation hyperparameters (�⌘

and ��) using No-U-Turn-Sampler
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A.1.2 Case study 2 - office building in Pennsylvania U.S.A
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Figure A.3: Case study 2: Trace plots of calibration parameters (t) and variance hyperparameters

(�
⌘

, �
�

, and �
✏

) using No-U-Turn-Sampler
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Figure A.4: Case study 2: Trace plots of calibration parameters correlation hyperparameters (�⌘

and ��) using No-U-Turn-Sampler
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A.1.3 Case study 3 - mixed-use building on a university campus in Singa-

pore
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Figure A.5: Case study 3: Trace plots of calibration parameters (t) and variance hyperparameters

(�
⌘

, �
�

, and �
✏

) using No-U-Turn-Sampler
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Figure A.6: Case study 3: Trace plots of calibration parameters correlation hyperparameters (�⌘

and ��) using No-U-Turn-Sampler
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A.2 Random-Walk Metropolis

A.2.1 Case study 1 - mixed-use building in a college in Singapore
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Figure A.7: Case study 1: Trace plots of calibration parameters (t) and variance hyperparameters

(�
⌘

, �
�

, and �
✏

) using random-walk Metropolis algorithm
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Figure A.8: Case study 1: Trace plots of calibration parameters correlation hyperparameters (�⌘

and ��) using random-walk Metropolis algorithm
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A.2.2 Case study 2 - office building in Pennsylvania U.S.A
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Figure A.9: Case study 2: Trace plots of calibration parameters (t) and variance hyperparameters

(�
⌘

, �
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, and �
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) using random-walk Metropolis algorithm
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Figure A.10: Case study 2: Trace plots of calibration parameters correlation hyperparameters

(�⌘ and ��) using random-walk Metropolis algorithm
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A.2.3 Case study 3 - mixed-use building on a university campus in Singa-

pore
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Figure A.11: Case study 3: Trace plots of calibration parameters (t) and variance hyperparame-

ters (�
⌘

, �
�

, and �
✏

) using random-walk Metropolis algorithm
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Figure A.12: Case study 3: Trace plots of calibration parameters correlation hyperparameters

(�⌘ and ��) using random-walk Metropolis algorithm
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A.3 Gibbs Sampling

A.3.1 Case study 1 - mixed-use building in a college in Singapore

0.0

2.5

5.0

7.5

10.0

0 250 500 750 1000

th
et
a[
2]

chain
1

2

3

4

Figure A.13: Case study 1: Trace plots of calibration parameters (t) and variance hyperparame-

ters (�
⌘

, �
�

, and �
✏

) using Gibbs sampling algorithm
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Figure A.14: Case study 1: Trace plots of calibration parameters correlation hyperparameters

(�⌘ and ��) using Gibbs sampling algorithm
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A.3.2 Case study 2 - office building in Pennsylvania U.S.A
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Figure A.15: Case study 2: Trace plots of calibration parameters (t) and variance hyperparame-

ters (�
⌘

, �
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, and �
✏

) using Gibbs sampling algorithm
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Figure A.16: Case study 2: Trace plots of calibration parameters correlation hyperparameters

(�⌘ and ��) using Gibbs sampling algorithm
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A.3.3 Case study 3 - mixed-use building on a university campus in Singa-

pore
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Figure A.17: Case study 3: Trace plots of calibration parameters (t) and variance hyperparame-

ters (�
⌘

, �
�

, and �
✏

) using Gibbs sampling algorithm
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Figure A.18: Case study 3: Trace plots of calibration parameters correlation hyperparameters

(�⌘ and ��) using Gibbs sampling algorithm
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Appendix B

Code for Bayesian calibration using NUTS

B.1 Setting up the data

Following Chapter 2.1, suppose we have a field dataset DF (Table B.1) and a computer sim-

ulation dataset DS (Table B.2) stored in a data frame in R. As shown in Table B.1, DF con-

sists of a series of n observed outputs y1, y2, ..., yn 2 R paired with corresponding inputs

x1, x2, ..., xn

2 Rp. Table B.2 shows that DF consists of a series of nm computer outputs

⌘1, ⌘2, ..., ⌘nm 2 R paired with corresponding inputs x1, x2, ..., xnm

2 Rp and calibration param-

eters t1, t2, ..., tnm 2 Rq. Note that DS has nm samples because given n observations and m

simulation runs, running each simulation at the same observed inputs x1, ..., xn

would produce a

simulation dataset of size nm.

Table B.1: Field data DF 2 Rn⇥(1+p) as they appear in a data frame

y x1 x2 · · · xp

y1 x11 x21 · · · xp1
...

...
...

...
...

y
n

x1
n

x2
n

· · · xp
n
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Table B.2: Simulation data DS 2 Rnm⇥(1+p+q) as they appear in a data frame

eta x1 x2 · · · xp t1 t2 · · · tq

eta1 x11 x21 · · · xp1 t11 t21 · · · tq1
...

...
...

...
...

...
...

...
...

eta
nm

x1
nm

x2
nm

· · · xp
nm

t1
nm

t2
nm

· · · tq
nm

Before fitting a Gaussian Process (GP) model, we first standardize the outputs and inputs.

We first extract corresponding parts of DF and DS

Listing B.1: R code for setting up the data

1 # g e t d imens ion o f d a t a s e t

2 # D.FIELD : f i e l d d a t a s e t ( Tab le B.1 )

3 # D.SIM : computer s i m u l a t i o n d a t a s e t ( Tab le B.2 )

4 p  n c o l ( D.FIELD ) � 1 # number o f i n p u t f a c t o r s

5 q  n c o l ( D.SIM ) � p � 1 # number o f c a l i b r a t i o n p a r a m e t e r s

6 n  nrow ( D.FIELD ) # sample s i z e o f o b s e r v e d f i e l d d a t a

7 nm  nrow ( D.SIM ) # sample s i z e o f compute r s i m u l a t i o n d a t a

8

9 # e x t r a c t d a t a from f i e l d d a t a s e t and compute r s i m u l a t i o n d a t a s e t

10 # assuming D.FIELD and D.COMP i s i n same f o r m a t a s T a b l e s B.1 and B.2

11 y  D.FIELD [ , 1 ] # o b s e r v e d o u t p u t

12 x f  D.FIELD [ , 2 : ( 1 + p ) ] # o b s e r v e d i n p u t

13 e t a  D.SIM [ , 1 ] # s i m u l a t i o n o u t p u t

14 xc  D.SIM [ , 2 : ( 1 + p ) ] # s i m u l a t i o n i n p u t

15 t  D.SIM [ , ( 2 + p ) : ( 1 + p+q ) ] # c a l i b r a t i o n p a r a m e t e r s
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The is followed by standardization of the outputs y and ⌘ using the mean and standard devi-

ation of ⌘.

Listing B.2: R code for standardization of y and ⌘

1 e ta mu  mean ( e t a , na . rm = TRUE) # mean v a l u e

2 e t a s d  sd ( e t a , na . rm = TRUE) # s t a n d a r d d e v i a t i o n

3 y  ( y � e ta mu ) / e t a s d

4 e t a  ( e t a � e ta mu ) / e t a s d

We then normalize the observed inputs xf, computer simulation inputs xc and calibration

parameters t by placing them in the range of 0 to 1.

Listing B.3: R code for normalization of x and t

1 # Pu t d e s i g n p o i n t s x f and xc on [ 0 , 1 ]

2 x  r b i n d ( xf , xc )

3 f o r ( i i n ( 1 : n c o l ( x ) ) ) {
4 x min  min ( x [ , i ] , na . rm = TRUE)

5 x max  max ( x [ , i ] , na . rm = TRUE)

6 x f [ , i ]  ( x f [ , i ] � x min ) / ( x max � x min )

7 xc [ , i ]  ( xc [ , i ] � x min ) / ( x max � x min )

8 }
9 # Pu t c a l i b r a t i o n p a r a m e t e r s t on domain [ 0 , 1 ]

10 f o r ( j i n ( 1 : n c o l ( t ) ) ) {
11 t m i n  min ( t [ , j ] , na . rm = TRUE)

12 t max  max ( t [ , j ] , na . rm = TRUE)

13 t [ , j ]  ( t [ , j ] � t m i n ) / ( t max � t m i n )

14 }
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B.2 Simulating from a Gaussian Process using NUTS
We use Stan (Stan Development Team, 2016) for the MCMC sampling process. Stan can be set to

use the No-U-Turn sampler (NUTS) (Hoffman and Gelman, 2014) for the sampling. This is car-

ried out using RStan version 2.12, the R interface to Stan. To fit a Gaussian Process (GP) regres-

sion, we combine the observed output y1, ..., yn 2 R with the simulation output ⌘1, ..., ⌘nm 2 R

in a single N = n+ nm vector z =

⇥
y1, ..., yn, ⌘1, ..., ⌘nm

⇤
(Higdon et al., 2004).

z ⇠ N (µ
z

,⌃
z

) (B.1)

where µ
z

is a N = n + nm vector and ⌃

z

is a N ⇥ N covariance matrix. The first step

is to define a Gaussian Process (GP) in Stan which is parameterized by a mean function and a

covariance function. As mentioned in Chapter 2.2.2, we define the mean function µ
z

to always

return the zero vector and covariance function ⌃

z

as follows (Higdon et al., 2004)

⌃

z

= ⌃

⌘

+

2

4⌃�

+ ⌃

y

0

0 0

3

5 (B.2)

⌃

⌘,ij

=

1

�
⌘

exp

⇢
�

pX

k=1

�⌘
k

|x
ik

� x
jk

|2 �
qX

k

0=1

�⌘
p+k

0 |t
ik

0 � t
jk

0 |2
�

(B.3)

⌃

�,ij

=

1

�
�

exp

⇢
�

pX

k=1

��
k

|x
ik

� x
jk

|2
�

(B.4)

⌃

y

= I
n

/�
✏

(B.5)

where ⌃

⌘

2 RN⇥N , ⌃
�

2 Rn⇥n and ⌃

y

2 Rn⇥n. �⌘ and �� denotes the correlation hyper-

parameters and �
⌘

, �
�

and �
✏

denotes the variance hyperparameters that defines the covariance

function. Listing B.5 illustrates an implementation of the GP emulator in Stan. The model con-

sists of five blocks, which includes the data block, the transformed data block, the parameters

block, the transformed parameters block and the model block. The data block declares the inputs
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for the model and allows data to be read from a R data structure to Stan. The transformed data

block allows constant to be defined and transformation of data from the data block. Here we

define the output vector z and the mean function µ
z

to return a vector of zeros.

Next, we define the parameters in the parameters and transformed parameters block. The

parameters for Bayesian calibration include the calibration parameters t1, ..., tq, the correlation

hyperparameters of the GP model �⌘1 , ..., �
⌘

p+q

and ��1 , ..., ��p , and the variance hyperparameters of

the GP model �
⌘

, �
�

and �
✏

. To model the correlation hyperparameters �⌘1 , ..., �
⌘

p+q

and ��1 , ..., ��p ,

we reparameterize them in the transformed parameters block with �⌘ = �4.0 log(⇢⌘) and �� =

�4.0 log(⇢�) respectively (Guillas et al., 2009). Since �⌘ > 0 and �� > 0, 0 < ⇢⌘ < 1 and

0 < ⇢� < 1.

Finally, the model block specifies the computation of the covariance function, the prior dis-

tribution and the likelihood function. To understand the Stan code in the model block, compare

the Stan code in the model block with Equations B.3, B.4 and B.5. The model block begins with

setting the values of the variable inputs, which would then be used for the computation of

⌃

⌘

(Listing B.5, lines 51-61) according to Equation B.3. This is followed by the computation

of ⌃

�

(Listing B.5, lines 62-72) according to Equation B.4 and ⌃

y

(Listing B.5, lines 73-74)

according to Equation B.5. The covariance matrix ⌃

z

is then computed according to Equation

B.2 (Listing B.5, lines 75-77). The rest of the model consists of the priors for the calibration

parameters and hyperparameters defining the GP model (Listing B.5, lines 78-90) and multivari-

ate normal likelihood (Listing B.5, lines 81-93). We use Cholesky decomposition for a more

efficient implementation of the simulation model.

To fit the Stan model, we save the model (listing B.5) in a text file with a .stan extension.

We save the Stan model in “bc.stan”, and fit the model in R by calling the function stan

from the rstan package. This is shown in Listing B.4. Data required as inputs to the Stan

model is first saved as a list in R (Listing B.4, lines 2-3) and passed to the data block in the

Stan model (Listing B.5, lines 1- 12) through the stan function (Listing B.4, lines 4-5). Ar-

guments to the stan function indicates that we are running 4 independent chains (chains=4)
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of 500 iterations (iter = 500) each with the first 250 iterations discarded as warmup/burnin

(warmup=250). The argument cores = getOption("mc.cores", 4) indicates that

we are using 4 processors, one for each chain to run the simulations. It is recommended to use

as many processors as the hardware and RAM allows (up to the number of chains).

Listing B.4: R code to run Stan model saved in “bc.stan”

1 l i b r a r y ( r s t a n )

2 s t a n D a t  l i s t ( n=n , nm=nm ,N=n+nm , p=p , q=q ,

3 x f =xf , xc=xc , t = t , y=y , e t a = e t a )

4 f i t  s t a n ( f i l e = ’ b c . s t a n ’ , d a t a = s t a n D a t , c h a i n s = 4 , i t e r = 500 ,

warmup =250 ,

5 c o r e s = g e t O p t i o n ("m c . c o r e s" , 4 ) )

Listing B.5: Stan model for Bayesian calibration with Gaussian Process emulator

1 d a t a {
2 i n t <l ower=0> n ; / / number o f o b s e r v a t i o n s

3 i n t <l ower=0> nm ; / / number o f s i m u l a t i o n s

4 i n t <l ower=0> N; / / N=n+nm

5 i n t <l ower=0> p ; / / number o f i n p u t f a c t o r s

6 i n t <l ower=0> q ; / / number o f c a l i b r a t i o n p a r a m e t e r s

7 m a t r i x [ n , p ] x f ; / /

8 m a t r i x [nm , p ] xc ; / /

9 m a t r i x [nm , q ] t ; / / c a l i b r a t i o n p a r a m e t e r s

10 v e c t o r [ n ] y ;

11 v e c t o r [nm] e t a ;

12 }
13 t r a n s f o r m e d d a t a {
14 v e c t o r [N] z ;

15 v e c t o r [N] mu z ;

16 f o r ( i i n 1 :N) {
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17 mu z [ i ] = 0 ;

18 }
19 z = append row ( y , e t a ) ;

20 }
21 p a r a m e t e r s {
22 r o w v e c t o r<l ower =0 , uppe r =1>[q ] t h e t a ; / / c a l i b r a t i o n p a r a m e t e r s

23 r o w v e c t o r<l ower =0 , uppe r =1>[p+q ] r h o e t a ;

24 r o w v e c t o r<l ower =0 , uppe r =1>[p ] r h o d e l t a ;

25 r e a l <l ower=0> l a m b d a e t a ; / / p r e c i s i o n p a r a m e t e r f o r e t a

26 r e a l <l ower=0> l a m b d a d e l t a ; / / p r e c i s i o n p a r a m e t e r f o r b i a s

27 r e a l <l ower=0> l ambda e ; / / p r e c i s i o n p a r a m e t e r f o r o b s e r v a t i o n e r r o r

28 }
29 t r a n s f o r m e d p a r a m e t e r s {
30 / / d e c l a r e v a r i a b l e s

31 r o w v e c t o r [ p+q ] b e t a e t a ;

32 r o w v e c t o r [ p ] b e t a d e l t a ;

33 b e t a e t a = �4.0*( l o g ( r h o e t a ) ) ;

34 b e t a d e l t a = �4.0*( l o g ( r h o d e l t a ) ) ;

35 }
36 model {
37 / / d e c l a r e v a r i a b l e s

38 m a t r i x [N , ( p+q ) ] i n p u t s ;

39 m a t r i x [N,N] s i g m a e t a ;

40 m a t r i x [ n , n ] s i g m a d e l t a ;

41 m a t r i x [N,N] s ig m a z ;

42 m a t r i x [ n , n ] s igma y ;

43 m a t r i x [N,N] L ; / / c h o l e s k y d e c o m p o s i t i o n o f c o v a r i a n c e m a t r i x

44 r o w v e c t o r [ p ] t e m p d e l t a ;

45 r o w v e c t o r [ p+q ] t e m p e t a ;
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46 / / s e t v a l u e s o f i n p u t s which would be used t o compute s i g m a e t a

47 i n p u t s [ 1 : n , 1 : p ] = x f ;

48 i n p u t s [ ( n +1) :N, 1 : p ] = xc ;

49 i n p u t s [ 1 : n , ( p +1) : ( p+q ) ] = r e p m a t r i x ( t h e t a , n ) ;

50 i n p u t s [ ( n +1) :N , ( p +1) : ( p+q ) ] = t ;

51 / / d i a g o n a l e l e m e n t s o f s i g m a e t a

52 s i g m a e t a = d i a g m a t r i x ( r e p v e c t o r ( ( 1 / l a m b d a e t a ) ,N) ) ;

53 / / o f f�d i a g o n a l e l e m e n t s o f s i g m a e t a

54 f o r ( i i n 1 : ( N�1) ) {
55 f o r ( j i n ( i +1) :N) {
56 t e m p e t a = i n p u t s [ i , 1 : ( p+q ) ] � i n p u t s [ j , 1 : ( p+q ) ] ;

57 s i g m a e t a [ i , j ] = b e t a e t a . * t e m p e t a * t e m p e t a ’ ;

58 s i g m a e t a [ i , j ] = exp(� s i g m a e t a [ i , j ] ) / l a m b d a e t a ;

59 s i g m a e t a [ j , i ] = s i g m a e t a [ i , j ] ;

60 }
61 }
62 / / d i a g o n a l e l e m e n t s o f s i g m a d e l t a

63 s i g m a d e l t a = d i a g m a t r i x ( r e p v e c t o r ( ( 1 / l a m b d a d e l t a ) , n ) ) ;

64 / / o f f�d i a g o n a l e l e m e n t s o f s i g m a d e l t a

65 f o r ( i i n 1 : ( n�1) ) {
66 f o r ( j i n ( i +1) : n ) {
67 t e m p d e l t a = xf [ i , 1 : p ] � xf [ j , 1 : p ] ;

68 s i g m a d e l t a [ i , j ] = b e t a d e l t a . * t e m p d e l t a * t e m p d e l t a ’ ;

69 s i g m a d e l t a [ i , j ] = exp(� s i g m a d e l t a [ i , j ] ) / l a m b d a d e l t a ;

70 s i g m a d e l t a [ j , i ] = s i g m a d e l t a [ i , j ] ;

71 }
72 }
73 / / d i a g o n a l e l e m e n t s o f s i g m a e wi th o f f�d i a g o n a l e l e m e n t s l e f t a s 0

74 s igma y = d i a g m a t r i x ( r e p v e c t o r ( ( 1 . 0 / l ambda e ) , n ) ) ;
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75 / / c o m p u t a t i o n o f c o v a r i a n c e m a t r i x s i g m a z

76 s i g m a z = s i g m a e t a ;

77 s i g m a z [ 1 : n , 1 : n ] = s i g m a e t a [ 1 : n , 1 : n ] + s i g m a d e l t a + s igma y ;

78 / / P r i o r s

79 f o r ( i i n 1 : ( p+q ) ) {
80 r h o e t a [ i ] ⇠ b e t a ( 1 , 0 . 5 ) ;

81 }
82 f o r ( j i n 1 : p ) {
83 r h o d e l t a [ j ] ⇠ b e t a ( 1 , 0 . 4 ) ;

84 }
85 f o r ( k i n 1 : q ) {
86 t h e t a [ k ] ⇠ normal ( 0 . 5 , 0 . 1 5 ) ;

87 }
88 l a m b d a e t a ⇠ gamma ( 1 0 , 10) ; / / gamma ( shape , r a t e )

89 l a m b d a d e l t a ⇠ gamma ( 1 0 , 0 . 3 ) ; / / gamma ( shape , r a t e )

90 l ambda e ⇠ gamma ( 1 0 , 0 . 0 3 ) ; / / gamma ( shape , r a t e )

91 / / c h o l e s k y d e c o m p o s i t i o n o f c o v a r i a n c e m a t r i x

92 L = c h o l e s k y d ec o m p o s e ( s i g m a z ) ;

93 z ⇠ m u l t i n o r m a l c h o l e s k y ( mu z , L ) ;

94 }

B.3 Assessing convergence

We recommend here two practical convergence diagnostics for the assessing convergence in the

generated samples. One is to look at the trace plots of multiple chains. After running the stan

function, trace plots of each component of the posterior can be extracted in R as shown in Listing

B.6.

The second convergence diagnostics that we use to assess convergence is the Gelman-Rubin

statistics ˆR. For adequate convergence, ˆR should be approximately 1 ± 0.1. This information

125



can be easily obtained with the following line in R with print(fit). print(fit) also

provides the quantiles of the posterior distribution for each parameter.

Listing B.6: R code for setting up the data

1 # t r a c e p l o t s f o r c a l i b r a t i o n p a r a m e t e r s

2 s t a n t r a c e ( f i t , p a r s = c ( ’ t h e t a ’ ) , inc warmup = FALSE)

3 # t r a c e p l o t s f o r c o r r e l a t i o n h y p e r p a r a m e t e r s b e t a e t a

4 s t a n t r a c e ( f i t , p a r s = c ( ’ b e t a e t a ’ ) , inc warmup = FALSE)

5 # t r a c e p l o t s f o r c o r r e l a t i o n h y p e r p a r a m e t e r s b e t a d e l t a

6 s t a n t r a c e ( f i t , p a r s = c ( ’ b e t a d e l t a ’ ) , inc warmup = FALSE)

7 # t r a c e p l o t s f o r v a r i a n c e h y p e r p a r a m e t e r s

8 s t a n t r a c e ( f i t , p a r s = c ( ’ l a m b d a e t a ’ , ’ l a m b d a d e l t a ’ , ’ lambda e ’ ) ,

inc warmup = FALSE)
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