figshare
Browse
mz9b00029_si_001.pdf (908.12 kB)

Atom Transfer Radical Polymerization Enabled by Sonochemically Labile Cu-carbonate Species

Download (908.12 kB)
journal contribution
posted on 2019-01-22, 20:03 authored by Zhenhua Wang, Francesca Lorandi, Marco Fantin, Zongyu Wang, Jiajun Yan, Zhanhua Wang, Hesheng Xia, Krzysztof Matyjaszewski
Atom transfer radical polymerization (ATRP) has been previously mediated by ultrasound using a low concentration of copper complex in water (sono-ATRP) or by addition of piezoelectric materials in organic solvents (mechano-ATRP). However, these procedures proceeded slowly and yielded polymers contaminated by new chains initiated by hydroxyl radicals or by residual piezoelectrics. Unexpectedly, in the presence of sodium carbonate, rapid sono-ATRP of methyl acrylate in DMSO was achieved (80% conversion in <2 h) with excellent control of molecular weights and low dispersities (Mw/Mn < 1.2). The in situ formed CuII/L-CO3 complex in the the presence of ultrasound generated CuI/L species as activators for ATRP and carbonate radical anions. The latter were scavenged by DMSO that was oxidized to dimethyl sulfone. This simple and robust process employs low-intensity ultrasound, air-stable CuII/L catalysts, and carbonate or bicarbonate salts (washing soda or baking soda) to prepare well-defined polyacrylates.

History