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Abstract 24 

Modeled estimates of aeolian dust emission can vary by an order of magnitude due to the 25 

spatiotemporal heterogeneity of emissions. To better constrain location and magnitude of 26 

emissions, a surface erodibility factor is typically employed in models. Several landscape-scale 27 

schemes representing surface dust-emission potential for use in models have recently been 28 

proposed, but validation of such schemes has only been attempted indirectly with medium-29 

resolution remote sensing of mineral aerosol loadings and high-resolution land-surface 30 

mapping. In this study, we used dust-emission source points identified in Namibia with Landsat 31 

imagery together with field-based dust-emission measurements using a Portable In-situ Wind 32 

Erosion Laboratory (PI-SWERL) wind tunnel to assess the performance of schemes aiming to 33 

represent erodibility in global dust-cycle modeling. From analyses of the surface and samples 34 

taken at the time of wind tunnel testing, a Boosted Regression Tree analysis identified the 35 

significant factors controlling erodibility based on PI-SWERL dust flux measurements and 36 

various surface characteristics, such as soil moisture, particle size, crusting degree and 37 

mineralogy. Despite recent attention to improving the characterisation of surface dust-emission 38 

potential, our assessment indicates a high level of variability in the measured fluxes within 39 

similar geomorphologic classes. This variability poses challenges to dust modelling attempts 40 

based on geomorphology and/or spectral-defined classes. Our approach using high-resolution 41 

identification of dust sources to guide ground-based testing of emissivity offers a valuable 42 

means to help constrain and validate dust-emission schemes. Detailed determination of the 43 

relative strength of factors controlling emission can provide further improvement to regional 44 

and global dust-cycle modeling. 45 

Plain Language Summary 46 

Atmospheric mineral dust plays an important role in Earth system processes,  influencing 47 

climate, providing nutrients to ecosystems and affecting human health. The effect that 48 

atmospheric dust has on the climate and environment requires accurate modeling of emission 49 

at source, transport through the atmosphere, and deposition. To enable regional to global 50 

modeling of the dust cycle, therefore, requires realistic representation of where and when dust 51 

emission takes place. However, the highly variable nature of dust emission has resulted in 52 

modeling attempts producing disparate results. This research used Landsat remote sensing data 53 

in Namibia to identify sources of dust emission at high-resolution, followed by ground-based 54 

testing using a portable wind tunnel to assess surface classification schemes intended to 55 
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represent the surface in dust-emission models. Despite the proposed schemes offering valuable 56 

approaches for characterization of the land surface for modeling, globally applicable 57 

representation of dust emission is still hampered by the variability of small-scale emissions. At 58 

the sub-landform level of  our analysis, the heterogeneous nature of dust emission results from 59 

the highly variable nature of the surfaces. Our analysis identified several factors controlling the 60 

potential for surfaces to emit dust that can be used as inputs to improve dust modeling. 61 

1 Introduction 62 

Wind-driven processes of sediment transport are important in the Earth system and 63 

consequently have been the focus of many modeling attempts (Ravi et al., 2011; Shao et al., 64 

2011). The dynamics of mineral dust emission are fundamentally controlled by a combination 65 

of the power of the wind to erode (erosivity) and the resistance of an emitting surface to erosion 66 

(erodibility) (Webb & Strong, 2011). Interactions between erosive and resisting forces are 67 

complex and result in dust emission being spatially and temporally highly heterogeneous (e.g. 68 

Bryant et al., 2007; Gillette, 1999; Gillies, 2013; Mahowald et al., 2003; Taramelli et al., 2013). 69 

Improvements in dust-emission modeling remains an important contemporary research goal 70 

since existing models have a limited capacity to accurately account for the spatiotemporal 71 

variability of dust emission within dust sources (Haustein et al., 2015; Parajuli et al., 2014; 72 

Shao et al., 2011). 73 

Modeling of dust emission must account for factors that affect the threshold friction velocity 74 

(u*t), and as a result, the variable erodibility of the surface (Marticorena & Bergametti, 1995, 75 

Shao et al., 1996). Some of the major drivers influencing the variability of the surface erosion 76 

thresholds include soil moisture (influenced by relative humidity), particle size, degree of 77 

crusting (including physical, saline and biological soil crusts), and mineralogy of surface 78 

sediments (e.g. Belnap & Gillette, 1998; Buck et al., 2011; Cornelis et al., 2004; Gillette et al., 79 

1982; King et al., 2011; Marticorena & Bergametti, 1995; McKenna Neuman & Nickling, 80 

1989; McKenna Neuman & Maxwell, 2002; Munkhtsetseg et al., 2016; Sweeney et al., 2016), 81 

as well as surface roughness (characterized by the aerodynamic roughness length, zo) (Raupach 82 

et al. 1993), with vegetative and topographic (micro to macro) roughness having significant 83 

influences (e.g. Gillies et al., 2006; Okin & Gillette, 2001; Sankey et al., 2010). Incorporating 84 

the influence of these surface characteristics into soil erodibility and dust emission predictions 85 

is one of the biggest challenges for dust simulation, especially given that global data sets of 86 
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these input variables are not always available, or are not at a spatial scale appropriate for model 87 

input. 88 

A surface erodibility factor is typically used in dust models to constrain the observed spatial 89 

heterogeneity of emissions (Zender et al., 2003). Several dust-emission mapping schemes at 90 

the landscape scale have attempted to account for erodibility as a regulator of emission 91 

potential for use in dust models (e.g. Ashpole & Washington, 2013; Baddock et al., 2016; 92 

Bullard et al., 2011; Parajuli et al., 2014; Parajuli & Zender, 2017). The erodibility factor has 93 

typically been based on various physical assumptions of the influence of geomorphology, 94 

topography and hydrology on dust emission (Ginoux et al., 2001; Zender et al., 2003). 95 

Alternatively, empirical approaches based on satellite-derived data, including surface 96 

reflectance (e.g. Grini et al., 2005) have also been formulated. Bullard et al. (2011) and Parajuli 97 

et al. (2014) presented high resolution land-surface classifications based on the potential 98 

emissivity of specific geomorphic types and land covers. A recent global characterization of 99 

dust-emission potential by Parajuli & Zender (2017), the Sediment Supply Map (SSM), 100 

combines drainage area (a proxy for long-term hydrologic transport and deposition of 101 

sediment) with empirically-derived surface reflectance from the Moderate Resolution Imaging 102 

Spectroradiometer (MODIS) blue channel. The combination of these datasets encapsulates two 103 

important aspects of sediment supply, namely the accumulation of fine sediments in basins as 104 

a supply of dust-sized material, and the reflectance of different land surface types based on 105 

their surface sediment supply potential (Parajuli & Zender, 2017). The SSM is a landscape-106 

scale (~500 m) erodibility map that provides  numerical estimates of dust emission potential 107 

for use in global dust-cycle models.  108 

While such classifications are produced at a high spatial resolution relative to current dust 109 

modeling approaches (Shi et al., 2016; Parajuli & Zender, 2017), it is recognised that a range 110 

of influences affecting dust emission operate at scales below the landscape scale. As such, the 111 

scale at which dust-emission processes are investigated has a marked influence on the spatial 112 

representation of emission variability. Webb & Strong (2011) highlight this by proposing that 113 

wind erosion drivers can be understood at a range of scales, with different influences apparent 114 

at successive scales of analysis: grain to surface (<100m), landform (~101 - 102m), landscape 115 

(~103m), and regional to global scales (>104m). Recent landscape-scale dust-emission mapping 116 

schemes have not yet been assessed rigorously by ground-truthing and uncertainty remains 117 

regarding how well these surface classifications account for the potential variability in emission 118 

known to exist at the landform and sub-landform scales (Sweeney et al., 2011). 119 
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Our understanding of dust-emission processes has been greatly enhanced by studies that have 120 

identified dust sources on global, regional and landscape scales through various remote sensing 121 

approaches primarily using the Total Ozone Mapping (TOMS) and more recently the MODIS 122 

sensors (e.g. Baddock et al., 2016; Bullard et al., 2008, Ginoux et al., 2012; Huang et al., 2007, 123 

Lee et al, 2012, O’Loingsigh et al., 2015; Prospero et al., 2002; Schepanski et al., 2007, 2012; 124 

Vickery et al., 2013; Washington et al., 2003). However, a fuller appreciation of the smaller-125 

scale controls contributing to the variability in dust emission also depends on the improved 126 

characterisation of dust sources at a sub-landform scale. Ground-based studies are crucial, 127 

because the sub-landform variability of emission from dust producing surfaces has proven 128 

difficult to investigate using other means. However, using ground-based measurements to 129 

validate predictions of dust emission potential (such as that provided by the SSM) remains a 130 

challenge, because of the disconnect between process studies and flux measurements, 131 

necessarily performed at a landform to sub-landform scale, versus the regional or global focus 132 

taken by modeling studies. This is partly due  to the limitation posed by a relatively coarse 133 

spatial resolution in remote sensing together with a lack of dedicated field studies quantifying 134 

sub-landform variability (Haustein et al., 2015). Small-scale studies allow quantification of 135 

dust emission from specific landforms and the combination of surfaces within these landforms. 136 

The advantage of a high-resolution approach to dust source-point identification has recently 137 

been demonstrated by von Holdt et al. (2017) who used Landsat imagery covering a 25-year 138 

period to identify the landform-scale dust sources in the Namib Desert of southern Africa. 139 

The increased spatial resolution of Landsat (15-30 m) compared to other remote sensing data 140 

used to date (e.g. MODIS 250-1000 m) has improved accuracy for dust source-point 141 

identification, allowing the study of dust emission at landform scales and guiding field 142 

measurement at the sub-landform scale (von Holdt et al., 2017). The spatial variability of dust 143 

emission at sub-landform scale has been investigated by several studies using a PI-SWERL  144 

wind tunnel (Etyemezian et al., 2007) to measure the dust emission potential of surfaces from 145 

a variety of landforms found in desert regions (e.g. Bacon et al., 2011; King et al., 2011; 146 

Sweeney et al., 2011; 2016). The small size and portable nature of this instrument allows for 147 

replicate testing of multiple surfaces in locations that would not be accessible by conventional, 148 

larger footprint wind tunnels. Furthermore, given the size of the PI-SWERL (0.57 m diameter), 149 

its measurements are at a spatial scale corresponding to the grain and surface scale controls on 150 

dust emission (<100 m) (Webb and Strong, 2011). Using a Landsat analysis to guide in situ 151 

measurements for quantifying surface- to landscape-scale variability of dust emission (von 152 
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Holdt et al., 2017), offers a means for testing dust-emission schemes and improving how 153 

surface erodibility is characterized in dust modeling. 154 

This study aims to use a portable wind tunnel to estimate relative emissivity from different 155 

land surface types, doing so within the context of recently proposed methods for classifying 156 

surface emission potential for dust modeling efforts. Assessment of measured dust fluxes 157 

from classified surfaces is used to contribute a novel test of these new schemes and more 158 

broadly,  inform regional and global dust models. For flux measurements,field-based 159 

emission sampling with a PI-SWERL was guided by using high a resolution, Landsat-160 

derived, dust source point inventory created for the Namib Desert (von Holdt et al., 2017). 161 

This approach allows assessment of emission variability across a range of spatial scales by 162 

combining PI-SWERL point measurements with landform classification. The secondary 163 

objective was to examine the emission measurements and a range of surface properties (soil 164 

moisture, degree of crusting, particle size and mineralogy) using a Boosted Regression Tree 165 

(BRT) analysis to determine the most significant erodibility factors for the dust source points.  166 

2 Regional setting and field sites 167 

The Namib Desert is one of the major southern African dust sources (Vickery et al., 2013; von 168 

Holdt et al., 2017), and is appreciable at the hemispheric scale (Ginoux et al., 2012). This region 169 

comprises several desert landforms, including 12 westward-flowing ephemeral rivers, 170 

numerous small inland playas and large coastal sabkhas, sand deposits which include sand 171 

sheets and sand dunes; and extensive areas of stony desert comprising gravel stone pavements 172 

dissected by non-fluvial ephemeral drainage channels (Bullard et al., 2011; Jacobsen et al., 173 

1995; Goudie & Viles, 2015). Dust emission from the Namib Desert has been mostly associated 174 

with the terminal stages of the dry river valleys and coastal sabkhas and inland playas (Dansie 175 

et al., 2018; Eckardt & Kuring, 2005; Vickery & Eckardt, 2013; von Holdt et al., 2017). The 176 

Kuiseb, Huab and Omaruru rivers were identified as the most emissive river systems based on 177 

MODIS true colour imagery analysis from 2005 to 2015, whereas Conception Bay and the 178 

Ugab Pans were the most emissive sabkhas (von Holdt et al., 2017) (Figure 1 a). The present 179 

study uses PI-SWERL measurements to assess dust emission potential predicted from 180 

classification schemes applied to the three most emissive catchments determined by von Holdt 181 

et al. (2017), in addition to the Ugab sabkha system (marked U in Figure 1a). The PI-SWERL 182 

measurements from von Holdt et al. (2017) are a subset of the data used in the present paper 183 

(40% of the total data set, Table S1), and while von Holdt et al. (2017) examined the river 184 
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systems on a case-by-case basis, the current investigation examines dust emission across 185 

multiple scales (erosional surface, landform, and landscape) for the Namib Desert study area. 186 

3 Methods 187 

3.1 Geomorphology and dust emission scheme mapping 188 

Geomorphological units were mapped in the study area following the land-surface 189 

classification based on geomorphology used by Bullard et al. (2011) in their Preferential Dust 190 

Scheme (PDS) (see also Baddock et al., 2016). The PDS classes included lake systems, 191 

including dry and ephemeral lakes (playa and sabkha pans), alluvial systems (high- and low-192 

relief), stony systems (including stone pavements intersected by ephemeral drainage channels), 193 

aeolian systems (sand sheets and dunes), loess and low emission surfaces, such as bedrock. 194 

The Namib loess deposits consist predominantly of fluvially reworked loess in the ephemeral 195 

river valleys (Eitel et al., 2001) and were mapped as part of alluvial systems as they are not 196 

distinguishable at the scale of mapping used in the present study. The study area mapped 197 

consisted of the Landsat tiles analysed by von Holdt et al. (2017) (Figure 1 a) and used a 198 

combination of remote sensing data, 1:250 000 geological maps from the Geological Survey 199 

of the Ministry of Mines and Energy of Namibia and field observations. The remote sensing 200 

data included Google Earth images, Landsat 8 false colour imagery (bands 7,5,3) and the 201 

Shuttle Radar Topography Mission (SRTM) 30-m digital elevation model to distinguish 202 

between low- and high-relief, as well as degree of incision of alluvial systems. The 2289 dust 203 

source points identified with the aid of Landsat imagery between 1990 and 2016 by von Holdt 204 

et al. (2017 were classified according to the PDS land-surface classes at a landscape scale. 205 

Mapping was done in QGIS v 2.18.12 (QGIS development team, 2016). 206 

The Land Surface Map (LSM) and Sediment Supply Map (SSM) were made available as rasters 207 

by Parajuli & Zender (2017). The LSM (Parajuli et al., 2014) was originally developed by 208 

mapping the Middle East and North Africa region according to 12 spectral land cover classes 209 

with high-resolution Google Earth Pro images and polygons created as training samples for a 210 

global supervised classification which used the maximum likelihood method in ArcGIS, as 211 

applied to the global Blue Marble (MODIS RGB) image mosaic. To enable better comparison 212 

of the PDS and LSM outputs, the Parajuli et al. (2014) spectral land cover classes were 213 

reclassified according to the geomorphology based PDS land-surface classes ( Bullard et al., 214 

2011). The LSM is used for a qualitative and quantitative comparison with the SSM produced 215 
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globally by Parajuli & Zender (2017). The original LSM land cover classes used in Parajuli et 216 

al. (2014) are included in the Supporting Information Figure S1. 217 

The SSM is derived through a combination of the upstream catchment area and the surface 218 

reflectance captured in the blue band (459-479 nm) from the same Blue Marble mosaic used 219 

for determination of the LSM. The upstream catchment size is suggested to provide an estimate 220 

of the transport and deposition of sediments and highlights areas of sediment accumulation, 221 

whereas the reflectance serves as a proxy for highly erodible surfaces such as playas and dunes. 222 

The value for the SSM is based on a scale from 0 – 1, with the Bodélé Depression in Chad 223 

regarded as the most emissive source with a maximum value of 1 (Parajuli & Zender, 2017). 224 

3.2 PI-SWERL dust-emission measurements 225 

Dust-emission measurements from the PI-SWERL instrument were used to measure the 226 

potential for dust flux from different desert surfaces, with the PI-SWERL now being a widely 227 

used technique (e.g., Bacon et al., 2011; Etyemezian et al., 2007; Goossens & Buck, 2009; 228 

Sweeney et al., 2008, 2011). The specific methodology and test parameters for the PI-SWERL 229 

are presented in von Holdt et al. (2017). The dust emission flux (Ef, mg m-2 s-1) was calculated 230 

using the following equation from Sweeney et al. (2011): 231 

𝐸𝐸𝑓𝑓 =  
∑ 𝐶𝐶 𝑥𝑥 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖

�𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖−𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖,𝑖𝑖�∙ 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒
 ,               (1) 232 

where C is the dust concentration (mg m-3) of PM10 (Particulate matter <10 μm) , F is the flow 233 

rate of air through the chamber (L s-1), Aeff  is the test area underneath the PI-SWERL annular 234 

ring (m2), and t is the time (s) at the beginning (tbegin, i) and end (tend, i) of the RPM step test 235 

level, i (Sweeney et al., 2011). In order to take measurements at sites of known dust emission, 236 

the PI-SWERL was deployed at a total of 17 sites identified from Landsat (von Holdt et al., 237 

2017) (Figure 1 a). A further three sites were tested representing low emission surfaces, i.e. the 238 

gravel pavements within stony systems and sand dunes within aeolian systems. These non-239 

emissive sites were included in the study to obtain the full range of emission potential and for 240 

purposes of the regression analysis. The stone pavements chosen as test sites were selected 241 

based on the presence of a vesicular A soil horizon (Av) (McFadden, 2013, Sweeney et al., 242 

2013) as these horizons are indicators of dust activity, predominantly as inputs to soils.  243 

At each site a 10 m tape marked at 1 m intervals was laid out as close as possible to the co-244 

ordinates of emission source points determined from Landsat. For consistency, transects were 245 
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all laid out perpendicular to the direction of the north-east regional wind (the Bergwind) that is 246 

responsible for much of the large-scale dust emission in the Namib (Vickery & Eckhardt, 247 

2013). All 17 sites underwent visual confirmation on the ground of the surfaces identified as 248 

potentially emissive. The site was assessed, and a final in situ decision was made regarding the 249 

placement of the transect so as to include all the different surface types that were apparent 250 

locally. At each location of testing, 3 to 10 individual runs were made at metre intervals along 251 

a 10 m linear transect with the number of test runs dependent on the homogeneity of the 252 

surfaces within the transect and variability of the emission flux results. 253 

A further decision regarding the number of runs to perform was made based on the PI-SWERL 254 

results at the time of testing. Floodplain terraces present within alluvial systems composed of 255 

silt crusts with variable amounts of sand for saltation and nebkhas situated on the terraces as 256 

well as loose erodible material present in between the silt crusts proved to be highly variable 257 

and as a result, 10 transects were done on these terraces. In contrast, sand dunes within the 258 

aeolian systems were relatively uniform in emission potential and so fewer measurements were 259 

carried out on these surfaces and were largely for exploratory purposes (Table 1). Dune sand 260 

deposits have not been identified as significant point source emitters from Landsat but have 261 

been identified as low intensity dust sources covering large areas and hence a potentially 262 

appreciable source of dust (Bullard et al., 2004; Crouvi et al., 2008; Strong et al., 2010). 263 

The PI-SWERL measurements were classified according to the individual erosional surfaces 264 

that were being tested. The individual surfaces were then aggregated first to a landform scale 265 

and lastly to a landscape scale (Table 1). Details of the PI-SWERL test sites and landform 266 

classifications are given in Table S1 of the Supporting Information. We used a mixed effects 267 

model to investigate the relationship of dust emission potential within each spatial scale (suited 268 

to unbalanced replicates) with catchment identity set as a random effect (as in Sankey et al., 269 

2011) followed by an analysis of variance for the fixed-effects terms (Table 1 categories for 270 

Landscape, Landform and Surface respectively). Data at all scales were log-transformed before 271 

model runs to satisfy the assumption of the normality of the residuals. All models and 272 

significance testing were performed in R 3.4.1 (R Development Core Team, 2017) using the 273 

‘nlme’ package (Pinheiro et al., 2018). A threshold p-value of <0.05 was regarded as 274 

significant. A determination of spatial autocorrelation using the Moran’s I test statistic was 275 

performed with the ‘ape’ package (Paradis & Schliep, 2018) in R 3.4.1. at all spatial scales. 276 

Table 1 Breakdown of the categories of geomorphology considered in the statistical analysisa 277 
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SURFACE 
(<10-1 m) 
(n=individual PI-
SWERL 
measurements) 
n=128 

Loose Erodible 
M

aterial (LEM
) 

(25) 

C
rust: high saltators 

(22) 

C
rust: m

edium
 

saltators (12) 

C
rust: no saltators 

(31) 

Low
 %

 gravel (17) 

H
igh %

 gravel (9) 

Salt crust: w
ith and 

w
ithout saltators 

(12) 

LANDFORM 
(101-102m) 

(n=PI-SWERL 
transects) 
n=17 

Active channel (1) 
Terraces (10) 

Drainage channel (2) 
Pavement (4) 

* * 

LANDSCAPE 
(103 m) 

(n=landforms 
sampled) 
n=12 

Alluvial systems (5) Stony systems (4) Aeolian 
systems 

(1) 

Ephemeral 
lake 

systems 
(2) 

CATCHMENT Kuiseb, Omararu, Huab, Ugab 

a Increasing spatial scale of enquiry moving down the table. Catchment was set as random 279 

effect across the Namib Desert study region. ‘Aeolian systems’ and ‘Ephemeral lake systems’ 280 

landscapes were not analysed at Landform scale due to insufficient number of sample points 281 

and sampling conditions. 282 

 283 

3.3 Characterization of surface properties and Boosted Regression Tree (BRT) analysis 284 

A BRT model was used to identify the most relevant variables that controlled surface 285 

erodibility using the surface properties at each PI-SWERL field testing site. This analysis was 286 

performed following Elith et al. (2008) using the ‘dismo’ package (Hijmans et al., 2016) in R 287 

with a learning rate of 0.005 and a tree complexity of 5. Ef (Equation 1), representing the overall 288 

surface erodibility, was used as the response variable and specific predictor variables included 289 

compressive and shear strength to quantify the degree of crusting, soil moisture content, 290 

particle size and elemental composition to assess the influence of mineralogy. For those 291 

properties tested in the laboratory, one surface sample was taken with a flat spade to a depth of 292 
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0.02 m directly next to each PI-SWERL run at the time of testing. Further details of the BRT 293 

analysis are given in Section S1 of the Supporting Information. 294 

The degree of consolidation or crusting of the surface was assessed in the field by measuring 295 

the compressive and shear strength of the surface. Unconfined compressive strength was 296 

measured on the test surface at each PI-SWERL run site using a Pocket Soil Penetrometer H-297 

4195 and shear strength using a Torvane H-4212 pocket shear vane (Humboldt Mfg. Co., 298 

Illinois, USA). At each site a minimum of three measurements of both compressive and shear 299 

strength of the surface were taken. If a large difference in individual measurements was 300 

encountered, additional measurements were taken to increase representativeness of 301 

measurement. 302 

The near-surface volumetric soil moisture content at the time of PI-SWERL sampling was 303 

measured in the field with a Delta-T Devices ML3 ThetaProbe soil moisture sensor. A 304 

minimum of three measurements were taken at each PI-SWERL measurement site by inserting 305 

the probe to just below the soil surface. We note that the probe was designed to be fully inserted 306 

into the soil medium (to a depth of 0.06 m), producing values for a deeper soil volume. Our 307 

non-standard application of the instrument (not inserting it fully into the soil) is intended to 308 

provide a relative measure of near-surface soil moisture, but has not been vetted through further 309 

gravimetric measurements. The ThetaProbe was therefore inserted only into the top 0.02 m. 310 

For this study, establishing a gauge of soil moisture as close as possible to the surface (which 311 

has a strong influence on erosion potential (Wiggs et al., 2004) outweighed specific 312 

quantification of soil moisture level.  313 

For particle size analysis, all the samples were air dried at 25°C to a constant weight and sieved 314 

to 1 mm. The >1 mm split was further sieved to determine the coarse sand and gravel fractions. 315 

The <1 mm split was used to determine the particle size distribution by laser diffraction using 316 

a Malvern Mastersizer 2000 attached to a Hydro 2000G dispersion unit. The samples were cone 317 

and quartered to obtain a representative sample and placed in a tap water solution overnight, 318 

shaken for half an hour and again for half an hour the next day before introduction to the 319 

dispersion unit and further sonicated for 180 seconds prior to measurement. Particle size 320 

statistics including texture classes, modes, kurtosis, skewness and sorting were calculated using 321 

Gradistat software (Blott & Pye, 2001). 322 

The gravel concentration in the surface sediments determined by sieve analysis served as a 323 

proxy for gravel-cover density. These results were confirmed by an unsupervised classification 324 
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of a photograph of each surface with a gravel cover performed in Erdas Imagine 2015-2016 325 

(Leica Geosystems, Atlanta, Georgia, USA). Gravel cover densities of <30% were classified 326 

as low gravel cover and densities of >30% as high gravel cover. This distinction was chosen 327 

based on the analysis by Wang et al. (2012), who found that dust emission increases with 328 

increasing gravel cover up to a density of 30%, after which dust emission decreases.  329 

Finally, milled samples of the <1 mm soil fraction were analyzed in the laboratory for Mg, Al, 330 

S, Cl, K, Ca, Ti, Mn and Fe. with a Spectroscout energy-dispersive X-ray Fluorescence (XRF) 331 

analyzer (SPECTRO Analytical Instruments, Kleve, Germany). The instrument was calibrated 332 

with a certified standard GBW07312 (National Research Centre for CRMs, Beijing, China) for 333 

which technical concentrations were obtained from NOAA Technical memorandum NOS 334 

ARCA 68 (1992). 335 

4 Results  336 

4.1 Dust emission scheme mapping and Landsat-derived dust source points 337 

Stony systems and bedrock cover extensive areas of the Namib study area when mapped 338 

according to the PDS classification (Figure 1 b). Two extensive aeolian systems of the Namib 339 

Sand Sea in the south and the Skeleton Coast dunefield in the north account for the second 340 

largest portion of the land area. In the present study, the PDS classification was applied to the  341 

2289 dust source points observed from Landsat imagery (1990-2016) by von Holdt et al. (2017) 342 

(Figure 1; Figure 2). Overall, the ephemeral lake systems and alluvial systems cover a very 343 

small proportion of the study area (2% of area) but contribute just over three-quarters of 344 

observed source points (77% of plumes) (Figure 2). In contrast, are stony systems (27% of 345 

area, 22% of source points) and aeolian systems (15% of area, 0.5% of source points), which 346 

cover large areas, but contain fewer point sources of dust emission. Additional details of the 347 

landform classification for the dust source points performed in the present study are given in 348 

section S2 of the Supporting Information.  349 

The representation of the landscape according to the LSM (Figure 1 c) is noticeably different 350 

from the PDS, with large areas of bedrock and stony systems classified as either alluvial system  351 

or ephemeral lake. In addition, a large part of the Namib Sand Sea is classified as stony system, 352 

an issue noted by Parajuli & Zender (2017). Relatively small areas of a landscape are 353 

responsible for most of the dust emission (e.g. Bullard et al., 2008; Gillette, 1999; Lee et al., 354 

2009) which is evident when assigning a level of dust emission potential to the PDS land 355 



13 
 

surface classification following Bullard et al. (2011) (Figure 1 d). Alluvial systems and 356 

ephemeral lake systems are the highest potential emitters, aeolian systems have low to medium 357 

dust emission potential and stony systems and bedrock are low potential emitters. The colours 358 

assigned to low, medium and high emission potential categories follow the colour scheme used 359 

in the SSM (Figure 1 e) by Parajuli & Zender (2017). The SSM highlights the elevated potential 360 

of alluvial systems to emit dust, but when mapped, results in a more extensive alluvial coverage 361 

than represented by the PDS scheme. 362 

 363 
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Figure 1 Geomorphology and dust emission potential mapping of the Namib Desert area covered in this study. (a) Landsat false-colour image 366 
showing the seven tiles included in the Landsat source point analysis, and the 2289 Landsat points from von Holdt et al. (2017), key river catchments 367 
and PI-SWERL testing sites, (b) PDS GU geomorphic land surface classes  per Bullard et al. (2011), (c) Land Surface Map (LSM) of Parajuli & 368 
Zender (2017), (d) dust emission potential according to PDS emission categories (PDS Dust), (e) Sediment Supply Map (SSM) showing dust emission 369 
potential based on surface reflectance on a unitless scale from 0 to 1 with the maximum value equated to the Bodélé Depression (Parajuli & Zender 370 
(2017). In (a), U: Ugab pan complex, S: Sandwich Harbour, C: Conception Bay. Direction of predominant north easterly dust-producing winter 371 
wind (Bergwind) is indicated by black arrow in (e). 372 
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 373 

 374 

 375 

Figure 2 Areal extent of geomorphic landscape classes (% of total area) and frequency of dust 376 
source points within them (expressed as % of total number, as well as points per km2) identified 377 
through Landsat analysis of the Namib Desert. Ephemeral lake systems (which include playa 378 
and sabkha pans) have the lowest extent within the study area (850 km2), but show the highest 379 
density of source points. The stony systems have the highest areal coverage (45,000 km2), but 380 
show a low density of source points. Alluvial systems have the highest number of source points 381 
overall (43%) but cover 4% of the study area. Aeolian systems cover 15% of the study area but 382 
were responsible for <1% of the source plumes identified. 383 

  384 
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4.2  Measured emission fluxes 385 

The surface scale analysis of the PI-SWERL measurements illustrates the inherent variability 386 

of dust emission at a sub-landform scale (Figure 3). At this scale, the most emissive undisturbed 387 

surfaces occurred where loose erodible material (LEM) was present. The presence of such 388 

material was particularly associated with the presence of small nebkha dunes interspersed 389 

between crusted fluvial deposits within the valley fill terraces and within the drainage channels 390 

of the stony systems. In Figure 3, a distinction between the crusted surfaces present in the 391 

channels or on the terraces could be made based on the relative presence of saltators determined 392 

by inspection of the surface before a PI-SWERL test. Figure 3 indicates that LEM-dominated 393 

surfaces (geometric mean: 0.3188 mg m-2 s-1) and those crusts with abundant sand for saltation 394 

(geometric mean: 0.342 mg m-2 s-1) were significantly more emissive than the other surface 395 

types (p value < 0.001) (summary statistics in Table 2). Pavement surfaces with varying 396 

densities of gravel were found predominantly within the stony systems and in some river 397 

terraces. The low-density stone pavement (gravel cover <30%) was significantly more emissive 398 

(geometric mean: 0.02004 mg m-2 s-1) than the surfaces with a high density of gravel cover 399 

(>30%). High density gravel surfaces (geometric mean: 0.0022 mg m-2 s-1), crusts with no 400 

saltators (geometric mean: 0.0046 mg m-2 s-1) and salt crusts (geometric mean: 0.0008 mg m-2 401 

s-1) were the lowest emitters. All p values for significance tests are reported in the Supporting 402 

Information Tables S3 to S5. 403 

Aggregating the observed emission fluxes within the landscape scale classes found in dust 404 

emission potential schemes illustrates the problematic nature of representing sub-landform 405 

scale variability at a larger scale (Figure 4). The greatest amount of variability was present in 406 

the stony and alluvial systems and when aggregated to the landscape scale, the geometric means 407 

for these two classes were not significantly different (Figure 4 a). Notably, the lake systems 408 

are significantly different (p value = 0.040) and consistently showed low emissivity during the 409 

time they were tested (geometric mean: 0.0022 mg m-2 s-1). The ephemeral lake systems tested 410 

included the Huab playa and Ugab sabkha (Figure 1 a), where significantly less dust was 411 

emitted than the other three geomorphic landscape units as quantified by the PI-SWERL 412 

(alluvial systems geometric mean: 0.0379 mg m-2 s-1 and stony systems geometric mean: 413 

0.0102 mg m-2 s-1). Aeolian systems were not included in the landscape-scale analysis due to 414 

insufficient sample size, but had a geometric mean of 0.0640 mg m-2 s-1 based on the individual 415 

PI-SWERL measurements (Table 2). 416 
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The variability in the alluvial and stony systems was further resolved by looking at distinct 417 

landforms present within these two broad landscape classes (Figure 4 b and c). In the case of 418 

the stony systems class, a fundamental distinction could be made between stone pavement 419 

surfaces dominated by the presence of coarse lag gravel, and portions of pavement where micro 420 

drainage channels (c. 0.1 m deep) were found (Figure 4 d and e). In turn, the low relief alluvial 421 

class could also be divided between portions of ephemerally active river channel and valley fill 422 

terraces, the latter situated above the channel (Thomas et al., 2017) (Figure 4 f and g). The river 423 

valley fill terraces (within alluvial systems) were on average the most emissive landform 424 

(geometric mean Ef: 0.0651 mg m-2 s-1), followed by the stony systems exhibiting drainage 425 

channels (geometric mean: 0.0318 mg m-2 s-1). The gravel pavements (geometric mean: 0.0075 426 

mg m-2 s-1) and active river channels (geometric mean: 0.0082 mg m-2 s-1) were less emissive. 427 

In terms of statistical separation, however, only the stony pavements had a lower emission rate 428 

than the alluvial terraces (p-value = 0.00769). 429 

The rapid, multi-replicate PI-SWERL testing allows the spatial variability in emission flux 430 

from a given surface, landform or landscape to be measured (King et al., 2011; Sweeney et al., 431 

2011). The same crust within a 10 m transect can be largely non-emissive (0.003 mg m-2s-1) in 432 

the absence of available sand for saltation, but highly emissive (0.646 mg m-2s-1) where an 433 

abundant supply of saltators is present. Emission rates generated by the PI-SWERL testing of 434 

surfaces reflect the relative presence of only those saltators under the instrument footprint, 435 

resulting in non-emissive runs on crust where no saltators are present. However, river terraces 436 

surrounded by an abundant supply of sand will undergo widespread bombardment by saltation 437 

during a high friction velocity wind event. In such circumstances, it is possible that the entire 438 

transect will become highly emissive under the continued bombardment of the available 439 

saltators and stockpiles of LEM dispersed between the terraces. To test the degree to which 440 

individual measurements were spatially autocorrelated, a Moran’s I test was performed for 441 

individual measurements within a transect and were not found to be spatially autocorrelated 442 

(for example p = 0.0705 using Moran’s I for Huab transect 2 and p = 0.090 for Kuiseb 5) 443 

indicating that the sampling density was adequate, and autocorrelation is not relevant at the 444 

surface scale analysis. A higher sampling density is not possible given the size of the PI-445 

SWERL. 446 
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4.3 Emission fluxes and relation to land surface classification schemes 447 

The PI-SWERL provides a relative quantification of dust emission rates from the surface, 448 

against which the emission potential of different geomorphic classes in surface classification 449 

schemes (PDS, SSM/LSM) can be compared. Comparing the geometric mean of measured dust 450 

emission of the PI-SWERL transects across landforms against the SSM index values for the 451 

location of each PI-SWERL transect provides a means to assess and contextualise the SSM 452 

values (Figure 5). Also represented in Figure 5 is the land surface classification as per the PDS 453 

scheme by Bullard et al. (2011) and the LSM classification by Parajuli et al. (2014). 454 

Determination of the classification between the two different schemes differs considerably, for 455 

instance, with LSM classifying two out of the 20 transect locations as bedrock, while PDS 456 

identified them as either dry lake or alluvial systems (Figure 5). Elsewhere, LSM was found to 457 

classify PDS alluvial systems as bedrock with sediment and stony systems as Playa/Sabkha. 458 

The PI-SWERL results do not show a clear relationship between the measured dust emission 459 

and the SSM values. The SSM values for the entire study area range from a minimum of 0.002 460 

to a maximum of 0.519 with a mean of 0.187, with the peak geometric mean transect emission 461 

rate (0.2191 mg m-2 s-1) corresponding to a moderate SSM value (0.25) (Figure 5). 462 

Furthermore, a wide range of emissivity (0.002 to 0.2191 mg m-2 s-1) is seen in the narrow 463 

range of SSM values between 0.23 to 0.27. This range covers the LSM categories of stabilised 464 

sand deposit, sand deposit on bedrock and bedrock, but is more appropriately classified as 465 

predominantly alluvial system and some stony system according to the PDS map. The highest 466 

SSM value for the PI-SWERL test sites was 0.46, which corresponded to a stony system with 467 

an emission value of 0.0127 mg m-2 s-1. Other high SSM values (>0.3) mostly occurred within 468 

alluvial systems, with measured emission values varying widely between 0.008 and 0.12 mg 469 

m-2 s-1, and the lowest emission flux value in this range associated with the active channels. 470 

The locations of the dust source points identified by von Holdt et al. (2017) with Landsat 471 

imagery in Figure 1 (a) have SSM values with a range of 0.078 to 0.508 and a mean of 0.245. 472 

 473 
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 474 

Figure 3: Dust emissions from surface categories within all landscapes. The loose erodible 475 
material (LEM) surface type consists of unconsolidated sediments and is found in ephemeral 476 
drainage channels of stony systems and on terraces of alluvial systems between silt crusts and 477 
nebkhas (Figure 4, left and right photos, respectively). The measurements carried out in the 478 
aeolian system were also included in the LEM category. The crust surface class occurs in 479 
alluvial systems and was subdivided based on abundance of sand available for saltation (none, 480 
medium, high). Gravel surfaces found both in stony systems in pavements and alluvial systems 481 
in terraces were subdivided based on the density of gravel cover (Low % with <30% gravel 482 
cover and High % with > 30% gravel cover). Salt crusts were found within ephemeral lake 483 
systems with and without saltators present. Letters indicate significant difference and are 484 
plotted at the geometric mean of each surface category. 485 

 486 
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Figure 4 Dust emission determined from PI-SWERL measurements at landscape scale for stony, alluvial and ephemeral lake systems (a). Stony 488 
systems consisted of two landform categories: stone pavements and pavement intersected by ephemeral drainage channels (b). Similarly, alluvial 489 
systems contained two landforms: active river channels and floodplain terraces (c). Corresponding photographs of each landform are shown at the 490 
bottom (d to g). Circled letters indicate statistical difference determined and are plotted at the geometric mean value for each distribution. River 491 
terraces proved to have the highest dust emissions in alluvial systems, while no significant difference was observed between drainage channels and 492 
pavement within stony landscapes. 493 

 494 

 495 

 496 

  497 
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Table 2 Summary statistics for PI-SWERL dust flux measurements at the Landscape, 498 
Landform and Surface scale assessments 499 
 500 

 na nb 
Geometric 

mean 
(mg m-2 s-1) 

CI lowc 

(mg m-2 s-1) 
CI highd 

(mg m-2 s-1) 

Geo 
SD 

(mg m-2 s-1) 
Mine 

(mg m-2 s-1) 
Maxf 

(mg m-2 s-1) 

Surfaces (n = 128 individual PI-SWERL measurements) 

Low % gravel 17 17 0.0204 0.0076 0.0566 8.544 0.0005 0.2129 
High % gravel 9 9 0.0022 0.0009 0.0052 4.378 0.0004 0.0155 
Loose erodible material 25 25 0.3188 0.2143 0.4861 2.898 0.0417 1.854 
Crust: no saltators 31 31 0.0046 0.0027 0.0071 4.016 0.0003 0.0704 
Crust: med saltators 12 12 0.0855 0.0578 0.1359 2.258 0.0102 0.2097 
Crust: high saltators 22 22 0.3418 0.2690 0.4356 1.730 0.1575 0.8649 
Salt crust: with and 
without saltators 12 12 0.0008 0.0002 0.0026 8.146 0.00006 0.0210 

Total n 128 128  
Landform (n = 17 PI-SWERL transects) 

Terraces 10 75 0.0651 0.0376 0.1194 2.680 0.0111 0.2191 
River channel* 1 9 0.0082 0.0014 0.0491 10.258 0.0009 0.1689 
Pavement 4 11 0.0075 0.0010 0.0436 10.416 0.0006 0.1501 
Drainage channel 2 13 0.0318 0.01332 0.0759 3.422 0.0133 0.0758 
Total n 17 108g  
Landscape (n = 12 landforms) 

Alluvial systems 5 84 0.0379 0.0179 0.0881 2.848 0.0082 0.1310 
Stony systems 4 24 0.0102 0.0019 0.0726 7.468 0.0006 0.0759 
Aeolian systems* 1 3 0.0640 0.0406 0.1001 1.199 0.0534 0.0767 
Ephemeral lake systems 2 17 0.0022 0.0005 0.0094 7.479 0.0005 0.0094 
Total n 12 128  

a. Sample size n after aggregation of individual PI-SWERL measurements to relevant scale of enquiry 501 
b. Sample size n using individual PI-SWERL measurements 502 
c. 95% confidence interval below the mean d 95% confidence interval above the mean 503 
e Minimum emissions from unit/surface 504 
f Maximum emissions from unit/surface 505 
g. Landform assessment does not include Aeolian systems (n=3) and Lake systems (n=17) 506 
*Summary statistics calculated with individual measurements as insufficient n at aggregated level (n=1) 507 
 508 
 509 
 510 
  511 
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 512 

 513 

Figure 5 Dust emission flux measured with the PI-SWERL compared to the SSM (Sediment 514 
Supply Map) value for each of the transect sample sites. The legend also indicates the land 515 
surface classification according to the LSM (Land Surface Map) (by symbol shape), and 516 
secondly, as mapped using the land surface classes proposed by the PDS (Preferential Dust 517 
Scheme) by symbol color. 518 

  519 
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4.4 Predictors of emission rate as determined by Boosted Regression Tree analysis 520 

The BRT model produced the following variables as the most important predictors for dust 521 

emitted during the PI-SWERL runs: gravel cover (%), moisture content (%), kurtosis, very 522 

coarse silt fraction (%), very fine sand (%), fine sand (%), compressive strength (kg m-2), Ca 523 

(%), Mg (%) and S (%). The relative contribution of each variable to the model is given as a % 524 

and the partial dependence plots (Figure 6) provide the relationship between the variables and 525 

the measured dust flux when all other variables are held constant. The trend in the plots is 526 

informative, rather than actual values, with increasing partial dependence values indicating 527 

increased dust emission and vice versa. A sudden change indicates a critical threshold at which 528 

the dust emission flux changes. Taken together, the significant predictor variables identified 529 

with the BRT explain 70.8% of the deviance in the dust flux measured with the PI-SWERL.  530 

Based on the BRT analysis, soils layers with a content of very coarse silt above 5% and a very 531 

fine to fine sand content between 10 and 20%, resulting in a platykurtic particle size 532 

distribution, should indicate areas with potentially increased emission potential. In addition, 533 

the density of gravel cover results in an increase in roughness and bed armoring which appears 534 

to exert a significant influence in reducing emission potential when gravel content is 15% or 535 

above. Moisture has long been regarded as a primary control on dust emission (e.g. Ishizuka et 536 

al., 2005; McKenna-Neuman & Nickling, 1989; Munkhtsetseg et al., 2016) and emerges as a 537 

primary predictor. Calcium and magnesium were also identified as important elements 538 

potentially due to the effect that carbonate minerals have on the erodibility of a crusted soil, 539 

with some suggesting these minerals will act to strengthen crusts by acting as a binding agent 540 

(Gillette et al., 1982) and others contending that calcite offers very little resistance to abrasion 541 

(Pye and Tsoar, 1990). Our data seem to support a reduction in dust flux with increasing Ca 542 

and Mg content.  543 

 544 

 545 

 546 

 547 

 548 

 549 
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 550 

Figure 6 Partial dependence plots depicting the relationship between dust emission and each 551 
significant surface variable. The trend rather than the actual values is the important feature in 552 
each plot. Increasing partial dependence values indicates an increase in dust flux and decreasing 553 
values the opposite. Percentage values reported at the centre of each panel are the relative 554 
influence of variables for predicting dust emission. 555 

  556 
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5 Discussion 557 

The acquisition of landform scale dust source data achieved here allows for the evaluation of 558 

the PDS and LSM classification schemes. It also allows an assessment of the newly generated 559 

landscape-scale SSM product to characterise dust emission potential within the Namib Desert. 560 

The Namib represents an ideal region for such an investigation as it is host to a variety of 561 

actively emitting surfaces (Vickery et al., 2013; von Holdt et al., 2017). Classifying the dust 562 

source points identified with Landsat by von Holdt et al. (2017) according to the PDS at a 563 

landscape scale indicates that dust emission from the Namib Desert is spatially highly 564 

concentrated, with relatively high densities of plumes found to originate from the alluvial 565 

systems (0.4 points km2) and dry lakes (0.9 points km-2) compared to aeolian (0.001 points 566 

km2) and stony systems (0.011 points km2) (Figure 2). Mapping the land surface classes of the 567 

Namib Desert according to the PDS at landscape scale shows the limited extent of ephemeral 568 

lakes (playas and sabkhas) as dust producing areas (2% of the total study area) which reflects 569 

the hotspot nature of dust production in these landscapes noted by Gillette (1999). 570 

The advantage of the PDS map is that it can represent the landscape in detail because of the 571 

high-resolution, quality controlled geomorphic attribution of the surface that comes from user-572 

defined mapping. The disadvantage of this scheme is that it requires certain inputs to map the 573 

landscape, which are not consistently available for all areas, and its critical requirement for 574 

land surface classes or geomorphic units to be identified and created, which is prone to 575 

subjectivity. The PDS mapping has only been performed for limited areas (e.g. Baddock et al., 576 

2011; Bullard et al. (2011); Lee et al., 2012) and creating a global PDS map remains a 577 

challenge. Using the LSM developed by Parajuli et al (2014) to map the study area results in 578 

an overestimation of the dust emitting alluvial and dry lake areas (Figure 1 c). This is due to 579 

the misclassification of several land surface classes which occurs as a result of a supervised 580 

technique with training classes based on the spectral signature of the MENA (Middle East and 581 

Africa) region (Parajuli & Zender, 2017). The difficulties of such an automated approach 582 

demonstrates the problems of attempting to create a global geomorphology classification map. 583 

Even though a global land surface classification or geomorphology map would provide a 584 

valuable input to the representation of dust emission, the use of region specific training classes 585 

should be exercised with caution, especially when based on spectral data. A further limitation 586 

of a qualitative geomorphic mapping scheme, such as the PDS and LSM, involves the 587 

representation of a quantified dust emission potential. 588 
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A quantified representation of the dust emission potential for different land surface classes at 589 

a landscape-scale in raster format is necessary to incorporate these schemes into dust cycle 590 

models. For the PDS this has not been achieved and each class is assigned a qualitative 591 

categorical indicator based on inferred emission potential, although the scheme has been tested 592 

against long-term frequency of dust observation in the Chihuahuan Desert (Baddock et al., 593 

2016). With PDS, emission information is required to discriminate between relative emission 594 

potential from different regions that act as dust sources. A quantification of the dust emission 595 

potential of the LSM land cover categories was attempted by Parajuli et al. (2014) using a 596 

correlation between ERA-Interim wind speed at 10 m height and MODIS deep blue AOD at 597 

550 nm. The authors point out that a disadvantage of this approach is the difference in scale 598 

between the high-resolution land cover map and the coarser (1° × 1°) correlation map which 599 

results in a disconnect between land cover and the emission potential assigned to them. The 600 

location of the major Namib Desert dust sources in the low-relief terminal stages of the rivers 601 

and coastal lake systems (pans and sabkhas) poses difficulties for identification of these sources 602 

based on techniques relying on aerosol loadings Furthermore, the use of atmospheric aerosol 603 

loading estimates, such as MODIS AOD or TOMS AI to locate dust sources in the Namib 604 

Desert may well have specific limitations. For example, detection of dust over bright desert 605 

surfaces using ultraviolet, visible or thermal infrared wavelengths can be problematic (Baddock 606 

et al., 2009; Hsu et al., 2004; Resane et al., 2004). In contrast, MODIS Deep Blue (MODIS 607 

DB) can only be retrieved over bright surfaces and is of limited use over dark ocean surfaces, 608 

while TOMS AI is known to not detect dust from the Namib Desert at low altitude near the 609 

coast (Mahowald & Dufresne, 2004). A consequence of this suite of limitations is that creation 610 

of an erodibility map derived from supervised classes established in a different region together 611 

with reliance on emission quantification from satellite retrieved aerosol loadings would likely 612 

result in a number of dust producing areas, such as the Namib Desert, being underestimated. 613 

Field based studies that include PI-SWERL emission measurements from intensely-sampled 614 

regions can provide relative dust fluxes, as well as indications of variability, that can serve as 615 

inputs for the quantification of dust potential schemes such as the PDS and LSM (Table 2). 616 

The recently proposed SSM provides a global landscape-scale erodibility map with a 617 

quantification of dust emission potential by combining a physical and empirical approach. The 618 

incorporation of upstream drainage area represents the supply of sediment and the surface 619 

reflectance represents the different sediment characteristics of the land surface types (Parajuli 620 

& Zender, 2017). The SSM dust potential scheme is a novel attempt to provide a global 621 
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representation of erodibility at the landscape-scale, elegantly tuned to a maximum potential 622 

represented by the Bodélé Depression in Chad. However, the landform-scale assessment of the 623 

SSM presented here highlights that there are potential shortcomings in this erodibility map. 624 

The dust source points identified with Landsat analysis indicates that most of the dust hot spots 625 

in this area are situated in the terminal stages of the rivers as they near the Atlantic Ocean and 626 

the coastal sabkhas (Figure 1, and see von Holdt et al., 2017). The SSM classification however 627 

identifies areas with high emission potential significantly upstream of the confirmed dust 628 

sources, including areas covering large areas of stony systems adjacent to alluvial and dry lake 629 

sources (Figure 1e). Furthermore, rivers that are not significant dust sources, such as the 630 

Swakop River (marked W in Figure 1 e) are identified as highly emissive in the SSM. The 631 

relative absence of dust emission from the Swakop River is probably due to the incised nature 632 

of this river combined with less topographic channelling of the high magnitude north-easterly 633 

Bergwind compared to other more emissive rivers such as the Kuiseb River. In addition, many 634 

parts of the Namib ephemeral rivers hold lush vegetation sustained by groundwater so that 635 

significant vegetative roughness make sediments unavailable for entrainment (von Holdt & 636 

Eckardt, 2018). As a result, the raised emission potential associated with enhanced alluvial 637 

sediment supply is likely to be overestimated in the SSM. It follows that, in addition to the 638 

preferential dust source areas identified by the classifications as applied to the Namib, the 639 

influences of vegetation and topographic channelling would need to be adequately 640 

parameterised in any dust model operating at this regional scale.  641 

The assessment of SSM values for dust emission source points identified with Landsat and 642 

measured for dust flux with the  PI-SWERL indicate that the SSM scheme does not always 643 

agree with the dust emission analysis presented here. The mean SSM value for the location of 644 

all Landsat dust emission source points of 0.245 is just under half the maximum emission value 645 

of 0.519 for the Namib region. Only 4.7% of the 2289 dust source points were classified in the 646 

most emissive category >0.4. Although the dust source points identified by Landsat do not 647 

provide a continuous numerical quantification of the dust emission potential, this point source 648 

inventory does identify areas which should be assigned values of high emissivity similar to the 649 

method used by Parajuli & Zender (2017) in assigning a maximum value of 1 to the Bodélé 650 

Depression. In addition, there is no clear relationship between the SSM emission values and 651 

PI-SWERL emission results (Figure 5). Sites exhibiting high emission rates were not 652 

necessarily classified as highly emissive according to the SSM. The most emissive site as 653 

measured with the PI-SWERL (geometric mean dust flux: 0.2191 mg m-2 s-1) is situated on the 654 



30 
 

alluvial system terraces and have an SSM value of 0.25 and classified as stabilised sand deposit 655 

by LSM. The highest SSM value (0.46) associated with the PI-SWERL runs was situated 656 

within the stony system with a geometric mean dust flux of 0.0127 mg m-2 s-1, but classified as 657 

lake system by the LSM due to the high surface reflectance of the quartz stone pavement . In 658 

this context, the PI-SWERL provides a quantification of dust emission by which to compare 659 

the dust emission potential from different surface types or landform- and landscape-scale 660 

geomorphic units and offers a means to validate dust-emission schemes. Dust emission is 661 

highly variable as indicated by the PI-SWERL dust flux measurements from the different 662 

surfaces (Figure 3 Table 2). The small-scale variability that exists at sub-landform scale has 663 

been seen to exert a clear effect on dust emission, so adequate representation of this variability 664 

remains an important yet persistently challenging research goal. The combination of the 665 

Landsat dust point source and PI-SWERL dust flux measurements at landform and sub-666 

landform scale can make contributions as input and validation for landscape-scale dust-667 

emission schemes. 668 

The PI-SWERL potentially provides a standardised quantification of surface dust emissions 669 

across different dust-producing regions, however comparison between different studies and 670 

regions would require consistency in measured parameters and landform categories. We offer 671 

an attempt at such a comparison by relating our results to Sweeney et al. (2011) from the 672 

Mojave Desert, USA (referred to from hereon as SW2011), which shows agreement between 673 

some of the measured surfaces, landforms and landscapes (Figure 7). An important legitimacy 674 

to this comparison is that SW2011 tested at the same friction velocity (u* = 0.56m s-1) as our 675 

study. The pavements in the stony systems and lakes systems compare well, whereas the 676 

aeolian systems have good agreement between the geometric means and lower confidence 677 

interval, but SW2011 report a much larger upper confidence interval. This is potentially due to 678 

SW2011 consisting of many more replicates for this landform category (30 versus 3 for the 679 

present study) and the dunes from the Mojave study being potentially situated adjacent to a 680 

large pan. In turn, the dunes tested as part of the Namib study were situated near an ephemeral 681 

river (Figure 1 a, approximately 1km south of Kuiseb delta), which would introduce potentially 682 

finer material than dunes situated farther from such a source. This comparison illustrates the 683 

importance of site-specific controls in accounting for the degree of inherent emission 684 

variability for a given surface type and indicates their importance for understanding dust fluxes 685 

as quantified from field testing in different locations. Aeolian systems can cover large areas 686 

and their emission potential can vary greatly depending on factors such as dune type, 687 
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mineralogy and age (Bristow & Moller, 2018; Bullard et al., 2011). Dunes rarely produce 688 

distinct point sources visible on satellite imagery (as is the case for this Namib dataset, Figure 689 

2) but have the potential to be contributing sources of dust, albeit at low volumes, due to their 690 

areal extent. The dust emission potential of the Sand Seas of the Namib requires further 691 

investigation. Furthermore, what was classified as a stony system with drainage in this study 692 

probably most closely corresponds with a wash as per SW2011, which SW2011 determined to 693 

be considerably more emissive (SW2011 Wash geometric mean: 0.3915 mg m-2 s-1 vs 694 

geometric mean of stony system with drainage in present study: 0.0102 mg m-2 s-1). An 695 

important difference may well be down to fact that the stony systems with drainage classified 696 

as a landform in the Namib study typically did not feature a supply of sand available for 697 

saltation at the sites we tested, thereby they corresponded to a gravel-covered surface, rather 698 

than an LEM-dominated one (Figure 3). The LEM surface category from this study and the 699 

wash (Landform) from SW2011 were the two most emissive categories and represent a 700 

maximum emission value for the two studies. Despite LEM representing a surface type and 701 

wash a landform type, the upper limit of emission shows good agreement and again illustrates 702 

the importance of landform and surface interpretation. 703 

 704 

Figure 7 Comparison between the present study (red lines) and results from Sweeney et al. 705 
(2011) (blue lines) for the Mojave Desert, USA (both studies tested at u* = 0.56m s-1). Selected 706 
surfaces, landforms and landscape classes from both studies were chosen for comparison. The 707 
stone pavement and dry lakes (pans) show good agreement. Correspondence is shown between 708 
the two studies for the categories with maximum emission values (wash for Sweeney et al., 2011 709 
and LEM surface type for present study). 710 

 711 
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The PI-SWERL measurements also can be used to assess sufficiency of sample size for 712 

different scales of analysis, both for the current study and as a guide for future efforts. Because 713 

our approach aggregates individual measurements with increasing scale of analysis, sample 714 

sizes are reduced (from n=128 for individual PI-SWERL to n=12 for landscape systems, Table 715 

1). This, in turn, affects the confidence intervals for each scale of analysis, with results 716 

indicating that the current sampling effort may be insufficient to resolve significant differences 717 

for some categories at the landform and landscape levels (Figure S4). Similarly, power analyses 718 

demonstrate that larger sample sizes may be needed than the current effort for all scales of 719 

analysis (Figure S5); requisite sample sizes are 60 per surface type, 22 transects per landform, 720 

and 12 landforms per landscape. However, analysis of confidence intervals (which 721 

demonstrates the impact of sample variance and sample size on uncertainty of the mean) are 722 

generally preferred to a post hoc power analysis (Hoening & Heisey, 2001; Goodman & Berlin, 723 

1994). Regardless, the above results indicate that, despite the extensive sampling effort 724 

involved in our study (128 measurements), larger sample sizes may be needed in future work, 725 

particularly at landform and landscape scales due to their large confidence intervals (Figure 726 

S4). 727 

Another potential approach to develop and improve dust-emission schemes with high-728 

resolution/fine-scale PI-SWERL data is to assess the factors that control the erodibility of the 729 

surfaces. This is especially useful for factors that are represented in datasets that are available 730 

globally, such as particle size and moisture data. The BRT analysis highlighted the significant 731 

variables for PM10 dust flux measured with the PI-SWERL at a set friction velocity. The partial 732 

dependency plots additionally highlight information on critical thresholds where dust emission 733 

takes place or ceases on different surfaces (Figure 6). An important consideration for such 734 

analysis is the choice of variables and the method of measurement. For example, the need to 735 

sample moisture close to the surface meant that moisture was determined only as a relative 736 

estimate at our test sites, not a quantified measure throughout the soil column. A more accurate 737 

reflection of the moisture content would have been obtained by a gravimetric determination of 738 

the top 1 cm of the soil surface, which would provide an indication of the soil moisture (%) 739 

and its influence on the erosion threshold (u*t). Furthermore, our approach of sampling soil 740 

moisture in the upper 2 cm of the surface, rather than directly at the surface may have reduced 741 

the performance of the BRT, particularly for samples taken from lake system playas and 742 

sabkhas. When those data points are excluded, a critical moisture threshold of 2% is obtained 743 

for the tested friction velocity of approximately 0.58 m s-1. This moisture content threshold is 744 
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similar to the value of 0.02 g g-1 soil moisture obtained by Munkhtsetseg et al. (2016) above 745 

which they observed that dust emission became significantly depressed.  746 

Of further critical importance here are the environmental conditions at the time of surface 747 

testing. The long-term Landsat record established that the ephemeral lakes are highly emissive 748 

(Figure 2), in accordance with many dust sources (e.g. Gill, 1996; Reynolds et al., 2009; 749 

Bullard et al., 2008; Ginoux et al., 2012), but their emissivity was relatively low during the PI-750 

SWERL testing due to the prevailing elevated humid conditions in proximity to the coast at the 751 

time of PI-SWERL testing, as well as the hygroscopic saline surfaces and periodic shallow 752 

water nature which can create wet playas (Reynolds et al., 2009; Sweeney et al., 2016). This 753 

also raises an important issue regarding dust emission not captured with remote sensing. The 754 

ephemeral  lakes of the Namib are highly emissive during the Bergwind events that coincide 755 

with the overpass of the polar-orbiting satellites (MODIS and Landsat). However, the 756 

conditions are dominated by high relative humidity along the coast which also prevailed at the 757 

time of testing. The effect of such environmental controls is underscored by the fact that during 758 

high relative humidity along the coast, MODIS and Landsat indicate the alluvial flood terraces 759 

remained emissive, whereas the coastal-adjacent ephemeral lakes were non-emissive. As a 760 

result, we could be over-estimating the emissions form these lakes. Relative humidity should 761 

be a standard measurement that has to be recorded at the time of PI-SWERL testing. The BRT 762 

analysis should also be extended by testing at different friction velocities to determine the 763 

threshold at which emission is initiated. Furthermore, by identifying the significant variables, 764 

a set of surface characterisation tests can be developed that should be included when measuring 765 

emission potential. Combining a standard set of surface characterisation tests and dust flux 766 

measurements from different well-known hot spots around the world can be used to 767 

substantially improve dust-emission schemes. 768 

6 Conclusion  769 

This study provides a ground-based assessment of recently proposed dust-emission mapping 770 

schemes that highlights limitations in our ability to represent dust emission potential at large 771 

scales. The novel combination of a high resolution (Landsat-derived), sub-landscape scale 772 

inventory of actively eroding parts of the Namib Desert together with the ground-based 773 

measurement of dust emission rates using PI-SWERL at known point sources allows a 774 

qualitative and quantitative evaluation of two approaches to classify emission potential. Our 775 

findings demonstrate that point measurements of emission, coupled with characterization of  776 
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surface properties (soil moisture, degree of crusting, particle size and elemental composition 777 

as proxy for mineralogy) at the time of testing, can provide valuable information for assessing 778 

and potentially improving larger-scale schemes for predicting dust emission potential. 779 

The combination of a physical and empirical approach such as that used to create the Sediment 780 

Supply Map (SSM) (Parajuli & Zender, 2017) is useful at capturing the relevant factors for 781 

surface erodibility and emission potential based on globally-applicable data sets. The SSM 782 

represents sediment supply on the basis of drainage area (a proxy for hydrology) and surface 783 

reflectance, but in the Namib, alluvial systems, seen here to be areas of potentially high 784 

emission, are mapped by SSM as lying significantly upstream and over a greater extent 785 

compared to the distribution of active dust source points identified via remote sensing. In the 786 

case of emission potential determined from user-defined geomorphic mapping such as that 787 

offered by PDS (Bullard et al., 2011), challenges include determining the inputs and effort 788 

required to apply the scheme across a region, as well as variability of emission within a given 789 

class. Our sub-landform measurements indicate that variability of emission rates remains an 790 

inherent problem for each of the emission classification schemes examined in our study. 791 

However, results such as ours can be used to further parameterize the range of emission fluxes 792 

for land surface classes in dust-cycle models. The current study reveals how PI-SWERL dust-793 

emission measurements provide a relative quantification of landform emissivity which can 794 

provide modelers with the range of emission fluxes for given geomorphic classes in emission 795 

potential mapping schemes. 796 

Use of a Boosted Regression Tree (BRT) model identifies significant surface characteristics 797 

and critical thresholds related to dust emission that can be used to inform dust models. The 798 

BRT analysis for the Namib Desert highlighted the importance of soil moisture content, crust 799 

strength and particle size kurtosis, with critical thresholds for dust emission additionally 800 

dependent on gravel density and the presence of sand and silt. Our approach provides a 801 

framework for obtaining site-specific values in other dust-source regions and may help to 802 

standardize datasets for global dust emission modeling. A standardised set of surface 803 

characterisation tests combined with dust flux measurements would offer regional and global 804 

datasets of relative emission potential and thereby provide utility for developing dust emission 805 

schemes toward improved dust emission modeling. 806 
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