Additional file 2: Figure S2. of Prostate cancer treated with brachytherapy; an exploratory study of dose-dependent biomarkers and quality of life

Top; dose rate (cGy/h) as a function of time since implant for 125I monotherapy plotted using the equation, Dose rate t = m P D ln 2 t 1 2 .2 t t 1 2 $$ Dose\ rate\ (t)= m P D\left(\frac{ \ln 2}{t_{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}}\right){.2}^{\left(\frac{t}{t_{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}}\right)} $$ , where t is the elapsed time, mPD is the minimum peripheral dose (=145 Gy for 125I) and t 1 2 $$ {t}_{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.} $$ is the half-life (=59.43 days for 125I). Bottom; the time required to deliver relative fraction of the prescribed dose, Fractional dose t = 1 − e − t . ln 2 t 1 2 $$ Fractional\ dose(t)=1-{e}^{-\left(\frac{t. \ln 2}{t_{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}}\right)} $$ . Reference: Dale RG. The applications of the linear-quadratic dose effect equation to fractionated and protracted therapy. Br J Radiol 1985; 58: 515–28. (PDF 178 kb)