figshare
Browse

sorry, we can't preview this file

40168_2017_287_MOESM1_ESM.docx (980.66 kB)

Additional file 1: Table S1. of Diurnal cycling of rhizosphere bacterial communities is associated with shifts in carbon metabolism

Download (980.66 kB)
journal contribution
posted on 2017-06-24, 05:00 authored by Christopher Staley, Abigail Ferrieri, Malak Tfaily, Yaya Cui, Rosalie Chu, Ping Wang, Jared Shaw, Charles Ansong, Heather Brewer, Angela Norbeck, Meng Markillie, Fernanda do Amaral, Thalita Tuleski, Tomás Pellizzaro, Beverly Agtuca, Richard Ferrieri, Susannah Tringe, Ljiljana Paša-Tolić, Gary Stacey, Michael Sadowsky
Taxonomic classification of OTUs predominantly associated with tier 3 KO inferred functional annotations that differed between bacterial communities from wild-type Arabidopsis rhizosphere samples harvested in dark (AM) and light (PM) time points (Fig. 5). Functions for which contributing taxa could not be determined are not shown. Table S2. Functional annotations of inferred genes that show significant cycling in abundance in wild-type Arabidopsis rhizosphere communities. Functional categories are arranged by KEGG orthology tiers, with each tier increasing in specificity. Table S3. Alpha diversity indices for Brachypodium distachyon BD21 experiment samples. Figure S1 Distribution of abundant phyla among AM and PM samples in the rhizosphere of wild-type Arabidopsis and fallow soil. Figure S2. Distribution of abundant families among AM and PM samples in the rhizosphere of wild-type Arabidopsis and fallow soil. Figure S3. Principal coordinate analysis of Bray-Curtis dissimilarities among AM and PM bacterial communities characterized by 16S rRNA sequencing in A) the rhizosphere of Arabidopsis (r 2 = 0.689) and B) fallow soil (r 2 = 0.876). Points represent individual samples. Figure S4. PCA plot of the relative abundance of the different organic compounds identified in each sample by water extraction (A) and van Krevelen diagram of elemental H/C (hydrogen-to-carbon) vs O/C (oxygen-to-carbon) ratios of the organic compounds extracted from the loading plot of the PCA plot (B). Figure S5. 3D PCA plot of the relative abundance of the different compounds extracted by MeOH (A) and van Krevelen diagram of elemental H/C (hydrogen-to-carbon) vs O/C (oxygen-to-carbon) ratios of the organic compounds extracted from the loading plot of the PCA plot (B)). Figure S6. Distributions of phyla in (A) Arabidopsis OX34 mutant rhizosphere and (B) fallow soil samples, omitting less abundant phyla. Percent abundances are cumulative. Sequence data from later time points for soil could not be obtained, and less abundant taxa are not shown. Figure S7. Family-level classification of OTUs that differed significantly among Arabidopsis rhizosphere genotypes and soil groups by Kruskal-Wallis test (P < 0.05). Figure S8. Inferred carbohydrate metabolism genes that showed significant cycling (P < 0.05) in abundance among wild-type Arabidopsis rhizosphere bacterial communities by the JTK algorithm. Figure S9. Distribution of phyla among samples from (A) the Brachypodium rhizosphere and (B) fallow soil. Forty-one less abundant phyla are not shown. Figure S10. Family-level classification of OTUs that differed significantly among light and dark periods by Kruskal-Wallis test (P < 0.05) in the Brachypodium rhizosphere. (DOCX 980 kb).

Funding

U.S. Department of Energy

History

Usage metrics

    Microbiome

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC