Supporting Information

Adaptation to Shape Switching by Component Selection in a Constitutional Dynamic System

Sébastien Ulrich and Jean-Marie Lehn*

Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, 67083 Strasbourg (France), Fax: (+33) 390-245-140.

E-mail: lehn@isis.u-strasbg.fr

I. STRUCTURAL FEATURES AND SHAPE SWITCHING OF THE MORPHOLOGICAL SWITCHES. 2

II.	CHARACTERIZATIONS OF THE IMINE MACROCYCLES.	4
III. PR(COMPONENT SELECTION IN COVALENT DYNAMIC SELF-ASSEMBLY DCESSES OF M.1.	24
IV.	DIAMINE-DEPENDENT SELECTION OF METAL IONS.	30
V. ION	CONSTITUTIONAL CO-EVOLUTION IN RESPONSE TO RECIPROCAL METAL	34
VI.	CONSTITUTIONAL ADAPTATION IN RESPONSE TO SHAPE CHANGES.	34

I. Structural features and shape switching of the morphological switches.

¹H NMR titration of ligand **1** by mercury triflate in CDCl₃/CD₃CN: 6/4. From bottom to top: addition of 0.0, 0.3, 0.5, 0.7, 0.9 and 1.0 equivalent of metal ion. Thermodynamic equilibrium was reached within the time needed to record the NMR spectra after addition of the metal salt containing solution, i.e. a few tens of seconds. The intermediate spectra show that the equilibria between all species are comparable to the NMR time-scale.

2D NMR analyses of Hg.1:

 $(OTf)_2$

COSY (CDCl₃*/CD₃CN: 51/49):

ROESY (CDCl₃*/CD₃CN: 51/49):

II. Characterizations of the imine macrocycles.

MALDI-TOF (THAP) of Zn.1.N2C2:

MALDI-TOF (dithranol) of Hg.1.N₂C₃:

2D NMR analyses of Hg.1.N₂C₄:

 $(OTf)_2$

COSY (CDCl₃*/CD₃CN: 52/48):

ROESY (CDCl₃*/CD₃CN: 52/48):

Solid state structure of Hg.1.N₂C₄:

2D NMR analyses of Hg.1.N₂C₅:

 $(OTf)_2$

COSY (CDCl₃*/CD₃CN: 52/48):

ROESY (CDCl₃*/CD₃CN: 52/48):

MALDI-TOF (dithranol) of Hg.1.N₂C₅:

Calculated for $[C_{35}H_{32}F_9N_{12}O_9Pb_2S_3]^+$ 1447.097, found 1447.019.

MALDI-TOF (dithranol) of Pb.1.N₂C₃:

MALDI-TOF (dithranol) of Pb.1.N2C4:

MALDI-TOF (dithranol) of Pb.1.N₂C₅:

MALDI-TOF (dithranol) of Pb.1.N₂O:

 $\frac{\text{2D NMR analyses of } \text{Hg.1.N}_2\text{O:}}{\text{COSY (CDCl}_3^*/\text{CD}_3\text{CN: } 52/48):}$

ROESY (CDCl₃*/CD₃CN: 52/48):

2D NMR analyses of Pb.1.N₂NH:

 $(OTf)_2$

COSY (CDCl₃*/CD₃CN: 56/44):

ROESY (CDCl₃*/CD₃CN: 56/44):

MALDI-TOF (dithranol) of Zn.1.N₂NH:

III. Component selection in covalent dynamic self-assembly processes of M.1.

¹H NMR spectra showing the selection operated by **Zn.1** between N_2C_3 and N_2C_5 , in CDCl₃/CD₃CN: 6/4 at 5 mM concentration. Bottom: competition experiment between N_2C_3 and N_2C_5 , spectrum recorded after 3 days at 65°C ; middle: macrocycle **Zn.1.N**₂C₃ ; top: macrocycle **Zn.1.N**₂C₅.

¹H NMR spectra showing the selection operated by **Zn.1** between N_2C_2 and N_2C_5 , in CDCl₃/CD₃CN: 6/4 at 5 mM concentration. Bottom: competition experiment between N_2C_2 and N_2C_5 , spectrum recorded after 1 day at 50°C ; middle: macrocycle **Zn.1.N₂C₂** ; top: macrocycle **Zn.1.N₂C₅**.

Selection experiment operated by **Zn.1** between N_2C_2 and N_2C_4 :

¹H NMR spectra showing the selection operated by **Zn.1** between N_2C_2 and N_2C_4 , in CDCl₃/CD₃CN: 6/4 at 5 mM concentration. Bottom: competition experiment between N_2C_2 and N_2C_4 , spectrum recorded after 6 days at 60°C ; middle: macrocycle **Zn.1.N**₂C₄ ; top: macrocycle **Zn.1.N**₂C₂.

Selection experiment operated by Zn.1 between N_2C_3 and N_2C_4 :

¹H NMR spectra showing the selection operated by **Zn.1** between N_2C_3 and N_2C_4 , in CDCl₃/CD₃CN: 6/4 at 5 mM concentration. Bottom: competition experiment between N_2C_3 and N_2C_4 , spectrum recorded after 6 days at 60°C ; middle: macrocycle **Zn.1.N₂C₃** ; top: macrocycle **Zn.1.N₂C₄**.

¹H NMR spectra showing the selection operated by **Hg.1** between N_2C_3 and N_2C_5 , in CDCl₃/CD₃CN: 6/4 at 5 mM concentration. Bottom: competition experiment between N_2C_3 and N_2C_5 , spectrum recorded after 1 day at 60°C ; middle: macrocycle **Hg.1.N₂C₃** ; top: macrocycle **Hg.1.N₂C₅**. The spectrum of the competition experiment contains also peaks due to unidentified species.

 $CDCl_3/CD_3CN$: 6/4 at 5 mM concentration. Bottom: competition experiment between N₂C₄

and $N_2C_5,$ spectrum recorded after 4 days at $65^\circ C$; middle: macrocycle $Pb.1.N_2C_5$; top: macrocycle $Pb.1.N_2C_4.$

<u>NMR titration of Pb.1.N₂C₅ by N₂O showing that constitutional rearrangement occurs</u> <u>leading to the formation of the most stable metallo-macrocycle Pb.1.N₂O through</u> <u>transimination:</u>

¹H NMR spectra showing the conversion, by transimination, from Pb.1.N₂C₅ to Pb.1.N₂O upon addition of N₂O in CDCl₃/CD₃CN: 6/4 at 5 mM concentration and room temperature. From bottom to top: Pb.1.N₂C₅, after addition of 1.0 equivalent of N₂O, then after 2.5, 8.5, 21.75, 32.25 hours, spectrum recorded at -50°C.

NMR titration of Pb.1.N2O by DMAP showing an interaction in the solution state:

¹H NMR titration of **Pb.1.N₂O** by DMAP in CDCl₃/CD₃CN: 6/4 at 5 mM concentration and room temperature. From bottom to top: 0.0, 0.6, 1.0, 1.4, 2.0 equivalent of DMAP.

NMR titration of **Pb.1.N₂O** by imidazole showing an interaction in the solution state:

¹H NMR titration of **Pb.1.N₂O** by imidazole in CDCl₃/CD₃CN: 6/4 at 5 mM concentration and room temperature. From bottom to top: 0.0, 0.6, 1.0, 1.4, 2.0 equivalent of imidazole.

Selection experiment operated by Pb.1 between N_2C_5 and N_2NH :

¹H NMR spectra showing the selection operated by **Pb.1** between N_2NH and N_2C_5 , in CDCl₃/CD₃CN: 6/4 at 5 mM concentration. Bottom: competition experiment between N_2NH and N_2C_5 , spectrum recorded after 1 day at room temperature ; middle: macrocycle **Pb.1**. N_2NH ; top: macrocycle **Pb.1**. N_2C_5 .

Even if the imine region (ca. 9.0 ppm) strongly suggests that selection of N_2NH has occurred, the other peaks do not perfectly fit with those of **Pb.1.N**₂**NH**. This is again explained by an intermolecular interaction between the metallo-macrocycle and the remaining diamine. Indeed, addition of N_2C_5 to **Pb.1.N**₂**NH** induces immediate changes of the chemical shifts, which eventually reach those displayed in the competition experiment (see below). On the other hand, addition of N_2NH onto **Pb.1.N**₂C₅ induces, by a transimination reaction which requires hours to reach completion, the formation of the more stable macrocycle **Pb.1.N**₂**NH** (see below).

Titration of Pb.1.N₂NH by N₂C₅:

¹H NMR titration of **Pb.1.N₂NH** by N_2C_5 in CDCl₃/CD₃CN: 6/4 at 5 mM concentration. From bottom to top: 0.0, 0.3, 0.5, 0.7 and 1.0 equivalent of N_2C_5 . Thermodynamic equilibrium was reached within the time needed to record the NMR spectrum after addition of the diamine, i.e. a few tens of seconds.

<u>NMR titration of Pb.1.N₂C₅ by N₂NH showing that constitutional rearrangement occurs</u> leading to the formation of the most stable metallo-macrocycle Pb.1.N₂NH through transimination:

¹H NMR spectra showing the conversion, by transimination, from Pb.1.N₂C₅ to Pb.1.N₂NH upon addition of N₂NH in CDCl₃/CD₃CN: 6/4 at 5 mM concentration and room temperature. From bottom to top: 0.0, 0.3, 0.5, 0.7, 1.0 equivalent of N₂NH, then after 3, 19, 27, 51 hours.

Competition experiment operated by **Zn.1** between N_2C_5 and N_2NH :

¹H NMR spectra showing the selection operated by **Zn.1** between N_2C_5 and N_2NH , in CDCl₃/CD₃CN: 6/4 at 5 mM concentration. Bottom: competition experiment between N_2C_5 and N_2NH , spectrum recorded after 2 days at 60°C ; middle: macrocycle **Zn.1.N₂NH** ; top: macrocycle **Zn.1.N₂C**₅.

IV. Diamine-dependent selection of metal ions.

 $CDCl_3/CD_3CN$: 6/4 at 5 mM concentration. Bottom: competition experiment between $Zn(OTf)_2$ and $Hg(OTf)_2$, spectrum recorded after 1 day at 60°C; middle: **Hg.1**; top: **Zn.1**.

Competition experiment between $Pb(OTf)_2$ and $Hg(OTf)_2$ on the complex formation from <u>1</u>:

 $CDCl_3/CD_3CN$: 6/4 at 5 mM concentration. Bottom: competition experiment between Pb(OTf)₂ and Hg(OTf)₂, spectrum recorded after 1 day at 60°C ; middle: **Hg.1** ; top: **Pb.1**.

<u>Competition experiment between $Zn(OTf)_2$ and $Pb(OTf)_2$ on the macrocycle formation</u> from an equimolar mixture of 1 and N_2C_5 :

CDCl₃/CD₃CN: 6/4, 5 mM concentration. Bottom: competition experiment between Zn(OTf)₂ and Pb(OTf)₂ with an equimolar mixture of **1** and **N₂C₅**, spectrum recorded after a few hours at room temperature ; middle: **Pb.1.N₂C₅** ; top: **Zn.1.N₂C₅**.

Competition experiment between $Zn(OTf)_2$ and $Pb(OTf)_2$ on the macrocycle formation from an equimolar mixture of 1 and N_2O :

 $CDCl_3/CD_3CN: 6/4, 5 \text{ mM}$ concentration. Bottom: competition experiment between $Zn(OTf)_2$ and $Pb(OTf)_2$ with an equimolar mixture of 1 and N_2O , spectrum recorded after 1 day at room temperature ; middle: Pb.1.N₂O ; top: Zn.1.N₂O.

<u>Competition experiment between $Zn(OTf)_2$ and $Pb(OTf)_2$ on the macrocycle formation</u> from an equimolar mixture of 1 and N_2C_2 :

 $CDCl_3/CD_3CN$: 6/4, 5 mM concentration. Bottom: competition experiment between $Zn(OTf)_2$ and Pb(OTf)₂ with an equimolar mixture of **1** and N_2C_2 , spectrum recorded after 2

days at 65°C ; top: $Zn.1.N_2C_2$. Note that the [1+1] macrocycle Pb.1.N₂C₂ does not form under those conditions (see text).

Competition experiment between $Zn(OTf)_2$ and $Pb(OTf)_2$ on the macrocycle formation from an equimolar mixture of 1 and N_2C_4 :

 $CDCl_3/CD_3CN$: 6/4, 5 mM concentration. Bottom: competition experiment between $Zn(OTf)_2$ and $Pb(OTf)_2$ with an equimolar mixture of 1 and N_2C_4 , spectrum recorded after 2 days at 65°C; middle: $Zn.1.N_2C_4$; top: Pb.1. N_2C_4 .

<u>Competition experiment between $Zn(OTf)_2$ and $Hg(OTf)_2$ on the macrocycle formation</u> from an equimolar mixture of 1 and N_2C_2 :

 $CDCl_3/CD_3CN$: 6/4, 5 mM concentration. Bottom: competition experiment between $Zn(OTf)_2$ and $Hg(OTf)_2$ with an equimolar mixture of 1 and N_2C_2 , spectrum recorded after 1 day at 60°C; middle: **Zn.1.N₂C₂**; top: equimolar mixture of $Hg(OTf)_2$, 1 and N_2C_2 .

<u>Competition experiment between $Zn(OTf)_2$ and $Hg(OTf)_2$ on the macrocycle formation</u> from an equimolar mixture of 1 and N_2C_3 :

 $CDCl_3/CD_3CN: 6/4, 5 mM$ concentration. Bottom: competition experiment between $Zn(OTf)_2$ and $Hg(OTf)_2$ with an equimolar mixture of 1 and N_2C_3 , spectrum recorded after 2 days at 60°C; middle: $Zn.1.N_2C_3$; top: $Hg.1.N_2C_3$.

<u>Competition experiment between $Zn(OTf)_2$ and $Hg(OTf)_2$ on the macrocycle formation</u> from an equimolar mixture of 1 and N_2C_4 :

 $CDCl_3/CD_3CN$: 6/4, 5 mM concentration. Bottom: competition experiment between $Zn(OTf)_2$ and $Hg(OTf)_2$ with an equimolar mixture of 1 and N_2C_4 , spectrum recorded after 2 days at 60°C ; middle: Hg.1.N₂C₄ ; top: Zn.1.N₂C₄.

<u>Competition experiment between $Zn(OTf)_2$ and $Hg(OTf)_2$ on the macrocycle formation</u> from an equimolar mixture of 1 and N_2C_5 :

 $CDCl_3/CD_3CN$: 6/4, 5 mM concentration. Bottom: competition experiment between $Zn(OTf)_2$ and $Hg(OTf)_2$ with an equimolar mixture of 1 and N_2C_5 , spectrum recorded after 2 days at 60°C ; middle: Hg.1.N₂C₅ ; top: Zn.1.N₂C₅.

<u>Competition experiment between $Pb(OTf)_2$ and $Hg(OTf)_2$ on the macrocycle formation</u> from an equimolar mixture of 1 and N_2C_4 :

 $CDCl_3/CD_3CN: 6/4, 5 mM$ concentration. Bottom: competition experiment between $Pb(OTf)_2$ and $Hg(OTf)_2$ with an equimolar mixture of 1 and N_2C_4 , spectrum recorded after 2 days at 60°C; middle: $Hg.1.N_2C_4$; top: $Pb.1.N_2C_4$.

Competition experiment between $Pb(OTf)_2$ and $Hg(OTf)_2$ on the macrocycle formation from an equimolar mixture of 1 and N_2C_5 :

 $CDCl_3/CD_3CN: 6/4, 5 \text{ mM}$ concentration. Bottom: competition experiment between $Pb(OTf)_2$ and $Hg(OTf)_2$ with an equimolar mixture of 1 and N_2C_5 , spectrum recorded after 2 days at 60°C; middle: $Hg.1.N_2C_5$; top: $Pb.1.N_2C_5$.

Competition experiment between $Pb(OTf)_2$ and $Hg(OTf)_2$ on the macrocycle formation from an equimolar mixture of 1 and N_2O :

 $Pb(OTf)_2$ and $Hg(OTf)_2$ with an equimolar mixture of **1** and N_2O , spectrum recorded after 2 days at 60°C; middle: **Hg.1.N₂O**; top: **Pb.1.N₂O**.

V. Constitutional co-evolution in response to reciprocal metal ion/diamine effects.

Constitutional evolution of an equimolar mixture of 1, zinc triflate and mercury triflate upon sequential addition of N_2C_5 and N_2C_2 :

¹H NMR spectra showing the co-evolution of an equimolar mixture of 1, zinc triflate, mercury triflate upon sequential addition of N_2C_5 and N_2C_2 , in CDCl₃/CD₃CN: 6/4 at 5 mM. From bottom to top: equimolar mixture of 1, zinc triflate and mercury triflate after addition of one equivalent of N_2C_5 , after further addition of one equivalent of N_2C_2 (spectrum recorded after 3 days at 60°C); Hg.1.N₂C₅; Zn.1.N₂C₅; Zn.1.N₂C₂.

VI. Constitutional adaptation in response to shape changes.

Selection between N_2O and N_2C_5 upon addition of 1:

Selection between N_2O and N_2C_5 upon addition of 1 (400 MHz ¹H NMR spectra in CDCl₃/CD₃CN 6/4). Bottom: equimolar mixture of N_2O and N_2C_5 ; top: after addition of 1 equivalent of 1. The peaks belonging to N_2O are marked with a circle and the peak belonging to N_2C_5 is marked with a star.

<u>NMR</u> spectra showing the non-selective solution state consisting in the mixture of 1, N_2O and N_2C_5 in CDCl₃:

¹H NMR spectra showing the non-selective solution state consisting in the mixture of 1, N_2O and N_2C_5 in CDCl₃. Bottom: equimolar mixture of 1, N_2O and N_2C_5 ; middle: self-assembly between 1 and N_2C_5 ; top: macrocycle $1_2.(N_2O)_2$. The peaks belonging to the free N_2O are marked with a circle and the peak belonging to the free N_2C_5 is marked with a star.

MALDI-TOF (dithranol) of the equimolar mixture of 1, N₂C₅ and N₂O:

Constitutional evolution from an equimolar mixture of 1, 2 and N₂O:

¹H NMR spectra showing the selective self-assembly process resulting from an equimolar mixture of **1**, **2** and **N**₂**O** in CDCl₃/CD₃CN: 6/4 at 5 mM concentration. From bottom to top: mixture after 2 days at room temperature ; Macrocycle **2**₂.(**N**₂**O**)₂ ; **1** ; **2**.

Constitutional evolution from an equimolar mixture of 1, 2, N₂C₅ and Pb(OTf)₂:

bottom to top: mixture after 1 day at room temperature ; **Pb.1.N₂C₅** ; **2**.

¹H NMR titration of an equimolar mixture of **1** and **2**, by Pb(OTf)₂:

equivalent of lead triflate ; 1 ; Pb.1 ; 2 ; Pb.2₂ ; Pb.2.

Analysis of an equimolar mixture of 1 and 2 after sequential addition of NC_8 and lead triflate:

¹H NMR spectra of an equimolar mixture of **1** and **2** after sequential addition of NC₈ and lead triflate in CDCl₃/CD₃CN: 6/4 at 5 mM concentration. From bottom to top: equimolar mixture of **1** and **2** after addition of 2.0 eq. of NC₈, after further addition of 1.0 eq. of lead triflate ; **1** ; **1**.(NC₈)₂ ; **2** ; **2**.(NC₈)₂ ; **Pb.1**.(NC₈)₂.

Discussion on the studies of the constitutional adaptation by using zinc triflate:

A selective self-assembled state was also achieved after addition of zinc triflate to the mixture of 1, 2 and N_2C_5 but it required in all cases the addition of 2.0 equivalent of zinc triflate (see below).

Representative illustration of an adaptation process induced by molecular shape change and correlated self-assembly through imine bond in the case where "M"=Zn(II).

Noteworthy, in the case of the diamine N_2O , a more complex mixture was obtained indicating once again that the zinc(II) ion can not well accommodate the additional oxygen atom.

Complexation of a mixture of ligands 1 and 2 by zinc triflate reveals the sequential formation of each complex. $Zn.2_2$ is formed at 0.5 equivalent of zinc while ligand 1 stay free. Further addition of 0.5 equivalent induces the partial formation of Zn.1. Zn.1 is then formed quantitatively after addition of an other 0.5 equivalent of zinc triflate, i.e. at 1.5 equivalent of metal ion. Further addition of 0.5 equivalent then yields the complexes Zn.1 and Zn.2.

¹H NMR titration of an equimolar mixture of **1** and **2** by zinc triflate in CDCl₃/CD₃CN: 6/4 at 5 mM concentration. From bottom to top: 0.0, 0.3, 0.5, 0.7, 1.0, 1.3, 1.5, 2.0 equivalent of zinc triflate, then **1**, **Zn.1**, **2**, **Zn.2**.

The titration therefore shows a strong preference for the formation of $\mathbf{Zn.2}_2$ which is in agreement with the binding constants of complexation previously reported.¹ Such behaviour then explains why 2.0 equivalent are needed in the case of zinc triflate whereas only one equivalent of lead triflate is able induce the adaptation process in response to shape change. At one equivalent of zinc triflate there is only partial formation of **Zn.1**. As observed, addition of a diamine then induces only the partial formation of the corresponding metallo-macrocycle. Whereas in the case of lead triflate the formation of the macrocyclic species shifts all equilibria towards the formation of this product in a amplificating process, such behaviour is not possible in the case of zinc triflate due to the high stability of **Zn.2**. The free energy of macrocycle formation through imine self-assembly is not sufficient to break that strong complex. That is why additional zinc triflate is needed, the selective self-assembly being then a linear process since the complex **Zn.1** must be already quantitatively present before the addition of the diamine.

Furthermore, addition of hexacyclen to sequestrate the zinc cation induces the whole system to go back to its original constitution characteristic of the metal-free states.

<u>Constitutional evolution from an equimolar mixture of 1, 2, N_2C_5 with 2.0 equivalents of $Zn(OTf)_2$:</u>

¹H NMR spectra showing the selective self-assembly process resulting from an equimolar mixture of 1, 2, N_2C_5 after addition of 2.0 equivalents of zinc triflate in CDCl₃/CD₃CN: 6/4 at 5 mM concentration. From bottom to top: mixture after 1 day at 60°C; **Zn.1.N₂C₅**; **Zn.2**.

Noteworthy, there are some peaks in the mixture which belong to neither $Zn.1.N_2C_5$ nor **Zn.2**. These peaks belong to an intermolecular non-covalent association between $Zn.1.N_2C_5$ and **Zn.2**. That was proved by MALDI-TOF mass spectrometry (see below) and by ¹H NMR spectrometry on the mixing of **Zn.1**. N_2C_5 and **Zn.2** which immediately after the mixing showed these peaks.

<u>MALDI-TOF of the equimolar mixture of 1, 2, N_2C_5 after addition of 2.0 equivalents of zinc triflate:</u>

Since this behaviour is not observed in the case of the system containing the diamine N_2C_4 , it again reflects the fact that $Zn.1.N_2C_5$ has a higher energy than $Zn.1.N_2C_4$ due to the presence of the longer diamine.

(1) Ulrich, S.; Buhler, E.; Lehn, J.-M. *New J. Chem.* **2009**, Accepted for publication.