Supporting Information

Acylguanidines as Bioisosteres of Guanidines: $N^{\mathbf{G}}$-Acylated Imidazolylpropylguanidines, a New Class of Histamine $\mathbf{H}_{\mathbf{2}}$ Receptor Agonists
Prasanta Ghorai, ${ }^{\dagger}$ Anja Kraus, ${ }^{\dagger}$ Max Keller, ${ }^{\dagger}$ Carsten Götte, ${ }^{\dagger}$ Patrick Igel, ${ }^{\dagger}$ Erich Schneider, ${ }^{\dagger}$ David Schnell, ${ }^{\neq}$Günther Bernhardt, ${ }^{\dagger}$ Stefan Dove, ${ }^{\dagger}$ Manfred Zabel, ${ }^{,}$Sigurd Elz, ${ }^{\dagger}$ Roland Seifert, ${ }^{\dagger}$ Armin Buschauer ${ }^{\dagger}$ *
${ }^{\dagger}$ Pharmaceutical/Medicinal Chemistry, ${ }^{\dagger}$ Pharmacology and Toxicology, ${ }^{8}$ Center for Chemical Analysis, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053
Regensburg, Germany
Contents Pages

1. Experimental details for the building blocks and intermediates 10, 12, 13, S2-S9
19-21, 24a-d, 25a-d, 29, 26a-d, 30, 27a-d, 31, 32a,b, 33a,b, 34a,b, 35a,b, 37a,b,39a,b, 40a,b, 42a-c, 43a-c, 44, 45
2. Experimental details for the trityl-protected intermediates 47a-52a, 55a-59a, 61a-77a S9-S13
3. Experimental details for the acylguanidines 47-52, 55, 57-62, 65-77 S14-S19
4. HPLC data for the acylguanidines 46-77 and tracings of key target compounds S20 - S34
5. Pharmacological methods S35-S38
6. References S38 - S40
7. Experimental details for the building blocks and intermediates $10,12,13,19-21,24 a-d, 25 a-d$, 29, 26a-d, 30, 27a-d, 31, 32a,b, 33a,b, 34a,b, 35a,b, 37a,b, 39a,b, 40a,b, 42a-c, 43a-c, 44, and 45

3-[1-(Triphenylmethyl)-1H-imidazol-4-yl]propanol (10). This compound was synthesized starting from urocanic acid according to the method published ${ }^{1}$.

3-Phenylbutan-1-ol (12). ${ }^{2}$ To a suspension of LiAlH_{4} (15 mmol) in 50 mL abs. THF was slowly added a solution of 3-phenylbutyric acid (12.2 mmol) in abs. THF and stirred for 2 h . After cooling of the flask (ice bath), water was added cautiously to decompose excess hydride. Then 20 mL of 10% $\mathrm{H}_{2} \mathrm{SO}_{4}$ was added and a clear solution resulted. The solution was extracted three times with CHCl_{3}, washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed in vacuo. The residue was purified by flash column chromatography. Yield 45%; colorless oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.23(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{Ph}), 3.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right), 1.85\left(\mathrm{q}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}, J=13.8 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHCH}_{2}\right)$, $1.27\left(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; MS (PI-EIMS), $m / z: 150\left([\mathrm{M}]^{+}\right), 105\left(\left[\mathrm{PhCHCH}_{3}\right]^{+}\right), 91\left(\left[\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}\right)$; $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}$ (150.2).
N, N '-Bis(benzyloxycarbonyl)guanidine (13) and N, N '-bis(benzyloxycarbonyl)- N "-trifluoromethanesulfonylguanidine (21). These compounds were synthesized according to the method published. ${ }^{3}$

N -Trityl-2-(1-trityl-1H-imidazol-4-yl)ethanamine (19). ${ }^{4}$ To a solution of histamine dihydrochloride (20 mmol) and $\mathrm{Et}_{3} \mathrm{~N}\left(80 \mathrm{mmol}\right.$) in $50 \mathrm{mLCHCl}{ }_{3}$ was added dropwise a solution of trityl chloride (50 mmol) in 50 mL CHCl 3 under external cooling with ice. The mixture was allowed to warm up at ambient temperature and stirred for 20 h . The solvent was evaporated under reduced pressure, and the solid residue was suspended in 100 mL of water. After stirring for 1 h , the product was extracted with $\mathrm{CHCl}_{3}(2 \times 100 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Yield 62%; colorless crystalline solid; mp 202-203 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.42-7.30(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ph}-\mathrm{H}$ and $\mathrm{Im}-2-\mathrm{H}$), 7.31-7.08 (m, $24 \mathrm{H}, \mathrm{Ph}-H), 6.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-H), 2.73\left(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Im}-\mathrm{CH}_{2}\right), 2.40\left(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{2}\right)$; ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 44 \mathrm{OAc}\right), m / z: 596\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{43} \mathrm{H}_{37} \mathrm{~N}_{3}(595.8)$.

2-(1-Trityl-1 H -imidazol-4-yl)ethanamine (20). ${ }^{4}$ To a solution of $\mathbf{1 9}$ (0.017 mol) in $47.5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}, 2.5 \mathrm{~mL}$ of TFA was added drop by drop. After stirring for 10 min at the same temperature, the mixture was allowed to warm to rt and was stirred for additional 45 min . After removing the solvent, the residue was neutralised with saturated sodium bicarbonate solution and then extracted with CHCl_{3} ($4 \times 50 \mathrm{~mL}$), washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removing the solvent, the residue was chromatographed with $\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{TEA}(94: 5: 1)$ on silica. Yield 68%; yellowish sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: $7.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-2-\mathrm{CH}), 7.35-7.28(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.18-7.10(\mathrm{~m}$, $6 \mathrm{H}, \mathrm{Ph}-H), 6.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-\mathrm{CH}), 2.97\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{2}\right.$), $2.70(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Im}-4-$ CH_{2}), 1.78 (s br., $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{2}$); ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 44 \mathrm{OAc}\right), m / z: 354\left(\mathrm{MH}^{+}\right), 243$ $\left(\left[\mathrm{Ph}_{3} \mathrm{C}\right]^{+}\right) ; \mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{3}$ (353.5).

General procedure for the synthesis of ketones 24a-d

A 250 mL three-necked flask fitted with a magnetic pellet was connected to a sidearm dumper that contained of the pertinent benzonitrile (ArCN) (23 mmol), to a pressure equalizing addition funnel, and to the Schlenk line by a vacuum adapter. The apparatus was purged with N_{2} for 30 min , and then 23 mmol of the appropriate heteroarylbromide (ArBr) and 100 mL of $\mathrm{Et}_{2} \mathrm{O}$ were added sequentially by syringe to the flask via the addition funnel. Then, 14 mL of 1.6 M solution (23 mmol) of ${ }^{\mathrm{n}} \mathrm{BuLi}$ in hexane and 20 mL of $\mathrm{Et}_{2} \mathrm{O}$ were transferred to the addition funnel. The flask was cooled to $-78{ }^{\circ} \mathrm{C}$, and the ${ }^{n} \mathrm{BuLi}$ solution was added dropwise to the ethereal ArBr solution. After complete addition, the resulting red solution of 2-lithioaren was stirred for 20 min , and then ArCN was added in several portions over 5 min . The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , the cold bath was removed, and the mixture was allowed to warm to room temperature with stirring over night. The resulting red-
violet slurry was poured into 100 mL of cold $\left(0^{\circ} \mathrm{C}\right) 3 \mathrm{M} \mathrm{HCl}$. After the mixture had been stirred for 20 min , the organic and aqueous fractions were separated, 3 M NaOH was added to the aqueous fraction until the mixture was slightly basic to litmus, and the aqueous fraction was extracted with ether (3×100 $\mathrm{mL})$. The combined organic fractions were dried over MgSO_{4} and filtered, and solvent was removed by rotatory evaporation to leave dark orange oil. The residue was purified by flash column chromatography.

Phenyl(pyridin-2-yl)methanone (24a). Synthesized from 2-bromopyridine and benzonitrile. Yield 77%; colorless crystalline solid; mp $42{ }^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.^{5} 42{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.73(\mathrm{~m}, 1 \mathrm{H}$, Pyr-$6-H$), 8.05 (m, 3H, Pyr- H \& Ph- H), 7.90 (m, 1H, Pyr- H), 7.59 (m, 1H, Pyr- H), 7.48 (m, 3H, Ph- H); EIMS, m / z (rel. intensity, \%): $183\left(\mathrm{M}^{+}, 63\right), 105$ ([M - Pyr] $\left.]^{+}, 100\right), 78$ ([Pyr] $]^{+}, 18$), 77 ([Ph] ${ }^{+}, 84$); $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}$ (183.2).

4-Fluorophenyl(pyridin-2-yl)methanone (24b). ${ }^{6}$ Synthesized from 2-bromopyridine and 4-fluorobenzonitrile. Yield 69%; colorless crystalline solid; mp $68-69{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.73(\mathrm{~m}$, 1H, Pyr-6-H), 8.21-8.11 (m, 2H, Ar-H), 8.06 (m, 1H, Pyr-H), 7.93 (m, 1H, Pyr-H), 7.50 (ddd, 1H, $J=$ $1.4 \mathrm{~Hz}, J=4.7 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}$, Pyr- H), $7.22-7.12$ (m, 2H, Ar- H); EI-MS, m / z (rel. intensity, \%): 201 $\left(\mathrm{M}^{+}, 40\right), 173\left([\mathrm{M}-\mathrm{CO}]^{+}, 79\right), 123\left([\mathrm{M}-\mathrm{Pyr}]^{+}, 100\right), 95\left([\mathrm{M}-\mathrm{Pyr}-\mathrm{CO}]^{+}, 63\right) ; \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{FNO}$ (201.2).

Phenyl(thiazol-2-yl)methanone (24c). Synthesized from 2-bromothiazole and benzonitrile. Yield 86 \%; colorless crystalline solid; $\mathrm{mp} 35-37{ }^{\circ} \mathrm{C}\left(\mathrm{Lit}^{7}{ }^{7} 44-46{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.50-8.45(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ph}-H), 8.10(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$, Thiaz-4-H), $7.72(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$, Thiaz-5-H), 7.68-7.6 (m, 1H, Ph- H), 7.57-7.49 (m, 2H, Ph- H); EI-MS, m / z (rel. intensity, \%): 189 ($\mathrm{M}^{+}, 41$), 161 ([M - CO] ${ }^{+}, 54$), 105 ([M - Thiaz] ${ }^{+}, 100$), 77 ([M - Thiaz-CO] ${ }^{+}, 77$); $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{NOS}$ (189.2).

3,4-Difluorophenyl(thiazol-2-yl)methanone (24d). Synthesized from 2-bromothiazole and 3,4difluorobenzonitrile. Yield 87%; colorless crystalline solid; mp $59-60{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: 8.09 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$, Thiaz-4-H), $7.75(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$, Thiaz-5-H), $7.30(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-H$), EI-MS, m / z (rel. intensity, \%): $225\left(\mathrm{M}^{+}, 44\right), 197\left(\left[\mathrm{M}-\mathrm{CO}^{+}, 40\right), 141\right.$ ([M - Thiaz] $\left.{ }^{+}, 100\right), 113$ ([M - Thiaz$\left.\mathrm{CO}{ }^{+}, 59\right), 58$ (15); $\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{~F}_{2} \mathrm{NOS}$ (225.2).

General procedure for the synthesis of the ethyl propenoates 25a-d, 29

To a stirred suspension of sodium hydride ($0.74 \mathrm{~g}, 18.5 \mathrm{mmol}$ as 60% dispersion in oil) in 20 mL of dry THF, triethyl phosphonoacetate ($3.95 \mathrm{~g}, 17.4 \mathrm{mmol}$) under nitrogen atmosphere was added at a rate such that the reaction temperature was maintained at $30-35{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 1 h and the solution of the pertinent ketone (18 mmol) in 40 mL of THF was added dropwise over 30 min . The mixture was refluxed for $16-24 \mathrm{~h}$ and poured into ice water, extracted with diethyl ether, washed with water, dried and concentrated to give a mixture of E and Z isomeric ethyl esters, as an oil. The residue was separated by flash column chromatography.
(E/Z)-Ethyl 3-phenyl-3-(pyridin-2-yl)propenoate (25a). ${ }^{8}$ Synthesized from phenyl(pyridin-2yl)methanone (24a). Yield 72%; colorless oil; EI-MS, m / z (rel. intensity, \%): $252\left(\mathrm{M}^{+}, 96\right.$), 224 ([M $\left.\mathrm{Et}]^{+}, 90\right), 208\left([\mathrm{M}-\mathrm{OEt}]^{+}, 35\right), 180\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Et}\right]^{+}, 100\right), 167\left([\mathrm{M}-\mathrm{CHCOOEt}]^{+}, 9\right) ; \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}$ (253.3).
(E/Z)-Ethyl 3-(4-fluorophenyl)-3-(pyridin-2-yl)propenoate (25b). Synthesized from 4-fluoro-phenyl(pyridin-2-yl)methanone (25b). Yield 75%; colorless oil; EI-MS, m / z (rel. intensity, \%): 271 $\left(\left(\mathrm{M}^{+}, 78\right), 242\left([\mathrm{M}-\mathrm{Et}]^{+}, 68\right), 226\left([\mathrm{M}-\mathrm{OEt}]^{+}, 47\right), 198\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Et}\right]^{+}, 100\right) ; \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{FNO}_{2}(271.3)\right.$.
(E/Z)-Ethyl 3-phenyl-3-(thiazol-2-yl)propenoate (25c). Synthesized from phenyl(thiazol-2-yl)methanone (22c). Yield 79%; colorless oil; EI-MS, m / z (rel. intensity, \%): $259\left(\mathrm{M}^{+}, 45\right), 230$ ([M -
$\left.\mathrm{Et}]^{+}, 70\right), 214\left([\mathrm{M}-\mathrm{OEt}]^{+}, 40\right), 186\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Et}\right]^{+}, 100\right), 173\left(\left[\mathrm{M}-\mathrm{CHCO}_{2} \mathrm{Et}\right]^{+}, 3\right) ; \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}$ (259.3).
(E/Z)-Ethyl 3-(3,4-difluorophenyl)-3-(thiazol-2-yl)propenoate (25d). Synthesized from 3,4-difluorophenyl(thiazol-2-yl)methanone (22d). Yield 68%; colorless oil; EI-MS, m / z (rel. intensity, \%): $295\left(\mathrm{M}^{+}, 27\right), 266\left([\mathrm{M}-\mathrm{Et}]^{+}, 26\right), 250\left([\mathrm{M}-\mathrm{OEt}]^{+}, 49\right), 222\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Et}\right]^{+}, 100\right) ; \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{NO}_{2} \mathrm{~S}$ (295.3).
($\boldsymbol{E} / \mathbf{Z}$)-Ethyl 3-(thiophen-2-yl)but-2-enoate (29). ${ }^{9}$ Synthesized from 1-(thiophenyl-2-yl)ethanone (28). Yield 83%; colorless oil; EI-MS, m / z (rel. intensity, \%): 196 ($\mathrm{M}^{+}, 53$), 151 ($[\mathrm{M}-\mathrm{OEt}]^{+}, 100$), $124\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Et}\right]^{+}, 57\right), 111\left(\left[\mathrm{M}-\mathrm{CHCO}_{2} \mathrm{Et}\right]^{+}, 15\right) ; \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}$ (196.3).

General procedure for the synthesis of the ethyl propanoates 26a-d, 30

The ethyl acrylates were dissolved in THF (100 mL) and $10 \% \mathrm{Pd} / \mathrm{C}$ (cat.) was added, and the mixture was stirred at room temperature for 12 h under a hydrogen atmosphere. The catalyst was filtered off through Celite pad and the filtrate was concentrated to obtain the corresponding ethyl propanoates.

Ethyl 3-phenyl-3-(pyridin-2-yl)propanoate (26a). ${ }^{10}$ Synthesized from ethyl 3-phenyl-3-(pyridin-2yl)propenoate (25a). Yield 96%; colorless oil; EI-MS, m / z (rel. intensity, \%): 255 ($\mathrm{M}^{+}, 19$), 254 (17), $210\left([\mathrm{M}-\mathrm{OEt}]^{+}, 20\right), 182\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Et}\right]^{+}, 100\right), 167\left(\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right]^{+}, 60\right) ; \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}(255.3) .{ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.54(\mathrm{~m}, 1 \mathrm{H}$, Pyr-6-H), $7.52(\mathrm{~m}, 1 \mathrm{H}$, Pyr-4-H), 7.35-7.00 (m, 7H, Pyr-3-H, Pyr-5-H and $5 \mathrm{Ph}-H$), 6.64 (dd, $J=8.8 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{COOEt}$), 4.03 (ddq, $J=8.7$ and 6.8 $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}$), 3.44 (dd, $J=8.7 \mathrm{~Hz}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOEt}$), 2.98 (dd, $J=6.8 \mathrm{~Hz}, J=$ $\left.16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOEt}\right), 1.12\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$.

Ethyl 3-(4-fluorophenyl)-3-(pyridin-2-yl)propanoate (26b). Synthesized from ethyl 3-(4-fluorophenyl)-3-(pyridin-2-yl)propenoate (25b). Yield 93%; colorless oil; EI-MS, m / z (rel. intensity, \%): $273\left(\mathrm{M}^{+}, 19\right), 228\left([\mathrm{M}-\mathrm{OEt}]^{+}, 18\right), 200\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Et}\right]^{+}, 100\right), 185\left(\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right]^{+}, 55\right)$; $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{FNO}_{2}$ (273.3). ${ }^{1} \mathrm{H}$-NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.53(\mathrm{~m}, 1 \mathrm{H}$, Pyr-6-H), $7.54(\mathrm{~m}, 1 \mathrm{H}$, Pyr-4-H), 7.337.25 (m, 2H, 2 Ph-o-H), 7.16-7.05 (m, 2H, Pyr-H), 7.03-6.89 (m, 2H, $2 \mathrm{Ph}-m-H$), 4.62 (ddq, $J=8.2$ and $\left.7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{COOEt}\right), 4.02\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.40(\mathrm{dd}, J=8.2 \mathrm{~Hz}, J=15.9 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOEt}\right), 2.96\left(\mathrm{dd}, J=7.1 \mathrm{~Hz}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOEt}\right), 1.11(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{COOCH}_{2} \mathrm{CH}_{3}$).

Ethyl 3-phenyl-3-(thiazol-2-yl)propanoate (26c). Synthesized from ethyl 3-phenyl-3-(thiazol-2yl)propenoate (25c). Yield 91%; colorless oil; EI-MS, m / z (rel. intensity, \%): $261\left(\mathrm{M}^{+}, 45\right), 216$ ([M $\left.\mathrm{OEt}]^{+}, 18\right), 188\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Et}\right]^{+}, 100\right), 173\left(\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right]^{+}, 28\right) ; \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}$ (261.3). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.71(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$, Thiaz-4-H), 7.50-7.20 (m, $5 \mathrm{H}, \mathrm{Ph}-H), 7.18(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$, Thiaz- $5-H$), $4.90\left(\mathrm{ddq}, J=7.9\right.$ and $7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{COOEt}^{2}, 4.06\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$, 3.45 (dd, $\left.J=7.9 \mathrm{~Hz}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOEt}\right), 2.96(\mathrm{dd}, J=7.5 \mathrm{~Hz}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2} COOEt), $1.14\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$.

Ethyl 3-(3,4-difluorophenyl)-3-(thiazol-2-yl)propanoate (26d). Synthesized from ethyl 3-(3,4-difluorophenyl)-3-(thiazol-2-yl)propenoate (25d). Yield 88%; colorless oil; EI-MS, m / z (rel. intensity, \%): $297\left(\mathrm{M}^{+}, 34\right), 252\left([\mathrm{M}-\mathrm{OEt}]^{+}, 17\right), 224\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Et}\right]^{+}, 100\right), 209\left(\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right]^{+}, 33\right)$; $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{NO}_{2} \mathrm{~S}(297.3) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.72(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$, Thiaz-4- H), $7.23(\mathrm{~d}, J=3.3$ $\mathrm{Hz}, 1 \mathrm{H}$, Thiaz- $5-H$), $7.22-7.04(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-H), 4.85\left(\mathrm{ddq}, J=7.5\right.$ and $\left.7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CO}\right), 4.08(\mathrm{q}, J$ $\left.=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COOCH}_{2}\right), 3.41\left(\mathrm{dd}, J=7.5 \mathrm{~Hz}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOEt}\right), 3.01(\mathrm{dd}, J=7.8 \mathrm{~Hz}, J=$ $\left.16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOEt}\right), 1.17\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

Ethyl 3-(thiophen-2-yl)butanoate (30). ${ }^{9}$ Synthesized from (E)-ethyl 3-(thiophen-2-yl)but-2-enoate (29). Yield 96%; colorless oil; EI-MS, m / z (rel. intensity, \%): $198\left(\mathrm{M}^{+}, 17\right), 169$ ([M - Et $]^{+}$, 5),

151 ([M - OEt $\left.]^{+}, 23\right), 124$ ([M $\left.-\mathrm{CO}_{2} E t\right]^{+}, 56$), $111\left(\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right]^{+}, 100\right) ; \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$ (198.3). ${ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.12(\mathrm{~m}, 1 \mathrm{H}$, Thio-5-H), $6.90(\mathrm{~m}, 1 \mathrm{H}$, Thio-3-H), $6.83(\mathrm{~m}, 1 \mathrm{H}$, Thio-4-H), 4.11 (ddq, $J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}$), $3.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CO}\right), 2.68\left(\mathrm{dd}, J=6.9 \mathrm{~Hz}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right)$, $2.54\left(\mathrm{dd}, J=7.9 \mathrm{~Hz}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 1.38\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{CO}\right), 1.22(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}$).

General procedure for the synthesis of propanoic acids (27a-d, 31)

To a solution of the pertinent ethyl ester (5.0 mmol) in 20 mL of dimethoxyethane was added a solution of $\mathrm{LiOH}(7.5 \mathrm{mmol})$ in 5 mL of water, and the mixture was stirred at room temperature for 3 h . The pH of the reaction mixture was adjusted with aqueous HCl to $6(\mathbf{2 7 a}, \mathbf{b})$ or $3(\mathbf{2 7} \mathbf{c}, \mathbf{d}, \mathbf{3 1})$, and the solution was extracted twice with 300 mL portions of EtOAc. The combined extracts were dried with anhydrous MgSO_{4} and concentrated in vacuo to give the desired product.

3-Phenyl-3-(pyridin-2-yl)propanoic acid (27a). ${ }^{10}$ Synthesized from ethyl 3-phenyl-3-(pyridin-2yl)propanoate (26a). Yield 96%; colorless crystalline solid; mp $105{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: 12.98 (br, 1H, COOH), $8.53(\mathrm{~m}, 1 \mathrm{H}$, Pyr-6-H), 7.61 (m, 1H, Pyr-4-H), 7.35-7.10 (m, 7H, 2 Pyr- H and 5 $\mathrm{Ph}-H), 4.64$ (ddq, $\left.J=5.2 \mathrm{~Hz}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{COOH}\right), 3.37(\mathrm{dd}, J=8.2 \mathrm{~Hz}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{COOH}$), 3.06 (dd, $J=5.2 \mathrm{~Hz}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOH}$); EI-MS, m / z (rel. intensity, \%): 227 $\left(\mathrm{M}^{+}, 27\right), 226(28), 182\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{H}\right]^{+}, 100\right), 167\left(\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right]^{+}, 62\right) ; \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}(227.3)$.

3-(4-Fluorophenyl)-3-(pyridin-2-yl)propanoic acid (27b). Synthesized from ethyl 3-(4-fluorophenyl)-3-(pyridin-2-yl)propanoate (26b). Yield 97%; colorless crystalline solid; mp $127{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 11.85(\mathrm{br} .1 \mathrm{H}, \mathrm{COOH}), 8.56(\mathrm{~m}, 1 \mathrm{H}$, Pyr-6-H), 7.66 (m, 1H, Pyr-4-H), $7.20(\mathrm{~m}$, $4 \mathrm{H}, 2 \mathrm{Pyr}-H$ and $2 \mathrm{Ph}-H), 6.96(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{Ph}-H), 4.63$ (ddq, $J=5.5 \mathrm{~Hz}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{COOH}$), 3.34 (dd, $J=8.2 \mathrm{~Hz}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOH}$), 3.07 (dd, $J=5.5, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOH}$); EIMS, m / z (rel. intensity, \%): $245\left(\mathrm{M}^{+}, 32\right), 227\left([\mathrm{M}-\mathrm{OH}]^{+}, 5\right), 200\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{H}\right]^{+}, 100\right), 185$ ([M $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right]^{+}, 51$); $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{FNO}_{2}$ (245.2).

3-Phenyl-3-(thiazol-2-yl)propanoic acid (27c). Synthesized from ethyl 3-phenyl-3-(thiazol-2yl)propanoate ($\mathbf{2 6 c}$). Yield 82%; colorless crystalline solid; mp $208{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right) \delta$ (ppm): 7.70 (d, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}$, Thiaz-4- H), 7.21-7.43 (m, 6H, Ph- H and Thiaz-5-H), 4.89 (ddq, $J=7.1$ and $8.0 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{CO}$), $3.45\left(\mathrm{dd}, J=8.0 \mathrm{~Hz}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right.$), $3.07(\mathrm{dd}, J=7.1 \mathrm{~Hz}, J=16.5$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{CO}\right)$; EI-MS, m / z (rel. intensity, \%): $233\left(\mathrm{M}^{+}, 51\right), 215\left([\mathrm{M}-\mathrm{OH}]^{+}, 7\right), 188\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{H}\right]^{+}\right.$, 100), $173\left(\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right]^{+}, 40\right) ; \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}(233.3)$.

3-(3,4-Difluorophenyl)-3-(thiazol-2-yl)propanoic acid (27d). Synthesized from ethyl 3-(3,4-difluorophenyl)-3-(thiazol-2-yl)propanoate (26d). Yield 92%; colorless crystalline solid; $\mathrm{mp} 90{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta(\mathrm{ppm}): 10.70(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}, \mathrm{COOH}), 7.72(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$, Thiaz-4-H), $7.25(\mathrm{~d}, J=3.3$ Hz, 1H, Thiaz-5-H), 7.20-7.02 (m, 3H, Ar-H), $4.84\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{CO}\right), 3.44(\mathrm{dd}, J=7.4 \mathrm{~Hz}, J=$ $16.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), 3.05 (dd, $J=7.4 \mathrm{~Hz}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$); EI-MS, m / z (rel. intensity, \%): $269\left(\mathrm{M}^{+}, 30\right), 251\left([\mathrm{M}-\mathrm{OH}]^{+}, 6\right), 224\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{H}\right]^{+}, 100\right), 210\left(\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right]^{+}, 24\right) ; \mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~F}_{2} \mathrm{NO}_{2} \mathrm{~S}$ (269.3).

3-(Thiophen-2-yl)butanoic acid (31). ${ }^{11}$ Synthesized from ethyl 3-(thiophen-2-yl)butanoate (30). Yield 95%; oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.13(\mathrm{~m}, 1 \mathrm{H}$, Thio-5-H), 6.94-6.89 (m, 1H, Thio-4-H), 6.86-6.83 (m, 1H, Thio-3-H), $3.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CO}\right), 2.76\left(\mathrm{dd}, J=6.6 \mathrm{~Hz}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right)$, 2.62 (dd, $\left.J=8.0 \mathrm{~Hz}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 1.43\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{CO}\right)$, EI-MS, m / z (rel. intensity, \%): $170\left(\mathrm{M}^{+}, 44\right), 154\left([\mathrm{M}-\mathrm{OH}]^{+}, 6\right), 125\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{H}\right]^{+}, 8\right), 111\left(\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right]^{+}\right.$, 100); $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}$ (170.2).

1-(Pyridin-2-yl)ethanol (32a). This compound was synthesized according to the method published ${ }^{12}$.
1-(Thiazol-2-yl)ethanol (32b). This compound was synthesized according to the method published ${ }^{13}$.

General procedure for the preparation of the tosylates 33a,b

To a stirred solution of alcohol 32a or 32b (29 mmol) and DMAP ($7.1 \mathrm{~g}, 58 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100$ mL) was added $\mathrm{MsCl}(5.6 \mathrm{~mL}, 72.5 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 10 min at the same temperature and for an additional time (see below) at rt. Ice water was added to the reaction mixture and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residual oil was purified by column chromatography on flash silica gel (elution with a mixture of EtOAc and hexane).

1-(Pyridin-2-yl)ethyl methanesulfonate (33a). ${ }^{14}$ Synthesized from 1-(pyridin-2-yl)ethanol (32a); stirred for 1 h . Yield 96%; colorless oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.52(\mathrm{~m}, 1 \mathrm{H}$, Pyr-6-H), $7.69(\mathrm{~m}$, 1 H, Pyr-4-H), $7.40(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Pyr}-3-H), 7.25(\mathrm{~m}, 1 \mathrm{H}$, Pyr-5-H), 5.71 (quart, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\operatorname{PyrCH}(\mathrm{OMs})), 2.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 1.68\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right)$; CI-MS $\left(\mathrm{NH}_{3}\right), m / z$ (rel. intensity, \%): $202\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}$ (201.2).

1-(Thiazol-2-yl)ethyl methanesulfonate (33b). Synthesized from 1-(thiazol-2-yl)ethanol (32b); stirred for 16 h . Yield 96%; colorless oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.72(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$, Thiaz-4$H$), $7.34(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$, Thiaz- $5-H), 5.36(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOMs}), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 1.96$ (d, , $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}$); CI-MS $\left(\mathrm{NH}_{3}\right), m / z\left(\right.$ rel. intensity, \%): $208\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{6} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{~S}_{2}(207.3)$.

General procedure for the preparation of the 2-substituted dimethyl malonates 34a,b

To a suspension of sodium hydride ($72 \mathrm{mg}, 3.0 \mathrm{mmol}$) in THF (6.0 mL) was added dimethyl malonate (3.22 mmol) at $0^{\circ} \mathrm{C}$. After the hydrogen formation had ceased at room temperature, the mixture was added to a solution of 1-(pyridin-2yl)ethyl methanesulfonate (33a) or 1-(thiazol-2yl)ethyl methanesulfonate ($\mathbf{3 3 b}$) $(1.0 \mathrm{mmol})$ in DMSO $(4.0 \mathrm{~mL})$. The reaction mixture was warmed to $60^{\circ} \mathrm{C}$ and stirred until the reaction was completed (12 h). After cooling, EtOAc and water were added. The organic phase was separated and the aqueous layer was extracted with EtOAc. The combined organic extracts were washed with water, brine and dried over MgSO_{4}. After the solvent was removed, the residue was purified by flash column chromatography on silica gel (eluent: mixture of EtOAc and hexane) to give the products.

Dimethyl 2-[1-(pyridin-2-yl)ethyl]malonate (34a). ${ }^{15}$ Synthesized from 1-(pyridin-2-yl)ethyl methanesulfonate (33a). Yield 82%; colorless oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.49(\mathrm{~m}, 1 \mathrm{H}$, Pyr-6-H), 7.61 (m, 1H, Pyr-4-H), 7.23 (m, 1H, Pyr-3-H), 7.11 (m, 1H, Pyr-5-H), 4.17 (d, J = 10.4 Hz , $\left.\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 3.70\left(\mathrm{dq}, J=7.0 \mathrm{~Hz}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 3.54(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{COOCH}_{3}\right), 1.23\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$; CI-MS $\left(\mathrm{NH}_{3}\right), m / z$ (rel. intensity, \%): $238.0\left(\mathrm{MH}^{+}, 100\right)$; $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{4}$ (237.3).

Dimethyl 2-[1-(thiazol-2-yl)ethyl]malonate (34b). Synthesized from 1-(thiazol-2-yl)ethyl methanesulfonate (33b). Yield 87%; colorless oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.59(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$, Thiaz-4$H), 7.16\left(\mathrm{~d},, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, Thiaz-5-H), $3.98\left(\mathrm{~d}, J=10.3 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right), 3.93(\mathrm{dq}, \mathrm{J}=6.7 \mathrm{~Hz}, J=$ $10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{3}$), $3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 1.38(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$, CHCH_{3}); EI-MS, m / z (rel. intensity, \%): $243\left(\mathrm{M}^{+}, 9\right), 212\left([\mathrm{M}-2 \times \mathrm{Me}]^{+}, 17\right), 184\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}\right.$, $100), 180\left(\left[\mathrm{M}-2 \times \mathrm{XMe}^{+}, 21\right), 152\left(\left[\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NOS}^{+}, 97\right), 124\left(\left[\mathrm{M}-2 \mathrm{x} \mathrm{CO}_{2} \mathrm{Me}^{+}, 29\right), 112([\mathrm{M}-\right.\right.\right.$ $\left.\left.\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right]^{+}, 38\right) ; \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}$ (243.3).

General procedure for the preparation of 3-heteroarylbutanoic acids (35a,b)

A solution of diester 34a or 34b (1 mmol) in $\mathrm{MeOH}(3 \mathrm{~mL})$ was treated with $\mathrm{NaOH}(2.2 \mathrm{~N}, 1.8 \mathrm{~mL})$ in water, the resulting mixture was heated to reflux, and the reaction was monitored by TLC. When no starting material remained ($12-18 \mathrm{~h}$), the reaction mixture was allowed to come to room temperature. Volatiles were removed in vacuo and the crude dicarboxylic acid was taken up in $\mathrm{AcOH}(6 \mathrm{~mL})$ and heated to reflux. The reaction was monitored by TLC, and when no starting material remained (12-18 h), the solution was concentrated in vacuo. The resultant crude acid was dissolved in water (5 mL), extracted with EtOAc ($3 \times 3 \mathrm{~mL}$), and the combined extracts were dried over MgSO_{4} and concentrated to give product.

3-(Pyridin-2-yl)butanoic acid (35a). Synthesized from dimethyl 2-[1-(pyridin-2-yl)ethyl]malonate (34a); refluxed for 15 h each time. Yield 87%; yellow oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 8.45(\mathrm{~m}, 1 \mathrm{H}$, Pyr-6-H), 7.77 (m, 1H, Pyr-4-H), 7.36 (m, 1H, Pyr-3-H), 7.25 (m, 1H, Pyr-5-H), 3.40 (m, 1H, $\mathrm{CH}_{3} \mathrm{CHCH}_{2}$), $2.80\left(\mathrm{dd}, J=7.4 \mathrm{~Hz}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.63(\mathrm{dd}, J=7.1 \mathrm{~Hz}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CO}$), $1.32\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{CO}\right)$; EI-MS, m / z (rel. intensity, \%): $165\left(\mathrm{M}^{+}, 4\right), 150([\mathrm{M}$ $\left.-\mathrm{OH}]^{+}, 6\right), 132\left(\left[\mathrm{M}-\mathrm{O}_{2} \mathrm{H}\right]^{+}, 12\right), 120\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{H}\right]^{+}, 100\right), 106\left(\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right]^{+}, 62\right) ; \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}$ (165.2).

3-(Thiazol-2-yl)butanoic acid (35b). Synthesized from dimethyl 2-[1-(thiazol-2-yl)ethyl]malonate (34b); refluxed for 15 h each time. Yield 91%; colorless oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 12.42$ (s, $\mathrm{COOH}), 7.71(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$, Thiaz-4-H), $7.22(\mathrm{~d},, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$, Thiaz-5-H), $3.75(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{H}$), $2.90\left(\mathrm{dd}, J=6.9 \mathrm{~Hz}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 2.65(\mathrm{dd}, J=7.3 \mathrm{~Hz}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{H}$), 1.45 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}$); EI-MS, m / z (rel. intensity, \%): $171\left(\mathrm{M}^{+}, 21\right), 156$ ([M - Me] $\left.{ }^{+}, 7\right), 126\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{H}\right]^{+}, 100\right), 112\left(\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right]^{+}, 23\right) ; \mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}_{2} \mathrm{~S}(171.2)$.

General procedure for the preparation of cyclohexylalkanoic acids (37a,b)

0.5 g of $\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}$ was added to solution of the corresponding phenylalkanoic acid (9 mmol) in acetic acid (30 mL). The mixture was hydrogenated 40 h with constant stirring at 5-6 bar H_{2} pressure, filtered through celite pad, washed with acetic acid, and the solvent was removed in vacuo. The remaining crude solid was purified by column chromatography on silica gel (eluent: mixture of EtOAc and petrol ether) to give the product.

2-Cyclohexylpropanoic acid (37a) ${ }^{16}$. Synthesized from 2-phenylpropanoic acid. Yield 92%; colorless crystalline solid; mp $56-58{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 11.52(\mathrm{br} \mathrm{s}, \mathrm{COOH}), 2.28(\mathrm{~m}, 1 \mathrm{H},-$ $\left.\mathrm{CH}_{3} \mathrm{CH}-\right), 1.67\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{cHex}-\mathrm{CH}_{2}\right.$), $1.23\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{cHex}-\mathrm{CH}_{2}, \mathrm{cHex}-\mathrm{CH}\right), 1.13\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.04 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, 1.01 (m, 2H, cHex-CH2); EI-MS: m/z (rel. Intens., \%): $157\left(\mathrm{MH}^{+}, 20\right), 156\left(\mathrm{M}^{+}, 15\right) ; \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}(156.2)$.

3-Cyclohexylbutanoic acid (37b) ${ }^{17}$. Synthesized from 3-phenylbutyric acid. Yield 75%; colorless oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 11.40(\mathrm{br} \mathrm{s}, \mathrm{COOH}), 2.43(\mathrm{dd}, 1 \mathrm{H}, J=14.9 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, \mathrm{CHH}), 2.11$ (dd, 1H, $J=14.9 \mathrm{~Hz}, J=9.2 \mathrm{~Hz}, \mathrm{CHH}$), 1.65-1.74 (m, 5H, cHex-CH2, cHex-CH), 1.87 (m, 1H, $\left.\mathrm{CH}_{3} \mathrm{CH}\right), 1.03-1.20\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{cHex}^{2}-\mathrm{CH}_{2}\right), 0.93$ (d, $3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}$); CI-MS: m / z (rel. Intens., \%): $188\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100\right) ; \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}(170.3)$.

General procedure for the preparation of 3-(4-halophenyl)propenoic acids (39a,b)

A solution of 4-halobenzaldehyde (70 mmol) and anhydrous $\mathrm{NaOAc}(61 \mathrm{mmol})$ were heated to reflux in acetic anhydride (127 mmol) for 6 h . After cooling, the mixture were poured into water and crystallized some days at low temperature. The precipitate were collected and recrystallized.

3-(4-Chlorophenyl)propenoic acid (39a) ${ }^{18}$. Synthesized from 4-chlorobenzaldehyde. Yield 20%; colorless solid, mp $248{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}\right) \delta(\mathrm{ppm}): 12.50(\mathrm{br}, 1 \mathrm{H}, \mathrm{COOH}), 7.50-7.75(\mathrm{~m}, 4 \mathrm{H}$, Ar- H), $7.60(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{CH}), 6.58(\mathrm{~d}, J=1 \mathrm{H}, 16.0 \mathrm{~Hz}, \mathrm{CHCOOH}) ; \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ClO}_{2}$ (182.6).

3-(4-Bromophenyl)propenoic acid (39b) ${ }^{19}$. Synthesized from 4-bromobenzaldehyde. Yield 32%; colorless solid; mp $253{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d d_{6}), $\delta(\mathrm{ppm})$: 12.50 (br, $1 \mathrm{H}, \mathrm{COOH}$), 7.50-7.70 (m, 4H, Ar-H), $7.59(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{C} H), 6.57(\mathrm{~d}, J=1 \mathrm{H}, 16.2 \mathrm{~Hz}, \mathrm{CHCOOH}) ; \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{BrO}_{2}$ (227.1).

General procedure for the synthesis of 3,3-bis(4-halophenyl)propanoic acids (40a,b)

The corresponding 3-(4-halophenyl)propenoic acid (39a,b) (22 mmol) and $\mathrm{AlCl}_{3}(75 \mathrm{mmol})$ were added to the corresponding halobenzene $(0.29 \mathrm{~mol})$ and stirred at room temperature. After 2 h , more $\mathrm{AlCl}_{3}(32.5 \mathrm{mmol})$ was added and the mixture was stirred for another 1 h . Subsequently, the reaction mixture was poured on a mixture of ice water $(50 \mathrm{~mL})$ and conc. $\mathrm{HCl}(30 \mathrm{~mL})$ and excess halobenzene was removed by steam destillation. The aqueous solution was discarded and the remaining residue dissolved in aqueous NaHCO_{3} solution. After the addition of a small amount of activated charcoal, the mixture was refluxed for 1 h and filtered after cooling. The filtrate was acidified with $10 \% \mathrm{HCl} / \mathrm{aq}$ (50 mL) and after two days the crystalline solid was recrystallized from MeOH .

3,3-Bis(4-chlorophenyl)propanoic acid (40a). Synthesized from 3-(4-chlorophenyl)propenoic acid (39a) and chlorobenzene. Yield 47%; colorless crystals; mp $194{ }^{\circ} \mathrm{C}\left(\mathrm{Lit}^{20}: 194-195{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{DMSO}_{6}\right) \delta(\mathrm{ppm}): 7.15-7.31(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-H), 4.49\left(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 3.03(\mathrm{~d}, 2 \mathrm{H}, J=8.0$ $\mathrm{Hz}, \mathrm{CHCH}_{2}$); $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2}$ (295.2).

3,3-Bis(4-bromophenyl)propanoic acid (40b). Synthesized from 3-(4-bromophenyl)propenoic acid (39b) and bromobenzene. Yield 55%; colorless crystals; mp $198{ }^{\circ} \mathrm{C}$ (Lit. ${ }^{21}$: mp 201-202 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d ${ }_{6}$) $\delta(\mathrm{ppm}): 7.25-7.53(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-H), 4.49\left(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 3.01(\mathrm{~d}, 2 \mathrm{H}, J=8.0$ $\mathrm{Hz}, \mathrm{CHCH}_{2}$); $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{2}$ (384.1).

General procedure for the preparation of propenoic acids (42a-c)

The ketones 41a, 41b or 41c (8.7 mmol) and potassium tert-butoxide ($2.25 \mathrm{~g}, 20 \mathrm{mmol}$) were taken in a 250 mL flask with tert-butanol (100 mL), and triethyl phosphonoacetate ($1.95 \mathrm{~g}, 8.7 \mathrm{mmol}$) was added. The mixture was refluxed overnight. After cooling, the solvent was removed on a rotatory evaporator. After addition of 100 mL 1 N NaOH and 75 mL MeOH the mixture was refluxed for 24 h , concentrated in vacuo to remove MeOH , diluted with water $(300 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \times 75$ $\mathrm{mL})$. These CHCl_{3} extractions were discarded. The aqueous layer was acidified with concentrated hydrochloric acid and extracted again with CHCl_{3}. $\mathrm{This} \mathrm{CHCl}_{3}$ layer was washed with brine and water, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the remaining solid was recrystallized from EtOAc/n-hexane.
(E/Z)-3,3-Bis(4-fluorophenyl)propenoic acid (42a) ${ }^{22}$. Synthesized from bis(4-fluorophenyl)methanone (41a). Yield 91%; colorless crystalline solid; mp $97-9{ }^{\circ} \mathrm{C}$; EI-MS, m / z (rel. intensity, \%): $260\left(\mathrm{M}^{+}, 100\right), 259(43), 243\left([\mathrm{M}-\mathrm{OH}]^{+}, 20\right), 214\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{H}\right]^{+}, 61\right), 201\left(\left[\mathrm{M}-\mathrm{CHCO}_{2} \mathrm{H}\right]^{+}, 30\right)$; $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{O}_{2}(260.2)$.
(E/Z)-3-(4-Fluorophenyl)-3-phenylpropenoic acid (42b) $\mathbf{)}^{23}$. Synthesized from (4-fluorophenyl)phenylmethanone, a mixture of E and $Z(\mathbf{4 1 b})$. Yield 85%; colorless crystalline solid; mp 97-98 ${ }^{\circ} \mathrm{C}$; EIMS, m / z (rel. intensity, \%): $242\left(\mathrm{M}^{+}, 100\right), 225\left([\mathrm{M}-\mathrm{OH}]^{+}, 16\right), 196\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{H}\right]^{+}, 53\right), 183([\mathrm{M}-$ $\left.\mathrm{CHCO}_{2} \mathrm{H}\right]^{+}, 16$); $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{FO}_{2}$ (242.2).
($\boldsymbol{E} / \mathbf{Z}$)-3-(3,4-Difluorophenyl)-3-phenylpropenoic acid (42c). Synthesized from (3,4-difluorophenyl)phenylmethanone (41c). Yield 89%; colorless crystalline solid; mp $134-136{ }^{\circ} \mathrm{C}$; EI-MS, m / z (rel. intensity, \%): $260\left(\mathrm{M}^{+}, 100\right), 243\left([\mathrm{M}-\mathrm{OH}]^{+}, 21\right), 214\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{H}\right]^{+}, 70\right) ; \mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{O}_{2}(260.2)$.

General procedure for the preparation of propanoic acids (43a-c)

0.05 g of $\mathrm{Pd} / \mathrm{C}(10 \%)$ was added to solution of the pertinent acrylic acid (42a-c, 8 mmol) in methanol $(100 \mathrm{~mL})$. The mixture was hydrogenated with constant stirring at 5 bar H_{2} pressure overnight, filtered through celite pad, washed with methanol, and the solvent was removed in vacuo. The remaining crude solid was recrystallized from chloroform $/ \mathrm{n}$-hexane.

3,3-Bis(4-fluorophenyl)propanoic acid (43a). Synthesized from 3,3-bis(4-fluorophenyl)propenoic acid (42a). Yield 94%; colorless crystalline solid; mp $97-98{ }^{\circ} \mathrm{C}$ (Lit..24 : mp 107-108 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.2-7.1(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}-H), 7.05-6.80(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}-H), 4.48\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}_{2} \mathrm{CH}\right)$, $3.02\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{COOH}\right)$; EI-MS, m / z (rel. intensity, \%): $262\left(\mathrm{M}^{+}, 22\right), 203$ ([M $\left.\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right]^{+}, 100\right), 183\left(\left(\left[\mathrm{M}-\mathrm{FCH}_{2} \mathrm{CO}_{2} \mathrm{H}\right]^{+}, 11\right) ; \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}_{2}(262.3)\right.$.

3-(4-Fluorophenyl)-3-phenylpropanoic acid (43b). Synthesized from (4-fluorophenyl)phenylpropenoic acid (42b). Yield 96%; colorless crystalline solid; mp 108-110 ${ }^{\circ} \mathrm{C}$ (Lit. ${ }^{24}$: mp 107-108 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.3-7.1(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ph}-H), 6.9-7.0(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}-H), 4.5(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Ar}_{2} \mathrm{CH}$), 3.0 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOH}$); EI-MS, m / z (rel. intensity, \%): $244\left(\mathrm{M}^{+}, 19\right.$), 185 ($[\mathrm{M}-$ $\left.\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right]^{+}, 100\right), 165\left(\left[\mathrm{M}-\mathrm{FCH}_{2} \mathrm{CO}_{2} \mathrm{H}\right]^{+}, 25\right) ; \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{2}$ (244.3).

3-(3,4-Difluorophenyl)-3-phenylpropanoic acid (43c). Synthesized from (3,4-difluorophenyl)phenylpropenoic acid (42c). Yield 92%; colorless crystalline solid; mp 105-106 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}): 7.1-7.3(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}-H), 7.0-6.8(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}-H), 4.48\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}_{2} \mathrm{CH}\right), 3.02(\mathrm{~d}, J=7.9$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOH}\right)$; EI-MS, m / z (rel. intensity, \%): $262\left(\mathrm{M}^{+}, 20\right), 216\left(\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{H}\right]^{+}, 11\right), 203(([\mathrm{M}-\right.$ $\left.\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right]^{+}, 100\right), 183\left(\left(\left[\mathrm{M}-\mathrm{FCH}_{2} \mathrm{CO}_{2} \mathrm{H}\right]^{+}, 34\right) ; \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}_{2}(262.3)\right.$.

3-(1-Trityl-1H-imidazol-4-yl)propanoic acid (44). To a solution of $\mathbf{8}(5 \mathrm{mmol})$ in THF (50 mL) was added 8 mL of a 1 M solution of $\mathrm{LiOH} / \mathrm{aq}$, followed by stirring over night. Subsequently, $10 \% \mathrm{HCl} / \mathrm{aq}$ was added under ice cooling until $\mathrm{pH}=4-5$, extracted with EtOAc and washed with saturated $\mathrm{NaCl} / \mathrm{aq}$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The crude product was recrystallized from EtOAc/THF. Yield 83%; colorless solid; mp $185{ }^{\circ} \mathrm{C}$ (Lit. ${ }^{25}: 188-190{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.41(\mathrm{~d}, 1 \mathrm{H}, J=1.4 \mathrm{~Hz}, \mathrm{Im}-2-H), 7.36(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ph}), 7.31(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}), 6.70(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{Im}-5-\mathrm{H}$), 2.82 (t, $2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{Im}-4-\mathrm{CH}_{2}$), $2.58\left(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right) ; \mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ (382.4).
[(5-Methyl-1H-imidazol-4-yl)methylsulfanyl]acetic acid (45). ${ }^{26}$ A solution of (5-methyl- 1 H -imidazol-4-yl)methanol ($4 \mathrm{~g}, 21.7 \mathrm{mmol}$) and sulfanylacetic acid ($1.51 \mathrm{~mL}, 21.7 \mathrm{mmol}$) in 50 mL acetic acid was refluxed for 24 h . After removing the solvent in vacuo, the residue was neutralised by sodium carbonate. The precipitate was filtered off and washed with water, dried and recrystallized from MeOH. Yield 82%; colorless crystalline solid; mp $170{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}\right) \delta(\mathrm{ppm}): 14.49$ (br s, 1 H , COOH), 8.93 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Im}-2-\mathrm{H}$), $3.89\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{~S}\right.$), $3.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOH}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 44 \mathrm{OAc}\right): m / z 187\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (186.2).

2. Experimental details of the trityl-protected intermediates 47a-52a, 55a-59a, 61a-77a

N^{1}-(3,3-Diphenylpropanoyl)- N^{2}-[2-(1-trityl-1H-imidazol-4-yl)ethyl]guanidine (47a). Synthesized from 3,3-diphenylpropanoic acid and 23. Yield 62%; colorless foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ (ppm): 7.36-7.05 (m, 26H, Ph-H and Im-2-H), $6.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-H), 4.65\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{CH}\right)$, $3.84\left(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.05\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.71\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2}\right)$; ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 44 \mathrm{OAc}\right): 604\left(\mathrm{MH}^{+}\right), 1207\left([2 \mathrm{M}+\mathrm{H}]^{+}\right) ; \mathrm{C}_{40} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}$ (603.8).
N^{1}-(3,3-Diphenylpropanoyl)- N^{2}-[3-(1-trityl-1H-imidazol-4-yl)propyl]guanidine (48a). Synthesized from 3,3-diphenylpropanoic acid and 16. Yield 55%; colorless foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$
$\delta(\mathrm{ppm}): 7.45-7.05(\mathrm{~m}, 26 \mathrm{H}, \mathrm{Ph}-H$ and $\operatorname{Im}-2-H), 6.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-H), 4.65\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{CH}\right)$, $3.30\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.06\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 2.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2}\right), 1.82(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 4 \mathrm{NAc}^{2}\right): 618\left(\mathrm{MH}^{+}\right), 1235\left([2 \mathrm{M}+\mathrm{H}]^{+}\right)$; $\mathrm{C}_{41} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}$ (617.8).
N^{1}-(2,2-Diphenylacetyl)- N^{2}-[3-(1-trityl-1H-imidazol-4-yl)propyl]guanidine (49a). Synthesized from 2,2-diphenylacetic acid and 16. Yield 55%; colorless foam-like solid; a few crystals were obtained from hexane and the structure was determined by x-ray analysis. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: 7.39-7.01 (m, 26H, Ph-H and Im-2-H), 6.54 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Im}-5-H$), 4.98 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ph} 2 \mathrm{CH}$), 3.24 (t, $J=6.7 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}$), $2.54\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2}\right), 1.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ $\left.+10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\right): 604\left(\mathrm{MH}^{+}\right), 1207\left([2 \mathrm{M}+\mathrm{H}]^{+}\right) ; \mathrm{C}_{40} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}(603.8)$.
N^{1}-[3,3-Bis(4-fluorophenyl)propanoyl]- N^{2}-[3-(1-trityl-1H-imidazol-4-yl)propyl]guanidine (50a). Synthesized from 3,3-bis(4-fluorophenyl)propanoic acid (43a) and 16. Yield 61%; colorless foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.40-6.80(\mathrm{~m}, 24 \mathrm{H}, \mathrm{Ar}-H$ and $\mathrm{Im}-2-H), 6.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-H), 4.68(\mathrm{t}, J$ $\left.=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}_{2} \mathrm{CH}\right), 3.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.22\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 2.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-$ $\left.\mathrm{CH}_{2}\right), 1.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 44 \mathrm{OAc}\right): 654\left(\mathrm{MH}^{+}\right)$; $\mathrm{C}_{41} \mathrm{H}_{37} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}$ (653.8).
N^{1}-[3-(4-Fluorophenyl)-3-phenylpropanoyl]- N^{2}-[3-(1-trityl-1H-imidazol-4-yl)-propyl]guanidine (51a). Synthesized from 3-(4-fluorophenyl)-3-phenylpropanoic acid (43b) and 16. Yield 53%; colorless foam like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: 7.42-6.73 (m, 25H, Ar-H and Im-2-H), $6.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-$ H), $4.62\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}_{2} \mathrm{CH}\right), 3.33\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.00\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right)$, 2.53 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2}$), 1.82 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}$); ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 44 \mathrm{OAc}\right)$: $636\left(\mathrm{MH}^{+}\right), 1273\left([2 \mathrm{M}+\mathrm{H}]^{+}\right) ; \mathrm{C}_{41} \mathrm{H}_{38} \mathrm{FN}_{5} \mathrm{O}$ (635.8).
N^{1}-[3-(3,4-Difluorophenyl)-3-phenylpropanoyl]- $N^{\mathbf{2}}$-[3-(1-trityl-1H-imidazol-4-yl)propyl]guanidine (52a). Synthesized from 3-(3,4-difluorophenyl)-3-phenylpropanoic acid (43c) and 16. Yield 55%; colorless foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: 7.40-6.76 (m, $24 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and $\left.\mathrm{Im}-2-H\right), 6.55$ (s, 1H, Im-5-H), $4.63\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}_{2} \mathrm{CH}\right), 3.34\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.01(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{COCH}_{2}\right), 2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-\mathrm{CH}_{2}\right), 1.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \mathrm{ES}-\mathrm{MS}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM}\right.$ $\left.\mathrm{NH}_{4} \mathrm{OAc}\right): 654\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{41} \mathrm{H}_{37} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}$ (653.8).

N^{1}-[3-Phenyl-3-(pyridin-2-yl)propanoyl]- N^{2}-[3-(1-trityl-1H-imidazol-4-yl)propyl]guanidine

(55a). Synthesized from 3-phenyl-3-(pyridin-2-yl)propanoic acid (27a) and 16. Yield 50%; colorless foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Pyr}-6-\mathrm{H}), 7.56-7.49(\mathrm{~m}, 1 \mathrm{H}$, Pyr-4-H), 7.407.00 (m, 23H, Pyr-3-H, $-5-H, \mathrm{Im}-2-H$ and $20 \mathrm{Ph}-H$), 6.56 (s, 1H, Im-5-H), 4.80 (ddq, $J=8.5$ and 6.7 $\left.\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}_{2} \mathrm{CH}\right), 3.60\left(\mathrm{dd}, J=8.5 \mathrm{~Hz}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.45(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH})_{2}\right), 3.16$ (dd, $J=6.7 \mathrm{~Hz}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), $2.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2}\right), 1.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; ESMS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 44 \mathrm{OAc}\right): 619\left(\mathrm{MH}^{+}\right), 1237\left([2 \mathrm{M}-\mathrm{H}]^{+}\right) ; \mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{O}(618.8)$.

N^{1}-[3-(4-Fluorophenyl)-3-(pyridin-2-yl)propanoyl]- N^{2}-[3-(1-trityl-1H-imidazol-4-yl)propyl]-

 guanidine (56a). Synthesized from 3-(4-fluorophenyl)-3-(pyridin-2-yl)propanoic acid (27b) and $\mathbf{1 6}$. Yield 49%; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.50(\mathrm{dm}, 1 \mathrm{H}, \operatorname{Pyr}-6-H), 7.56(\mathrm{dt}, J=1.8 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, Pyr-4-H), 7.41-6.85 (m, 22H, Pyr-3-H, -5-H, Im-2-H and $19 \mathrm{Ph}-H$), 6.54 (s, 1H, Im-5-H), 4.73 (dd, $J=$ 7.2 and $\left.7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}_{2} \mathrm{CH}\right), 3.30\left(\mathrm{~m}, 3 \mathrm{H}\right.$, one H of $\mathrm{CH}_{2} \mathrm{CO}$ and $\mathrm{CH}_{2} \mathrm{NH}_{2}$), $2.97(\mathrm{dd}, J=7.2 \mathrm{~Hz}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}$, one H of $\mathrm{CH}_{2} \mathrm{CO}$), $2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2}\right), 1.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 44 \mathrm{OAc}\right): 637\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{40} \mathrm{H}_{37} \mathrm{FN}_{6} \mathrm{O}(636.8)$.$N^{1}$-[3-Phenyl-3-(thiazol-2-yl)propanoyl]- N^{2}-[3-(1-trityl-1H-imidazol-4-yl)propyl]guanidine (57a). Synthesized from 3-phenyl-3-(thiazol-2-yl)propanoic acid (27c) and 16. Yield 46%; colorless foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.67(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}$, Thiaz-4-H), 7.40-6.98 (m,

22H, Ph- H, Thia-5-H, Im-2-H), 6.55 (s, 1H, Im-5-H), 4.99 (ddq, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CO}$), 3.51 (dd, $J=7.7 \mathrm{~Hz}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}$, one H of $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 3.40\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{NHCH}_{2}\right), 2.98(\mathrm{dd}, J=7.7 \mathrm{~Hz}, J=15.9 \mathrm{~Hz}$, 1 H , one H of $\mathrm{CH}_{2} \mathrm{CO}$), $2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2}\right), 1.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ $+10 \mathrm{mM} \mathrm{NH} 44 \mathrm{OAc}): 625\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{38} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{OS}(624.8)$.
N^{1}-[3-(3,4-Difluorophenyl)-3-(thiazol-2-yl)propanoyl]- N^{2}-[3-(1-trityl-1H-imidazol-4-yl)propyl]guanidine (58a). Synthesized from 3-(3,4-difluorophenyl)-3-(thiazol-2-yl)propanoic acid (27d) and 16. Yield 52%; colorless foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: 7.95 (s br, H, NH), 7.64 (d, $J=3.3$ Hz, 1H, Thiaz-4-H), 7.40-6.98 (m, 20H, Ph-H, Thiaz-5-H, Im-2-H), 6.55 (s, 1H, Im-5-H), 4.96 (m, 1H, $\mathrm{CHCH}_{2} \mathrm{CO}$), $3.32\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right.$ and one H of $\left.\mathrm{COCH}_{2}\right), 2.98(\mathrm{dd}, J=7.7 \mathrm{~Hz}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}$, one H of $\mathrm{CH}_{2} \mathrm{CO}$), $2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2}\right), 1.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM}\right.$ $\left.\mathrm{NH}_{4} \mathrm{OAc}\right): 243\left(\left[\mathrm{Ph}_{3} \mathrm{C}\right]^{+}\right), 661\left(\mathrm{MH}^{+}\right), 1321\left([2 \mathrm{M}+\mathrm{H}]^{+}\right), 1343\left([2 \mathrm{M}+\mathrm{Na}]^{+}\right) ; \mathrm{C}_{38} \mathrm{H}_{34} \mathrm{~F}_{2} \mathrm{~N}_{6} \mathrm{OS}(660.8)$.
N^{1}-[3-(1-Benzyl-1H-imidazol-2-yl)-3-(3,4-difluorophenyl)propanoyl]- \mathbf{N}^{2}-[3-(1-trityl-1H-imidazol-4-yl)propyl]guanidine (59a). Synthesized from 3-(1-benzyl-1H-imidazol-2-yl)-3-(3,4difluorophenyl)propanoic acid and 16. Yield 55%; colorless foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta$ (ppm): $10.53(\mathrm{~s}, 1 \mathrm{H}), 9.03(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.51-6.96(\mathrm{~m}, 24 \mathrm{H}, \mathrm{Im}-H, \mathrm{Ph}-H), 5.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right)$, $4.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CO}\right), 3.78\left(\mathrm{dd}, J=10.6 \mathrm{~Hz}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one H of $\left.\mathrm{COCH}_{2}\right), 3.36(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{NH}$), 3.23 (dd, $J=5.2 \mathrm{~Hz}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}$, one H of COCH_{2}), $2.83\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2}\right.$), $2.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;$ ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 4 \mathrm{OAc}\right): 734\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{45} \mathrm{H}_{41} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}$ (733.9).
N^{1}-(3-Phenylbutyl)- N^{2}-[3-(1-trityl-1 H-imidazol-4-yl)propanoyl]guanidine (61a). Synthesized from (1-trityl-1H-imidazol-4-yl)propanoic acid (44) and 17. Yield 23%; pale yellow foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.31-7.10\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CPh}_{3}, \operatorname{Im}-2-H\right), 6.58(\mathrm{~d}, 1 \mathrm{H}, J=1.0 \mathrm{~Hz}, \mathrm{Im}-5-H), 3.05$ (t, $2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}_{2}\right), 2.75\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CHCH}_{3}\right), 1.87$ (m, $2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2}$), 1.23 (d, 3H, J = 7.0, CH_{3}); ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+\mathrm{NH}_{4} \mathrm{OAc}\right) \mathrm{m} / \mathrm{z}(\%): 556$ ($\mathrm{MH}^{+}, 100$); $\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}$ (555.7).
N^{1}-(2-Phenylpropanoyl)- N^{2}-[3-(1-trityl-1H-imidazol-4-yl)propyl]guanidine (62a). Synthesized from 2-phenylpropanoic acid and 16. Yield 45%; colorless foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: $1.44\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.55\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $3.30\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$), $3.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COCHCH}_{3}\right), 6.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-\mathrm{H}), 7.08-7.34(\mathrm{~m}$, $21 \mathrm{H}, \mathrm{CPh}_{3}$, Ph, Im-2-H), 8.01 (s, $1 \mathrm{H}, \mathrm{NH}$); ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 44 \mathrm{OAc}\right): \mathrm{m} / \mathrm{z}(\%): 542$ ($\mathrm{MH}^{+}, 100$); $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}$ (541.7).
N^{1}-(3-Phenylbutanoyl)- N^{2}-[3-(1-trityl-1H-imidazol-4-yl)propyl]guanidine (63a). Synthesized from 3-phenylbutanoic acid and 16. Yield 47%; colorless foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: $1.32\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.56\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{COCH}_{2}\right)$, $3.35\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Im}^{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{COCH}_{2} \mathrm{CHCH}_{3}\right), 6.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-\mathrm{H}), 7.07-7.37\left(\mathrm{~m}, 21 \mathrm{H}, \mathrm{CPh}_{3}, \mathrm{Ph}, \mathrm{Im}-\right.$ $2-\mathrm{H})$; ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 44 \mathrm{OAc}\right): ~ m / z 556\left(\mathrm{MH}^{+}, 100\right) ; \mathrm{C}_{36} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}(555.7)$.
N^{1}-[3-(Thiophen-2-yl)butanoyl]- N^{2}-[3-(1-trityl-1H-imidazol-4-yl)propyl]guanidine (64a). Synthesized from 3-(thiophen-2-yl)butanoic acid (31) and 16. Yield 47%; colorless foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): ~ 7.41-7.29(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}-H), 7.52-7.05(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ph}-\mathrm{H}, \mathrm{Im}-2-\mathrm{H}$ and Thio-5-H), 6.91-6.83 (m, 2H, Thio-H) 6.57 (s, 1H, Im-5-H), 3.67 (m, 1H, $\mathrm{COCH}_{2} \mathrm{CH}$), $3.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}_{2}\right), 2.79$ (dd, $J=$ $6.6 \mathrm{~Hz}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}$, one H of $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 2.61\left(\mathrm{dd}, J=8.1 \mathrm{~Hz}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one H of $\left.\mathrm{CH}_{2} \mathrm{CO}\right)$, 2.58 (m, 2H, Im-4-CH2), $2.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.36\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 44 \mathrm{OAc}\right): 562\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{34} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{OS}$ (561.7).
N^{1}-[3-(Pyridin-2-yl)butanoyl]- N^{2}-[3-(1-trityl-1H-imidazol-4-yl)propyl]guanidine (65a). Synthesized from 3-(pyridin-2-yl)butanoic acid (35a) and 16. Yield 52%; colorless foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}$
$\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Pyr}-6-H), 7.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Pyr}-4-H), 7.63-7.00(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Pyr}-3-H,-5-H$, Im-$2-H$ and $\mathrm{Ph}-H), 6.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-H-5), 3.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CO}\right), 3.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.00(\mathrm{dd}, J=8.3$ $\mathrm{Hz}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}$, one H of $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 2.90\left(\mathrm{dd}, J=6.2 \mathrm{~Hz}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one H of $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 2.83$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2}$), 2.01 (m, $2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.41 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} 3 \mathrm{CH}$); ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\right): \mathrm{m} / z 557\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{35} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}$ (556.7).
N^{1}-[3-(Thiazol-2-yl)butanoyl]- N^{2}-[3-(1-trityl-1H-imidazol-4-yl)propyl]guanidine (66a). Synthesized from 3-(thiazol-2-yl)butanoic acid (35b) and 16. Yield 55%; colorless foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.65(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$, Thiaz-4-H), 7.41-7.05 (m, 17H, Ph-H, Thiaz-5-H and Im-2$H), 6.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-H), 3.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CO}\right), 3.51(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH} 2), 3.11(\mathrm{dd}, J=7.3$ $\mathrm{Hz}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$, one H of $\left.\mathrm{COCH}_{2}\right), 2.81\left(\mathrm{dd}, J=6.9 \mathrm{~Hz}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one H of $\left.\mathrm{COCH}_{2}\right), 2.57$ (m, 2H, Im-4-CH2), 1.89 (m, 2H, Im-4- $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.46\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, C \mathrm{H}_{3}\right)$; ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 4 \mathrm{OAc}\right): ~ m / z 563\left(\mathrm{MH}^{+}\right) ; \mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{OS}(562.7)$.
N^{1}-Benzoyl- N^{2}-[3-(1-trityl-1 \boldsymbol{H}-imidazol-4-yl)propyl]guanidine (67a). Synthesized from benzoic acid and 16. Yield 52%; colorless foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.91(\mathrm{~m}, 2 \mathrm{H}$, Im$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.61\left(\mathrm{t}, 2 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.45\left(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right.$) , 6.56 (s, 1H, Im-5-H), 7.13-7.37 (m, 19H, $\left.\mathrm{CPh}_{3}, \mathrm{Ph}, \mathrm{Im}-2-\mathrm{H}\right), 8.17(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ph}) ; \mathrm{ES}-\mathrm{MS}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10\right.$ $\mathrm{mM} \mathrm{NH} 44 \mathrm{OAc}): ~ m / z(\%): 514\left(\mathrm{MH}^{+}, 100\right), 243\left(\mathrm{Ph}_{3} \mathrm{C}^{+}, 50\right) ; \mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}$ (513.6).
$\boldsymbol{N}^{\mathbf{1}}$-Phenylacetyl- $\boldsymbol{N}^{\mathbf{2}}$-[3-(1-trityl-1H-imidazol-4-yl)propyl]guanidine (68a). Synthesized from 2phenylacetic acid and 16. Yield 47%, colorless foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.83(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.55\left(\mathrm{t}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.32(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{Im}-$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 6.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-\mathrm{H}), 7.09-7.38\left(\mathrm{~m}, 21 \mathrm{H}, \mathrm{CPh}_{3}, \mathrm{Ph}, \mathrm{Im}-2-\mathrm{H}\right), 8.01$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) ; \mathrm{ES}-\mathrm{MS}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 4 \mathrm{OAc}\right): m / z 528\left(\mathrm{MH}^{+}, 100\right) ; \mathrm{C}_{34} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}(527.7)$.
N^{1}-(3-Phenylpropanoyl)- N^{2}-[3-(1-trityl-1H-imidazol-4-yl)propyl]guanidine (69a). Synthesized from 3-phenylpropanoic acid and 16. Yield 67%, colorless foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: $1.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.59\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 2.98(\mathrm{t}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{Im}-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.56\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 6.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-\mathrm{H}), 7.11-7.35\left(\mathrm{~m}, 21 \mathrm{H}, \mathrm{CPh}_{3}, \mathrm{Ph}\right.$, $\mathrm{Im}-2-\mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; \mathrm{ES}-\mathrm{MS}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 4 \mathrm{NAc}^{\mathrm{OA}}\right): m / z 542\left(\mathrm{MH}^{+}, 100\right)$; $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}$ (541.7).
\boldsymbol{N}^{1}-(4-Phenylbutanoyl)- \boldsymbol{N}^{2}-[3-(1-trityl-1H-imidazol-4-yl)propyl]guanidine (70a). Synthesized from 4-phenylbutanoic acid and 16. Yield 54%, colorless foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: $1.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.56(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 6.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-$ $5 \mathrm{H}), 7.06-7.40\left(\mathrm{~m}, 21 \mathrm{H}, \mathrm{CPh}_{3}, \mathrm{Ph}, \mathrm{Im}-2 \mathrm{H}\right), 8.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; \mathrm{ES}-\mathrm{MS}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM}\right.$ $\left.\mathrm{NH}_{4} \mathrm{OAc}\right): m / z 556\left(\mathrm{MH}^{+}, 100\right) ; \mathrm{C}_{36} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}$ (555.7).
\boldsymbol{N}^{1}-(5-Phenylpentanoyl)- \boldsymbol{N}^{2}-[3-(1-trityl-1H-imidazol-4-yl)propyl]guanidine (71a). Synthesized from 5-phenylpentanoic acid and 16. Yield 45%; colorless foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: $1.66\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.29(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}$, $\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.59 (m, $4 \mathrm{H}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 3.34 ($\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}$, Im$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $6.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-\mathrm{H}), 7.10-7.36\left(\mathrm{~m}, 21 \mathrm{H}, \mathrm{CPh}_{3}, \mathrm{Ph}, \mathrm{Im}-2-\mathrm{H}\right)$; ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+\right.$ $10 \mathrm{mM} \mathrm{NH} 44 \mathrm{OAc}): ~ m / z 570\left(\mathrm{MH}^{+}, 100\right) ; \mathrm{C}_{37} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}$ (569.7).
$\boldsymbol{N}^{\mathbf{1}}$-(2-Cyclohexylpropanoyl)- $\boldsymbol{N}^{\mathbf{2}}$-[3-(1-trityl-1H-imidazol-4-yl)propyl]guanidine
(72a). Synthesized from 2-cyclohexylpropanoic acid (37a) and 16. Yield 60%; colorless foam-like solid; ${ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.06\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.22\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{cHex}-\mathrm{CH}_{2}, \mathrm{cHex}-\mathrm{CH}\right), 1.68(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{cHex}-\mathrm{CH}_{2}\right), 1.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right), 2.56(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{Im}-$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.33\left(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 6.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-\mathrm{H}), 7.12-7.34(\mathrm{~m}, 16 \mathrm{H}$,
$\left.\mathrm{CPh}_{3}, \mathrm{Im}-2-\mathrm{H}\right) ; \mathrm{ES}-\mathrm{MS}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 44 \mathrm{OAc}\right): m / z 549\left(\mathrm{MH}^{+}, 100\right), 243\left(\mathrm{Ph}_{3} \mathrm{C}^{+}, 30\right)$; $\mathrm{C}_{35} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}$ (547.7).
$\boldsymbol{N}^{\mathbf{1}}$-(3-Cyclohexylbutanoyl)- $\boldsymbol{N}^{\mathbf{2}}$-[3-(1-trityl-1H-imidazol-4-yl)propyl]guanidine (73a). Synthesized from 3-cyclohexylbutanoic acid (37b) and 16. Yield 29%; colorless foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}): 0.88\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.00-1.19\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{cHex}-\mathrm{CH}_{2}\right), 1.67\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{cHex}-\mathrm{CH}_{2}\right), 1.89$ (m, 3H, Im-CH2 $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CH}_{3} \mathrm{CH}\right), 2.13\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=14.3 \mathrm{~Hz}, J=9.4 \mathrm{~Hz}, \mathrm{CHH}\right.$), $2.47\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J=\right.$ $14.5 \mathrm{~Hz}, J=4.7 \mathrm{~Hz}, \mathrm{CH} H), 2.57\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J=5.8 \mathrm{~Hz}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.44(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{Im}-$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $6.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-\mathrm{H}), 7.11-7.34\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CPh}_{3}, \mathrm{Im}-2-\mathrm{H}\right) ; \mathrm{ES}-\mathrm{MS}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10\right.$ $\mathrm{mM} \mathrm{NH} 4 \mathrm{OAc}): ~ m / z 562\left(\mathrm{MH}^{+}, 100\right) ; \mathrm{C}_{36} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}$ (561.8).
N^{1}-Cyclohexylcarbonyl- \boldsymbol{N}^{2}-[3-(1-trityl-1H-imidazol-4-yl)propyl]guanidine (74a). Synthesized from cyclohexanecarboxylic acid and 16. Yield 59%; colorless foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ (ppm): $1.34\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{cHex}-\mathrm{CH}_{2}\right), 1.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.89\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{cHex}-\mathrm{CH}_{2}\right), 2.46(\mathrm{t}, 1 \mathrm{H}, J$ $=5.8 \mathrm{~Hz}, \mathrm{cHex}-\mathrm{CH}), 2.56\left(\mathrm{t}, 2 \mathrm{H}, J=10.4 \mathrm{~Hz}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.45(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}$, Im$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $6.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-\mathrm{H}), 7.12-7.35\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CPh}_{3}, \mathrm{Im}-2-\mathrm{H}\right), 8.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; \mathrm{ES}-\mathrm{MS}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 4 \mathrm{OAc}\right): m / z 520\left(\mathrm{MH}^{+}, 100\right), 243\left(\mathrm{Ph}_{3} \mathrm{C}^{+}\right) ; \mathrm{C}_{33} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}$ (519.7).
\boldsymbol{N}^{1}-Cyclohexylacetyl- $\boldsymbol{N}^{\mathbf{2}}$-[3-(1-trityl-1H-imidazol-4-yl)propyl]guanidine (75a). Synthesized from cyclohexylacetic acid and 16. Yield 66%; colorless foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 0.94$ (m, 2H, Im- $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.21\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{cHex}-\mathrm{CH}_{2}\right), 1.74\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{cHex}-\mathrm{CH}_{2}, \mathrm{cHex}-\mathrm{CH}\right), 2.14$ (d, 2H, J $=6.1 \mathrm{~Hz}, \mathrm{COCH}_{2}$), $2.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.34\left(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 6.55(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{Im}-5-\mathrm{H}), 7.11-7.34\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CPh}_{3}, \mathrm{Im}-2-\mathrm{H}\right)$; ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 4 \mathrm{OAc}\right): \mathrm{m} / \mathrm{z} 534$ $\left(\mathrm{MH}^{+}, 100\right) ; \mathrm{C}_{34} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}$ (533.7).
$N^{\mathbf{1}}$-(3-Cyclohexylpropanoyl)- $\boldsymbol{N}^{\mathbf{2}}$-[3-(1-trityl-1H-imidazol-4-yl)propyl]guanidine (76a). Synthesized from 3-cyclohexylpropanoic acid and 16. Yield 30%; colorless foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.26\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{cHex}-\mathrm{CH}_{2}, \mathrm{cHex}-\mathrm{CH}\right), 1.55\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{cHex}-\mathrm{CH}_{2}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 1.88(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.35\left(\mathrm{t}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right.$), $2.57\left(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{ImCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$), $3.40\left(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{cHex}-\mathrm{CH}), 6.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-\mathrm{H})$, 7.11-7.34 (m, $\left.16 \mathrm{H}, \mathrm{CPh}_{3}, \mathrm{Im}-2-\mathrm{H}\right), 7.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; \mathrm{ES}-\mathrm{MS}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 4 \mathrm{OAc}\right): m / z 548\left(\mathrm{MH}^{+}\right.$, 100), $243\left(\mathrm{Ph}_{3} \mathrm{C}^{+}, 20\right) ; \mathrm{C}_{35} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}$ (547.7).
$\boldsymbol{N}^{\mathbf{1}}$-(4-Cyclohexylbutanoyl)- $\boldsymbol{N}^{\mathbf{2}}$-[3-(1-trityl-1 \boldsymbol{H}-imidazol-4-yl)propyl]guanidine (77a). Synthesized from 4-cyclohexylbutanoic acid and 16. Yield 57%; colorless foam-like solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ (ppm): $0.86\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.18\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{cHex}-\mathrm{CH}_{2}, \mathrm{cHex}-\mathrm{CH}\right), 1.62\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{cHex}-\mathrm{CH}_{2}\right)$, $1.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.57(\mathrm{t}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}$, Im$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.34\left(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{Im}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$), $6.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-\mathrm{H}), 7.12-7.34$ (m, 16H, Im-$\left.2-\mathrm{H}, \mathrm{CPh}_{3}\right)$; ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\right): m / z 562\left(\mathrm{MH}^{+}, 100\right) ; \mathrm{C}_{36} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}$ (561.7).

3. Experimental details of 61 and of the N^{1}-acyl- N^{2}-[1H-imidazol-4-yl)alkyl]guanidines 47-52, 55, 57-60, 62, 65-77

N^{1}-(3,3-Diphenylpropanoyl)- \boldsymbol{N}^{2}-[2-(1H-imidazol-4-yl)ethyl]guanidine (47). Yield 92% (deprotection of compound 47a); colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 8.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-2-\mathrm{H})$, $7.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-H-5), 7.32-7.12(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}-H), 4.57\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CO}\right), 3.58(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}$), $3.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N} H), 3.25\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 3.03(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Im}-4-$ CH_{2}); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 175.5$ (quart, CO), 162.6 (quart, $C=\mathrm{NH}$), 144.4 (quart, $\mathrm{Ph}-\mathrm{C}-1$), 135.2 (+, Im-C-2), 131.4 (quart, Im- $C-4$), 129.6, $128.8,127.8(+$, Ph-C), 118.1 (+, Im-C-5), $48.0(+$, $\left.C \mathrm{HCH}_{2} \mathrm{CO}\right), 43.7\left(-, \mathrm{COCH}_{2}\right), 41.0\left(-, \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 28.3\left(-, \mathrm{Im}-4-\mathrm{CH}_{2}\right) ; \mathrm{ES}-\mathrm{MS}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM}\right.$ $\left.\mathrm{NH}_{4} \mathrm{OAc}\right): 361\left(\mathrm{MH}^{+}\right)$; HRMS [EI-MS]: m / z, calculated for $\left(\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}\right)$ 361.1903, found: 361.1901; $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O} \cdot 2$ TFA (589.5).
\boldsymbol{N}^{1}-(3,3-Diphenylpropanoyl)- $\boldsymbol{N}^{\mathbf{2}}$-[3-(1H-imidazol-4-yl)propyl]guanidine (48). Yield 92% (deprotection of compound 48a); colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 7.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-2-\mathrm{H})$, 7.10-7.35 (m, 10H, Ph-H), 4.65 (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{CH}$), 3.26 (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}$), 3.06 (d, J $\left.=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2}\right), 1.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ (ppm): 183.5 (quart, CO), 161.7 (quart, $C=\mathrm{NH}$), 145.0 (quart, $\mathrm{Ph}-C-1$), 134.6 (quart, Im-C-4), 134.2 (+, Im-C-2), 128.4, 128.0, 126.0 (+, Ph-C), $47.4\left(+, \mathrm{Ph}_{2} C H\right), 46.5\left(-, \mathrm{COCH}_{2}\right), 40.0\left(-, \mathrm{NHCH}_{2}\right), 29.1(-$, Im-4- $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $22.9\left(-, \mathrm{Im}-4-\mathrm{CH}_{2}\right)$; ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 44 \mathrm{OAc}\right): 376.2\left(\mathrm{MH}^{+}\right)$; HRMS [FAB $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$: m / z, calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}+\mathrm{H}\right]^{+}$376.2132, found: 376.2137; $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}$ - 2 TFA (603.5).
\boldsymbol{N}^{1}-Diphenylacetyl- $\boldsymbol{N}^{\mathbf{2}}$-[3-(1H-imidazol-4-yl)propyl]guanidine (49). Yield 92% (deprotection of compound 49a); colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 8.74$ (s, 1H, Im-2-H), 7.86 (s, 1H, Im-5-H), 7.40-7.10 (m, 10H, Ph-H), $5.27\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{CH}\right), 3.35\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 2.80(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2}$), $2.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 176.1$ (quart, CO), 155.4 (quart, $C=\mathrm{NH}$), 139.0 (quart, $\mathrm{Ph}-C-1$), 134.8 (quart, $\mathrm{Im}-C-4$), 134.2 (+, Im-C-2), 129.9, 129.7, $128.7(+, \mathrm{Ph}-\mathrm{C}), 117.1(+, \mathrm{Im}-\mathrm{C}-5), 59.4\left(+, \mathrm{Ph}_{2} \mathrm{CH}\right), 41.6\left(-, \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 27.8\left(-, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right) 22.5(-$, Im-4-CH2); ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 44 \mathrm{OAc}\right): 362\left(\mathrm{MH}^{+}\right)$; HRMS [EI-MS]: m / z, calculated for [$\left.\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}\right]$ 361.1903, found: 361.1903; $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O} \cdot 2$ TFA (589.5).
N^{1}-[3,3-Bis(4-fluorophenyl)propanoyl]- N^{2}-[3-(1H-imidazol-4-yl)propyl]guanidine (50). Yield 85% (deprotection of compound 50a); colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-$ 2-H), 7.12-7.22 (m, 4H, Ar-H), 6.86-6.97 (m, 4H, Ar-H), 6.73 (s, 1H, Im-5-H), 4.62 (t, J=7.9 Hz, 1H, $\left.\mathrm{Ar}_{2} \mathrm{C} H\right), 3.28\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2}\right), 2.98\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2}\right)$, $1.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 183.2$ (quart, CO), 161.2 (quart, $\mathrm{d}, \mathrm{J}=244.2$ $\mathrm{Hz}, 2 \mathrm{C}, ~ C \mathrm{~F}$), 161.9 (quart, $C=\mathrm{NH}$), 140.0 (quart, Ar-C-1), 134.6 (quart, Im-C-4), 134.1 (+, Im-C-2), 129.1 (+, d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{C}$, Ar-C-2,6), 117.1 (+, Im-C-5), 115.2 (+, d, $J=21.1 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{Ar}-C-3,5), 46.8$ $\left(-, \mathrm{CH}_{2} \mathrm{CO}\right), 45.9\left(+, \mathrm{Ar}_{2} \mathrm{CH}\right), 39.9\left(-, \mathrm{CH}_{2} \mathrm{NH}\right), 29.3\left(-, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.9\left(-, \mathrm{Im}-4-\mathrm{CH}_{2}\right)$; ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 44 \mathrm{OAc}\right): 412\left(\mathrm{MH}^{+}\right)$; HRMS [EI-MS]: m / z, calculated for $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}\right)$ 411.1871, found: 411.1866; $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O} \cdot 2$ TFA (639.5).
N^{1}-[3-(4-Fluorophenyl)-3-phenylpropanoyl]- N^{2}-[3-(1H-imidazol-4-yl)propyl]guanidine (51). Yield 91% (deprotection of compound 51a); colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.41$ (s, 1H, Im-2-H), 7.10-7.30 (m, 7H, Ar-H), 6.87-6.97 (m, 2H, Ar-H), 6.72 (s, 1H, Im-5-H), 4.64 (t, J=7.9 $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}_{2} \mathrm{CH}\right), 3.28\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.03\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-$ CH_{2}), $1.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 183.3$ (quart, CO), 161.2 (quart, d, $J=$ $243.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{CF}$), 161.8 (quart, $C=\mathrm{NH}$), 144.8 (quart, $\mathrm{Ph}-C-1$), 140.6 (quart, d, $J=3.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{C}-1$), 134.8 (quart, Im-C-4), 134.1 (+, Im-C-2), 129.2 (+, d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{Ar}-C-2,6), 128.4$ (+, 2C, Ph-C2,6), 127.8 (+, 2C, Ph-C-3,5), 126.1 (+, Ph-C-4), 118.0 (+, Im-C-5), 115.1 (+, d, $J=21.1 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{Ar}-C-$

3,5), $46.6\left(-, \mathrm{Ar}_{2} \mathrm{CH}\right), 45.6\left(+, \mathrm{COCH}_{2}\right), 39.9\left(-, \mathrm{NHCH}_{2}\right), 29.3\left(-, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.9\left(-, \mathrm{Im}-4-\mathrm{CH}_{2}\right)$; ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 4 \mathrm{OAc}\right): 394.3\left(\mathrm{MH}^{+}\right)$; HRMS [EI-MS]: m / z, calculated for [$\left.\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{FN}_{5} \mathrm{O}\right]$ 393.1965, found: 393.1964; $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{FN}_{5} \mathrm{O} \cdot 2$ TFA (621.5).
N^{1}-[3-(3,4-Difluorophenyl)-3-phenylpropanoyl]- N^{2}-[3-(1H-imidazol-4-yl)propyl]guanidine (52). Yield 91% (deprotection of compound 52a); colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.50$ (s, 1H, Im-2-H), 7.11-7.27 (m, 3H, Ar-H), 6.78-7.06 (m, 5H, Ar-H), 6.76 (s, 1H, Im-5-H), 4.64 (t, $J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}_{2} \mathrm{CH}$), 3.33 ($\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2}$), 3.03 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), 2.65 (m, 2H, Im-4CH_{2}), $1.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 183.1$ (quart, CO), 162.9 (quart, d, $\mathrm{J}=$ $246.8 \mathrm{~Hz}, 3-\mathrm{CF}$), 161.6 (quart, d, $J=245.3 \mathrm{~Hz}, 4-C \mathrm{~F}$), 161.8 (quart, $C=\mathrm{NH}$), 144.6 (quart, $\mathrm{Ph}-C-1$), 140.0 (quart, d, $J=3.3 \mathrm{~Hz}, \mathrm{Ar}-C-1$), 139.8 (quart, $\operatorname{Im}-C-4$), 134.1 (+, Im- $C-2$), 129.9 (+, Ph-C-4), 129.3, 129.4 (+, 2C, Ph-C-3.5), 123.5 (+, d, $J=3.3 \mathrm{~Hz}, \mathrm{Ar}-C-6$), 118.1 (+, Im-C-5), 115.4, 115.1 (+, 2C, Ph-C2,6), 114.7 (+ , d, $J=21.3 \mathrm{~Hz}, \mathrm{Ar}-C-5), 113.0(+, \mathrm{d}, J=21.1 \mathrm{~Hz}, \mathrm{Ar}-C-2), 46.6\left(+, \mathrm{Ar}_{2} C H C O\right), 45.9(-$, $\left.\mathrm{COCH}_{2}\right), 39.9\left(-, \mathrm{NHCH}_{2}\right), 29.3\left(-, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.9\left(-, \mathrm{Im}-4-\mathrm{CH}_{2}\right) ;$ ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10\right.$ $\mathrm{mM} \mathrm{NH} 44 \mathrm{OAc}): 412\left(\mathrm{MH}^{+}\right)$; HRMS [EI-MS]: m / z, calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}\right]$ 411.1871, found: 411.1866; $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O} \cdot 2$ TFA (639.5).
N^{1}-[3-(1H-Imidazol-4-yl)propyl]- N^{2}-[3-phenyl-3-(pyridin-2-yl)propanoyl]guanidine (55). Yield 85% (deprotection of compound 55a); colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 8.80(\mathrm{~m}, 1 \mathrm{H}$, Pyr-6-H), 8.57 (m, 1H, Pyr-4-H), 7.99 (m, 1H, Pyr-5-H), 7.58 (d, J = 8.3 Hz, 1H, Pyr-3-H), 7.46 (m, $1 \mathrm{H}, \mathrm{Ph}-H), 7.21-7.39(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}-H$ and $\mathrm{Im}-2-H), 4.84$ (t overlap with $\mathrm{H}_{2} \mathrm{O}, 1 \mathrm{H}, \mathrm{Ar}_{2} \mathrm{CH}$), 3.61 (dd, $J=$ $8.8 \mathrm{~Hz} J=16.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), $3.40-3.31\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right.$ and $\left.\mathrm{NHCH}_{2}\right), 2.80(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Im}-$ 4-CH2), 1.99 (m, 2H, Im-4- $\mathrm{CH}_{2} \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 175.1$ (quart, CO), 161.7 (quart, Py- $C-2$), 155.1 (quart, $C=\mathrm{NH}$), 147.4 (+, Pyr-C-6), 142.0 (quart, Ph-C-1), 141.8 (+, Im-C-2), 134.9 (+, Pyr-C-4), 134.5 (quart, Im-C-4), 130.1, 129.0, 128.6 (+, Ph-C), 125.6 (+, Pyr-C-3), 124.4 (+, Pyr-C-5), $117.1(+, \mathrm{Im}-\mathrm{C}-5), 48.1\left(+, \mathrm{COCH}_{2} \mathrm{CH}\right), 42.2\left(-, \mathrm{COCH}_{2}\right), 41.5\left(-, \mathrm{NHCH}_{2}\right), 27.8\left(-, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 22.5 (-, Im-4- CH_{2}); ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 4 \mathrm{OAc}\right): 377\left(\mathrm{MH}^{+}\right)$; HRMS [EI-MS]: m / z, calculated for $\left(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}\right) 376.2012$, found: 376.2002; $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O} \cdot 3$ TFA (718.5);
N^{1}-[3-(1 H -Imidazol-4-yl)propyl]- N^{2}-[3-phenyl-3-(thiazol-2-yl)propanoyl]guanidine (57). Yield 79% (deprotection of compound 57a); colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 8.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-$ $H-2), 7.70(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$, Thiaz-4-H), 7.49 (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$, Thiaz-5-H), 7.35-7.15 (m, 6H, Ph-H and $\operatorname{Im}-5-H), 5.04\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}\right), 3.59(\mathrm{dd}, J=8.2 \mathrm{~Hz}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}$, one of COCH_{2}), $3.38\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right.$ and one of $\left.\mathrm{COCH}_{2}\right), 2.84\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{Im}-\mathrm{CH}_{2}\right), 2.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-$ $\mathrm{CH}_{2} \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 174.8$ (quart, CO), 174.4 (quart, Thiaz- $\mathrm{C}-2$), 155.5 (quart, $C=\mathrm{NH}$), 142.7 (+ , Thiaz-C-4), 142.2 (quart, Ph-C-1), 134.8 (+, Im-C-2), 134.2 (quart, Im-C-4), 130.0, 129.8, 129.3, 128.9 (+, Ph-C), 121.2 (+, Thiaz-C-5), 117.0 (+, Im- $C-5$), 45.2 (,$+ \mathrm{CHCH}_{2} \mathrm{CO}$), 43.4 (-, $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 41.5\left(-, \mathrm{CH}_{2} \mathrm{NH}\right), 27.9\left(-, \mathrm{ImCH}_{2} \mathrm{CH}_{2}\right)$, $22.5\left(-, \mathrm{Im}-\mathrm{CH}_{2}\right)$; ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM}\right.$ $\left.\mathrm{NH}_{4} \mathrm{OAc}\right): 383\left(\mathrm{MH}^{+}\right)$; HRMS [EI-MS]: m / z, calculated for $\left(\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{OS}\right) 382.1576$, found 382.1576; $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{OS} \cdot 2$ TFA (610.5).

N^{1}-[3-(3,4-Difluorophenyl)-3-(thiazol-2-yl)propanoyl]- N^{2}-[3-(1H-imidazol-4-yl)-propyl]-

guanidine (58). Yield 86% (deprotection of compound 58a); colorless sticky oil; ${ }^{1} \mathrm{H}$-NMR ($\mathrm{CD}_{3} \mathrm{OD}$) δ (ppm): 8.80 (s, 1H, Im-2-H), 7.73 (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$, Thiaz-4-H), 7.48 (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$, Thiaz-5-H), 7.35 (s, 1H, Im-5-H), 7.35-7.15 (m, 3H, ArC), 5.02 (ddq, $J=8.2$ and $6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CO}$), 3.59 (dd, $J=8.2 \mathrm{~Hz}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}$, one of $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 3.38\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{CH} \mathrm{H}_{2} \mathrm{NH}\right), 3.27(\mathrm{dd}, J=6.6 \mathrm{~Hz}, J=16.5$ $\mathrm{Hz}, 1 \mathrm{H}$, one of COCH_{2}), $2.84\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, \operatorname{Im}-4-\mathrm{CH}_{2}\right), 2.03\left(\mathrm{~m}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta$ (ppm): 174.5 (quart, Thiaz- $C-2$), 173.1 (quart, $C \mathrm{O}$), 155.1 (quart, $C=\mathrm{NH}$), 151.3 (quart, dd, $J=12.5$ $\mathrm{Hz}, J=247.6 \mathrm{~Hz}, \mathrm{CF}), 150.8$ (quart, dd, $J=12.6 \mathrm{~Hz}, J=247.1 \mathrm{~Hz}, \mathrm{CF}), 143.1$ (+, Thiaz-C-4), 139.6 (quart, Ar- C-1), 134.8 (+, Im-C-2), 134.2 (quart, Im- $C-4$), 125.7 (+, Ar- C-6), 121.3 (+, Thiaz- $C-5$), $118.7(+, \mathrm{d}, J=17.2 \mathrm{~Hz}, \mathrm{Ar}-C-5), 118.2(+, \mathrm{d}, J=17.2, \mathrm{~Hz}, \mathrm{Ar}-C-2), 117.1(+, \mathrm{Im}-C-5), 44.8(+$,
$\mathrm{CHCH}_{2} \mathrm{CO}$), 43.3 (-, $\mathrm{CH}_{2} \mathrm{CO}$), 41.5 (-, $\mathrm{CH}_{2} \mathrm{NH}$), 27.9 (-, Im-4- $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 22.5 (-, Im-4- CH_{2}); ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} \mathrm{N}_{4} \mathrm{OAc}\right): 419\left(\mathrm{MH}^{+}\right)$; HRMS [EI-MS]: m / z, calculated for $\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{~N}_{6} \mathrm{OS}\right)$ 418.1387, found 418.1387; $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{~N}_{6} \mathrm{OS} \cdot 2$ TFA (646.5).
N^{1}-[3-(1-Benzyl-1H-imidazol-2-yl)-3-(3,4-difluorophenyl)propanoyl]- N^{2}-[3-(1H-imidazol-4-yl)propyl]guanidine (59). Yield 87% (deprotection of compound 59a); colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 8.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-2-\mathrm{H}), 7.65(\mathrm{dd}, J=1.9 \mathrm{~Hz}, J=5.8 \mathrm{~Hz}$, Benzyl-Im-4-H and $-5-\mathrm{H})$, 7.35 (s, 1H, Im-5-H), 7.33-7.24 (m, 3H, Ar-H), 7.20-7.00 (m, 4H, Ph-H), 6.90 (m, 1H, Ph-H), 5.51 (s, $2 \mathrm{H}, \mathrm{PhCH}_{2}$), 5.13 (t overlap with $\mathrm{H}_{2} \mathrm{O}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CO}$), 3.62 (AMX, $J=9.6 \mathrm{~Hz}, J=17.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}$), 3.45-3.32 (AMX and m overlap, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$ and $\mathrm{CH}_{2} \mathrm{NH}$), $2.83\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2}\right), 2.03(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 173.5$ (quart, CO), 163.0 (quart, $\mathrm{C}=\mathrm{NH}$), 154.9 (quart, C=NH), (quart, Benzyl-Im-C-2), 151.5 (quart, dd, $J=12.9 \mathrm{~Hz}, J=248.9 \mathrm{~Hz}, \mathrm{CF}$), 151.3 (quart, dd, $J=12.6 \mathrm{~Hz}, J=248.9 \mathrm{~Hz}, \mathrm{CF}$), 148.1 (quart, Benzyl-Im-C-2), 135.1 (quart, Im-C-4), 134.9 (+, Im-C-2), 134.4 (quart, Ar-C-1), 134.3 (quart, Ph-C-1), 130.2, 129.9, 128.6 (+, Ph-C), 125.5 (+, Ar-C-6), 124.8 (+, Benzyl-Im-C-4), 120.6 (+, Benzyl-Im-C-5), 119.2 (+, d, J = 17.7 Hz, Ar-C-5), 118.4 (+, d, J = 18.7 Hz, Ar-C-2), 117.1 (+, Im-C-5), $52.4\left(-, \mathrm{PhCH}_{2}\right), 41.6\left(-, \mathrm{COCH}_{2}\right), 41.5\left(-, \mathrm{NHCH}_{2}\right), 37.6(+$, $\left.\mathrm{CHCH}_{2} \mathrm{CO}\right), 27.9\left(-, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.4\left(-, \mathrm{Im}-4-\mathrm{CH}_{2}\right)$; ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 44 \mathrm{OAc}\right):$ $419\left(\mathrm{MH}^{+}\right)$; HRMS (EI-MS): m/z calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}\right], 491.2245$, found 491.2234; $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O} \cdot 3$ TFA (833.6).
N^{I}-[3-(3,4-Difluorophenyl)-3-(1 H -imidazol-2-yl)propanoyl]- N^{2}-[3-(1H-imidazol-4-yl)-
propyl]guanidine (60). Synthesized from 59 by hydrogenation at 7-10 bar over 10% Pd-C catalyst in tetrahydrofuran (addition of 2 equivalents of HCl) overnight. Yield 88%; colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 8.79(\mathrm{~s}, 1 \mathrm{H}, 1 \mathrm{H}$-Im-2-H), $7.94(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{H}$-Im-3-H and $-4-H$), 7.47 (s, $1 \mathrm{H}, 1 \mathrm{H}$ - $\mathrm{Im}-5-$ H), 7.41-7.10 (m, 4H, Ar- H and NH), 5.03 (t overlap with $\mathrm{H}_{2} \mathrm{O}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CO}$), 3.61 (dd, J=8.2 Hz, J $\left.=17.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.44\left(\mathrm{dd}, J=6.9 \mathrm{~Hz}, J=17.2 \mathrm{~Hz}, \mathrm{COCH}_{2}\right), 3.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{NH}\right), 2.81(\mathrm{t}, J=7.8$ $\left.\mathrm{Hz}, 2 \mathrm{H}, 1 \mathrm{H}-\mathrm{Im}-4-\mathrm{CH}_{2}\right), 2.01\left(\mathrm{~m}, 2 \mathrm{H}, 1 \mathrm{H}-\mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 173.4$ (quart, $C O$), 155.0 (quart, C=NH), 151.8 (quart, dd, $J=12.5 \mathrm{~Hz}, J=249.0 \mathrm{~Hz}, \mathrm{CF}$), 151.4 (quart, dd, $J=12.6$ $\mathrm{Hz}, J=248.9 \mathrm{~Hz}, \mathrm{CF}$), 148.8 (quart, $2 H$-Im- $\mathrm{C}-2$), 135.5 (quart, Ar-C-1), 134.9 (+, 1 H -Im-C-2), 134.2 (quart, 1 H -Im-C-4), 125.6 (+, Ar-C-6), 120.6 (+, 2H-Im-C-5), 120.4 (+, 2H-Im-C-4), 119.4 (+, d, J = 17.7 Hz, Ar-C-5), 118.3 (+, d, $J=18.1 \mathrm{~Hz}$, Ar-C-2), 117.1 (+, 1 H -Im-C-5), $41.6\left(-, \mathrm{CH}_{2} \mathrm{CO}\right), 40.4(-$, $\mathrm{CH}_{2} \mathrm{NH}$), $39.1\left(+, \mathrm{CHCH}_{2} \mathrm{CO}\right), 27.8\left(-, 1 H-\mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.5$ (-, $\left.1 H-\mathrm{Im}-4-\mathrm{CH}_{2}\right)$; ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 4 \mathrm{OAc}\right): 402\left(\mathrm{MH}^{+}\right)$; HRMS: FAB-MS: m / z for $\left(\left[\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}+\mathrm{H}\right]^{+}\right)$ calcd. 402.1854, found 402.1842; $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O} \cdot 3$ TFA (743.5).
$\boldsymbol{N}^{\mathbf{1}}$-[3-(1H-Imidazol-4-yl)propanoyl]- $\boldsymbol{N}^{\mathbf{2}}$-(3-phenylbutyl)guanidine (61). Yield 84% (deprotection of compound 61a); colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 8.78(\mathrm{~d}, 1 \mathrm{H}, J=1.3 \mathrm{~Hz}, \mathrm{Im}-2-H)$, $7.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-H), 7.23(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 3.17\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.06(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}$, NHCH_{2}), $2.90\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.82(\mathrm{dd}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{~J}=14.5 \mathrm{~Hz}, \mathrm{NH}-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{3}\right), 1.96\left(\mathrm{q}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{NH}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right) 1.28\left(\mathrm{~d}, 3 \mathrm{H}, J=7.0, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ δ (ppm): 175.68 (quart, $C \mathrm{O}$), 155.30 (quart, $C=\mathrm{NH}$), 147.30 (quart. Ph- $C-1$), 134.99 (+, Im- $C-2$), 134.17 (quart, Im-C-4), $127.90,128.39,129.96$ (+, arom. CH), 117.68 (+, Im- $\mathrm{C}-5$), 41.48 (-, Im-4- $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $39.10\left(+, \mathrm{NH}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 37.19\left(-, \mathrm{NH}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 36.30\left(-, \mathrm{NH}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 23.34\left(+, \mathrm{CH}_{3}\right), 20.13(-$, Im-4-CH2); HRMS: HRMS: EI-MS: m / z for $\left(\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}\right)$ calcd. 313.1903, found 313.1902; $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}$ - 2 TFA (541.4).
$\boldsymbol{N}^{\mathbf{1}}$-[3-(1H-Imidazol-4-yl)propyl]- $\boldsymbol{N}^{\mathbf{2}}$-(2-phenylpropanoyl)guanidine (62). Yield $33 \quad \%$ (deprotection of compound 62a); colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 8.76(\mathrm{~d}, 1 \mathrm{H}, J=1.2$ $\mathrm{Hz}, \operatorname{Im}-2-H), 7.32(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}, \mathrm{Im}-5-H), 3.90\left(\mathrm{q}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{COCHCH}_{3}\right), 3.34(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}$, Im-4- $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 178.24$ (quart, CO), 155.53 (quart, $C=\mathrm{NH}$), 140.88 (quart. Ph- $C-1$), 134.91 (+, Im- $C-2$), 134.31 (quart, Im- $C-4$), 130.03,
129.73, 128.84 (+ , arom. CH), 117.13 (+ , $\operatorname{Im}-C-5$), 48.50 (,+ COCH), 41.61 (-, $\operatorname{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 27.91 (-, Im-4-CH2CH2), $22.55\left(-\right.$, Im-4- $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 18.65\left(+, \mathrm{CH}_{3}\right)$; HRMS: EI-MS: m / z for $\left(\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}\right)$ calcd. 299.1746, found 299.1745; $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O} \cdot 2$ TFA (527.4).
$\boldsymbol{N}^{\mathbf{1}}$-[3-(1 \boldsymbol{H}-Imidazol-4-yl)propyl]- $\boldsymbol{N}^{\mathbf{2}}$-[3-(pyridin-2-yl)butanoyl]guanidine (65). Yield 89% (deprotection of compound 65a); colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 8.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-2-H)$, 8.57 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$, Pyr-6-H), 8.09 (dt, $J=1.7 \mathrm{~Hz}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, Pyr-4-H), 7.67 (d, $J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}, \operatorname{Pyr}-3-H), 7.53(\mathrm{ddd}, J=1.0 \mathrm{~Hz}, J=5.3 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Pyr}-5-H), 7.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-H), 3.60$ (m, 1H, $\mathrm{Ar}_{2} \mathrm{CH}$), $3.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.09\left(\mathrm{dd}, J=8.3 \mathrm{~Hz}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.92(\mathrm{dd}, J=$ $6.2 \mathrm{~Hz}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), $2.82\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2}\right), 2.01$ (m, 2H, Im-4-CH2CH2), $1.40\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 175.4$ (quart, CO), 163.7 (quart, Py-C2), 155.2 (quart, $C=\mathrm{NH}$), 146.7 (+, Pyr- $C-6$), 142.5 (+, Pyr-C-4), 134.9 (+, Im- $C-2$), 134.3 (+, Im-C-4), 125.4 (+, Pyr-C-3), 124.8 (+, Pyr-C-5), 117.1 (+, Im-C-5), $43.4\left(-, \mathrm{COCH}_{2} \mathrm{CH}\right), 41.5\left(-, C \mathrm{H}_{2} \mathrm{NH}\right), 37.4$ $\left(+, \mathrm{COCH}_{2} \mathrm{CH}\right), 27.9\left(-, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.5\left(-, \mathrm{Im}-4-\mathrm{CH}_{2}\right), 20.7\left(+, \mathrm{CH}_{3}\right) ; \mathrm{ES}-\mathrm{MS}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+\right.$ $10 \mathrm{mM} \mathrm{NH} 44 \mathrm{OAc}): 315\left(\mathrm{MH}^{+}\right)$; HRMS: EI-MS: m / z for $\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}\right)$ calcd. 314.1855, found 314.1863; $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O} \cdot 3$ TFA (656.5).
$\boldsymbol{N}^{\mathbf{1}}$-[3-(1H-Imidazol-4-yl)propyl]- $\boldsymbol{N}^{\mathbf{2}}$-[3-(thiazol-2-yl)butanoyl]guanidine (66). Yield 84% (deprotection of compound 66a) colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 8.84$ (s, 1H, Im-2-H), $7.70(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$, Thiaz-4-H), $7.49(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$, Thiaz-5-H), 7.28 (s, 1H, Im-H-5), 3.90 (m, $\left.1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CO}\right)$, , $3.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.12\left(\mathrm{dd}, J=8.2 \mathrm{~Hz}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one of $\left.\mathrm{COCH}_{2}\right), 2.92$ $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2}\right.$ and one of $\left.\mathrm{COCH}_{2}\right), 2.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.42\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, C \mathrm{H}_{3}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 176.4$ (quart, $C \mathrm{O}$), 175.1 (quart, Thiaz- $C-2$), 155.2 (quart, $C=\mathrm{NH}$), 142.7 (+, Thiaz-C-4), 134.9 (+, Im-C-2), 134.3 (quart, Im-C-4), 120.2 (+, Thiaz-C-5), 117.1 (+, Im-C-5), 44.3 $\left(-, \mathrm{CHCH}_{2} \mathrm{CO}\right), 41.6\left(-, \mathrm{CH}_{2} \mathrm{NH}\right), 35.1\left(+, \mathrm{CHCH}_{2} \mathrm{CO}\right), 27.9\left(-, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.5\left(-, \mathrm{Im}-4-\mathrm{CH}_{2}\right), 21.7$ $\left(+, \mathrm{CH}_{3}\right)$; ES-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}+10 \mathrm{mM} \mathrm{NH} 4 \mathrm{NAc}^{\mathrm{OA}}\right): 321.5\left(\mathrm{MH}^{+}\right)$; HRMS: FAB-MS: m / z for ($\left[\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{OS}+\mathrm{H}\right]^{+}$) calcd. 321.1498, found 321.1508; $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{OS} \cdot 2$ TFA (548.5).
N^{1}-Benzoyl- \boldsymbol{N}^{2}-[3-(1H-imidazol-4-yl)propyl]guanidine (67). Yield 19% (deprotection of compound 67a); colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 8.81(\mathrm{~d}, 1 \mathrm{H}, J=1.3 \mathrm{~Hz}, \mathrm{Im}-2-H)$, $8.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.69(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 7.56(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-H), 3.485(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $\left.\mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.88\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \quad \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}\right),{ }^{13} \mathrm{C}-$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}): 169.93$ (quart, CO), 155.91 (quart, $C=\mathrm{NH}$), 135.27 (quart. Ph- $C-1$), 134.99 (+, Im- C-2), 134.31 (quart, Im-C-4), 132.75, 130.18, 129.34 (+, arom. $C H$), 117.17 (+, Im- $C-5$), 41.86 (-, Im-4- $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 28.05 (-, Im-4- CH_{2}), 22.58 (- , Im-4- $\mathrm{CH}_{2} \mathrm{CH}_{2}$); HRMS: EI-MS: m / z for [$\left.\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}\right]$ calcd. 271.1433, found 271.1433; $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O} \cdot 2$ TFA (499.4).
$\boldsymbol{N}^{\mathbf{1}}$-[3-(1H-Imidazol-4-yl)propyl]- $\boldsymbol{N}^{\mathbf{2}}$-(phenylacetyl)guanidine (68).; Yield 21% (deprotection of compound 68a); colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 8.78(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}, \mathrm{Im}-2-H)$, 7.35 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Im}-5-H$), $7.31(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 3.79\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 3.37$ (t, $2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{Im}-4-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.82\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{COCH}_{2}\right), 2.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right),{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 175.20$ (quart, $C \mathrm{CO}$), 155.47 (quart, $C=\mathrm{NH}$), 134.95 (quart. Ph- $C-1$), 134.41 (+, Im- C 2), 134.35 (quart, Im- $C-4$), 130.63, 129.82, 128.62 (+, arom. $C H$), 117.13 (+, Im- $C-5$), $44.40(-$, $\left.\mathrm{COCH}_{2}\right), 41.61\left(-, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 27.93\left(-, \mathrm{Im}-4-\mathrm{CH}_{2}\right), 22.55\left(-, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; HRMS: EI-MS: m / z for $\left[\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}\right]$ calcd. 285.1590, found 285.1590; $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O} \cdot 2$ TFA (513.4).
N^{1}-[3-(1H-Imidazol-4-yl)propyl]- N^{2}-(3-phenylpropanoyl)guanidine (69). Yield 45% (deprotection of compound 69a); colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 8.74$ (d, $1 \mathrm{H}, J=1.2$ $\mathrm{Hz}, \operatorname{Im}-2-H), 7.32(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Im}-5-H), 7.22(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 3.35\left(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 2.94(\mathrm{t}, 2 \mathrm{H}$, $\left.J=7.3 \mathrm{~Hz}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.79\left(\mathrm{q}, 4 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{COCH}_{2}\right), 2.01(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-$ $\mathrm{CH}_{2} \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 176.63$ (quart, CO), 155.33 (quart, $C=\mathrm{NH}$), 141.36 (quart. Ph-
$C-1$), 134.86 (+, Im-C-2), 134.28 (quart, Im-C-4), $127.49,129.50,129.61$ (+, arom. $C H$), 117.13 (+, Im-$C-5), 41.53\left(-\right.$, Im-4- $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 39.49\left(-, \mathrm{COCH}_{2}\right), 31.30\left(-, \mathrm{Im}-4-\mathrm{CH}_{2}\right), 27.99\left(-, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right)$, $22.54\left(-, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; HRMS: EI-MS: m / z for $\left[\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}\right]$ calcd. 291.1746, found 291.1747; $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O} \cdot 2$ TFA (527.4).
$\boldsymbol{N}^{\mathbf{1}}$-[3-(1H-Imidazol-4-yl)propyl]- $\boldsymbol{N}^{\mathbf{2}}$-(4-phenylbutanoyl)guanidine (70). Yield 27% (deprotection of compound 70a); colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 8.80(\mathrm{~d}, 1 \mathrm{H}, J=1.3 \mathrm{~Hz}, \mathrm{Im}-2-H)$, $7.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-H), 7.22(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 3.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.83(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}$, $\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.67\left(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{Im}-4-\mathrm{CH}_{2}\right), 2.49\left(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{COCH}_{2}\right), 1.99(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 177.24$ (quart, CO), 155.36 (quart, $C=\mathrm{NH}$), 142.61 (quart. Ph- $C-1$), 134.93 (+, Im- $C-2$), 134.33 (quart, Im- $C-4$), 130.83, 130.22, 129.73, 129.61, $127.14(+$, arom. $C H), 117.14(+, \mathrm{Im}-C-5), 41.53\left(-, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 37.15\left(-, \mathrm{COCH}_{2}\right), 35.94(-$, $\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $27.99\left(-, \mathrm{Im}-4-\mathrm{CH}_{2}\right), 27.21\left(-, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.56\left(-, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right)$; HRMS: EI-MS: m / z for $\left[\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}\right]$ calcd. 313.1903, found 313.1903; $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O} \cdot 2$ TFA (541.4).
$\boldsymbol{N}^{\mathbf{1}}$-[3-(1H-Imidazol-4-yl)propyl]- $\boldsymbol{N}^{\mathbf{2}}$-(5-phenylpentanoyl)guanidine (71). Yield 24% (deprotection of compound 71a); colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 8.76(\mathrm{~d}, 1 \mathrm{H}, J=1.3 \mathrm{~Hz}, \mathrm{Im}-2-H)$, $7.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-H), 7.17(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 3.36\left(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.82(\mathrm{t}, 2 \mathrm{H}, J=7.7$ $\mathrm{Hz}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.61\left(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.48\left(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{COCH}_{2}\right), 2.01(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 177.42$ (quart, CO), 155.39 (quart, $C=\mathrm{NH}$), 143.33 (quart. Ph- $C-1$), 134.99 (+, Im- $C-2$), 134.23 (quart, Im- $C-4$), 129.47, $129.39,126.85(+$, arom. CH$), 117.14$ (+, Im-C-5), $41.44\left(-, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 37.56\left(-, \mathrm{COCH}_{2}\right)$, $36.48\left(-, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 31.81\left(-, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 27.99\left(-\right.$, $\left.\mathrm{Im}-4-\mathrm{CH}_{2}\right), 25.02$ (-, Im-4$\mathrm{CH}_{2} \mathrm{CH}_{2}$), $22.54\left(-, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right)$; HRMS: EI-MS: m / z for $\left[\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}\right.$] calcd. 327.2059, found 327.2056; $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O} \cdot 2$ TFA (555.5).
$\boldsymbol{N}^{\mathbf{1}}$-(2-Cyclohexylpropanoyl)- $\boldsymbol{N}^{\mathbf{2}}$-[3-(1H-imidazol-4-yl)propyl]guanidine (72). Yield $47 \quad \%$ (deprotection of compound 72a); colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 8.80(\mathrm{~d}, 1 \mathrm{H}, J=1.0$ $\mathrm{Hz}, \mathrm{Im}-2-H), 7.37(\mathrm{~d}, 1 \mathrm{H}, J=1.4 \mathrm{~Hz}, \mathrm{Im}-5-H), 3.39\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.84(\mathrm{t}, 2 \mathrm{H}$, $\left.J=7.0 \mathrm{~Hz}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 2.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.69(\mathrm{~m}, 6 \mathrm{H}$, cHex- CH_{2}), $1.24\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{cHex}-\mathrm{CH}_{2}\right), 1.14\left(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{cHex}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 180.75$ (quart, $C \mathrm{CO}$), 155.42 (quart, $C=\mathrm{NH}$), 134.96 (+, Im- $C-2$), 134.33 (quart, Im- C 4), 117.13 (+, Im-C-5), 42.08 (+, cHex-CH), 41.64 (-, $\mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $32.30\left(-, \mathrm{Im}-4-\mathrm{CH}_{2}\right), 27.36$, $27.95\left(-, \mathrm{cHex}^{-} \mathrm{CH}_{2}\right), 27.30\left(-, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.59\left(-, \mathrm{cHex}^{2} \mathrm{CH}_{2}\right), 22.31\left(+, \mathrm{CHCH}_{3}\right), 14.12\left(+, \mathrm{CH}_{3}\right)$; HRMS: EI-MS: m / z for $\left[\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}\right.$] calcd. 305.2216, found 305.2212; $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O} \cdot 2$ TFA (533.4).
$\boldsymbol{N}^{\mathbf{1}}$-(3-Cyclohexylbutanoyl)- $\boldsymbol{N}^{\mathbf{2}}$-[3-(1H-imidazol-4-yl)propyl]guanidine (73). Yield $44 \quad \%$ (deprotection of compound 73a); colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 8.79(\mathrm{~d}, 1 \mathrm{H}, J=0.7$ $\mathrm{Hz}, \mathrm{Im}-2-H), 7.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-H), 3.37\left(\mathrm{dd}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}, J=12.9 \mathrm{~Hz}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.84$ (t, $\left.2 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.56(\mathrm{dd}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}, J=5.1 \mathrm{~Hz}, \mathrm{CHH}), 2.22(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15$ $\mathrm{Hz}, \mathrm{J}=9.1 \mathrm{~Hz}, \mathrm{CHH}), 2.04\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CHCH}_{3}\right), 1.68-1.90\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{cHex}-\mathrm{CH}_{2}\right.$, cHex-CH$)$, 1.04-1.21 (m, 6H, cHex- CH_{2}), $0.91\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 177.54$ (quart, $C \mathrm{O}$), 154.40 (quart, $C=\mathrm{NH}$), $134.94(+, \mathrm{Im}-C-2$), 134.34 (quart, $\operatorname{Im}-C-4), 117.14$ (,$+ \mathrm{Im}-C-5$), $43.94\left(+\right.$, cHex-CH), $42.71\left(-, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 41.47\left(-, \mathrm{COCH}_{2}\right), 36.44\left(+, \mathrm{CH}_{3} \mathrm{CH}\right), 31.48(-$, cHex- CH_{2}), $30.03\left(-, \mathrm{Im}-4-\mathrm{CH}_{2}\right), 27.99,28.85\left(-, \mathrm{cHex}^{2} \mathrm{CH}_{2}\right), 27.74\left(-, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.57$ (-, cHexCH_{2}), $16.61\left(+, \mathrm{CH}_{3}\right)$; HRMS: EI-MS: m / z for $\left[\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}\right]$ calcd. 319.2372, found 319.2372; $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O} \cdot 2$ TFA (547.4).
$\boldsymbol{N}^{\mathbf{1}}$-Cyclohexylcarbonyl- $\boldsymbol{N}^{\mathbf{2}}$-[3-(1H-imidazol-4-yl)propyl]guanidine (74). Yield 27% (deprotection of compound 74a); colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 8.78(\mathrm{~d}, 1 \mathrm{H}, J=0.9 \mathrm{~Hz}, \mathrm{Im}-2-H)$, $7.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Im}-5-H), 3.38\left(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.83(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{Im}-4-$
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.42 (m, 1H, cHex-CH), 2.03 (m, 2H, Im-4- $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.80\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{cHex}-\mathrm{CH}_{2}\right.$), $1.33(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{cHex}-\mathrm{CH}_{2}$), ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm})$: 180.46 (quart, CO), 155.89 (quart, $\mathrm{C}=\mathrm{NH}$), $134.94(+$, Im- C-2), 134.34 (quart, Im-C-4), 117.18 (+, Im-C-5), 46.70 (+, cHex- CH), 41.58 (- , Im-4$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 29.91 (-, Im-4- CH_{2}), 27.99 (-, Im-4- $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 26.68, 26.27, 22.63 (-, cHex- CH_{2}), HRMS: EI-MS: m / z for $\left[\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}\right]$ calcd. 277.1903, found 277.1900; $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O} \cdot 2$ TFA (505.4).
$\boldsymbol{N}^{\mathbf{1}}$-Cyclohexylacetyl- $\boldsymbol{N}^{\mathbf{2}}$-[3-(1H-imidazol-4-yl)propyl]guanidine (75). Yield 18% (deprotection of compound 75a); colorless sticky oil;; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 8.79$ (s, $\left.1 \mathrm{H}, \mathrm{Im}-2-H\right), 7.35(\mathrm{~s}, 1 \mathrm{H}$, Im-5-H), 3.37 (t, $2 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.83\left(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$), 2.33 $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{COCH}_{2}\right), 2.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.75\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{cHex}-\mathrm{CH}_{2}\right), 1.12(\mathrm{~m}, 5 \mathrm{H}, \mathrm{cHex}-$ CH_{2}), ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm})$: 177.78 (quart, CO), 155.45 (quart, $C=\mathrm{NH}$), 134.94 (+ , Im- $C-2$), 134.34 (quart, Im-C-4), 117.15 (+, Im-C-5), $41.54\left(-, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$), $38.42(+$, cHex- CH), $35.47(-$, COCH_{2}), 34.13 (-, cHex- CH_{2}), 32.93 (-, $\mathrm{COCH}_{2} \mathrm{CH}_{2}$), $28.00\left(-, \mathrm{Im}-4-\mathrm{CH}_{2}\right), 27.63\left(-, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 27.35, 22.56; HRMS: EI-MS: m / z for [$\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}$] calcd. 291.2059, found 291.2059; $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O} \cdot 2$ TFA (519.4).
N^{1}-(3-Cyclohexylpropanoyl)- N^{2}-[3-(1H-imidazol-4-yl)propyl]guanidine (76). Yield 56% (deprotection of compound 76a); colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 8.80(\mathrm{~d}, 1 \mathrm{H}, J=1.2$ $\mathrm{Hz}, \mathrm{Im}-2-H), 7.37(\mathrm{~d}, 1 \mathrm{H}, ~, J=0.7 \mathrm{~Hz}, \mathrm{Im}-5-H), 3.39\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.84(\mathrm{t}$, $2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.48\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{COCH}_{2}\right), 2.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.72$ (m, 5H, cHex-CH2, cHex-CH), $1.54\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 1.24\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{cHex}-\mathrm{CH}_{2}\right), 0.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{cHex}-$ CH_{2}); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 177.78$ (quart, CO), 155.45 (quart, $C=\mathrm{NH}$), 134.94 (+, Im- $C-2$), 134.34 (quart, Im-C-4), 117.15 (+, Im-C-5), 41.54 (-, Im-4- $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 38.42 (+, cHex-CH), 35.47 (-, COCH_{2}), 34.13 (-, cHex- CH_{2}), 32.93 (-, $\mathrm{COCH}_{2} \mathrm{CH}_{2}$), $28.00\left(-, \mathrm{Im}-4-\mathrm{CH}_{2}\right.$), 27.63 (-, Im-4- $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 27.35, 22.56 (-, cHex- CH_{2}); HRMS: EI-MS: m / z for $\left[\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}\right.$] calcd. 305.2216, found 305.2213; $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O} \cdot 2$ TFA (533.4).
N^{1}-(4-Cyclohexylbutanoyl)- $\boldsymbol{N}^{\mathbf{2}}$-[3-(1H-imidazol-4-yl)propyl]guanidine (77). Yield 26% (deprotection of compound 77a); colorless sticky oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 8.79(\mathrm{~d}, 1 \mathrm{H}, J=1.4$ $\mathrm{Hz}, \operatorname{Im}-2-H$), $7.36(\mathrm{~d}, 1 \mathrm{H}, ~, J=1.0 \mathrm{~Hz}, \operatorname{Im}-5-H), 3.38\left(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \operatorname{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.84(\mathrm{t}$, $\left.2 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.45\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{COCH}_{2}\right), 2.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Im}-4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.68$ ($\mathrm{m}, 7 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2}$, cHex- CH_{2}, cHex-CH), $1.22\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{cHex}-\mathrm{CH}_{2}\right), 0.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 177.54$ (quart, CO), 155.41 (quart, $C=\mathrm{NH}$), 134.93 (+, Im-C-2), 134.34 (quart, Im-C-4), 117.14 (+, Im-C-5), $41.54\left(-\right.$, Im-4- $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 38.71 (+, cHex-CH), 38.05 (-, COCH_{2}), $37.81\left(-, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 34.41\left(-\right.$, cHex- $\left.\mathrm{CH}_{2}\right)$, $27.99\left(-\right.$, cHex- $\left.\mathrm{CH}_{2}\right)$, 27.78 (-, Im-4- CH_{2}), 27.47 (-, Im-4- $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $22.93\left(-, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 22.56$ (-, cHex-CH2); HRMS: EI-MS: m/z for [$\left.\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}\right]$ calcd. 319.2379, found 319.2377; $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O} \cdot 2$ TFA (547.4).

4. HPLC-Data of the acylguanidines 46-77

Analytical chromatography was performed on a Thermo Separation Products system equipped with a SN 400 controller, P4000 pump, an AS3000 autosampler and a Spectra Focus UV-VIS detector (Darmstadt, Germany). The columns were either: Column A: Nucleodur (Macherey-Nagel, Düren, Germany) 100-5 C18 ec ($250 \times 4.0,5 \mu \mathrm{~m}$), $\mathrm{t}_{0}(0.8 \mathrm{~mL} / \mathrm{min})=2.30 \mathrm{~min}$; Column B: Luna (Phenomenex, Aschaffenburg, Germany) C18 ($150 \times 4.6,4 \mu \mathrm{~m}), \mathrm{t}_{0}(0.7 \mathrm{~mL} / \mathrm{min})=2.88 \mathrm{~min}$; Column C: Eurospher100 (Knauer, Berlin, Germany) C-18 ($250 \times 4.0,5 \mu \mathrm{~m}$), $\mathrm{t}_{0}(0.7 \mathrm{~mL} / \mathrm{min})=3.32 \mathrm{~min}$; Column D: Purospher (Agilent Technologies, Böblingen, Germany) 100 C18 (250 x 4.0, $5 \mu \mathrm{~m}$); Column E: Synergi Hydro-RP (Phenomenex, Aschaffenburg, Germany) $(250 \times 4.6,4 \mu \mathrm{~m}), \mathrm{t}_{0}(0.8 \mathrm{~mL} / \mathrm{min})=3.10 \mathrm{~min}$. The temperature was $30^{\circ} \mathrm{C}$ and the UV detection was set to 254 and 210 nm . Aqueous TFA was prepared with Millipore water. $\mathrm{k}^{\prime}=\left(\mathrm{t}_{\mathrm{R}}-\mathrm{t}_{0}\right) / \mathrm{t}_{0}$.

Table 1. Retention times, capacity factors (k^{\prime}) and purities of compounds 46-77.

No	$\begin{gathered} \mathbf{t}_{\mathbf{R}} \\ {[\mathbf{m i n}} \\] \end{gathered}$	k'	mobile phase	column	$\begin{aligned} & \text { purity } \\ & {[\%]} \end{aligned}$
46	8.75	2.80	0 min : 0.05% TFA/MeCN 97/3, 20 min : 85/15	A	93
47	14.66	5.37	0 min : $0.05 \% \mathrm{TFA} / \mathrm{MeCN} 95 / 5,20 \mathrm{~min}$: 50/50	A	97
48	16.51	4.73	0 min : 0.05\% TFA/MeCN 80/20, 20 min : 64/36	B	100
49	14.72	4.11	0 min : 0.05\% TFA/MeCN 90/10, 20 min : 75/25	B	100
50	19.50	5.77	0 min : 0.05\% TFA/MeCN 80/20, 20 min : 64/36	B	95
51	18.18	5.31	0 min : 0.05\% TFA/MeCN 80/20, 20 min : 64/36	B	85
52	18.59	5.45	0 min : 0.05% TFA/MeCN 80/20, 20 min : 68/32	B	97
53	$\begin{aligned} & 4.60 \\ & 8.36 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.82 \end{aligned}$	0.1% TFA/MeOH 20/80 0.1% TFA/MeOH 30/70	D	>96
54	$\begin{aligned} & 4.99 \\ & 9.42 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 1.05 \end{aligned}$	0.1\% TFA/MeOH 20/80 0.1% TFA/MeOH 30/70	D	>94
55	14.27	3.95	0 min: 0.05\% TFA/MeCN 90/10, 20 min : 80/20	B	86
56	17.51	5.08	0 min : 0.05\% TFA/MeCN 90/10, 20 min : 80/20	B	90
57	10.91	2.79	0 min : 0.05\% TFA/MeCN 80/20, 20 min : 70/30	B	95
58	12.62	3.38	0 min : 0.05\% TFA/MeCN 80/20, 20 min : 62/38	B	100
59	13.78	3.78	0 min: 0.05% TFA/MeCN 80/20, 20 min : 70/30	B	98
60	9.12	2.17	0 min: 0.05% TFA/MeCN 90/10, 20 min : 75/25	B	80
61	12.76	2.85	0 min: 0.05% TFA/MeCN 90/10, 20 min : 40/60	C	100
62	11.77	2.55	0 min : 0.05\% TFA/MeCN 90/10, 20 min : 40/60	C	92
63	9.54	1.27	0 min : 0.05\% TFA/MeCN 80/20, 20 min : 64/36	B	91

64	13.00	3.19	0 min : 0.05\% TFA/MeCN 80/20, 20 min : 70/30	E	95
65	13.00	3.51	0 min: 0.05% TFA/MeCN 98/2, 20 min: 85/15	B	95
66	11.95	3.15	0 min: 0.05% TFA/MeCN 97/3, 20 min: 65/35	B	100
67	16.23	4.63	0 min: 0.05\% TFA/MeCN 90/10, 20 min: 90/10	B	97
68	10.37	2.13	$0 \mathrm{~min}: 0.05 \%$ TFA/MeCN 90/10, $20 \mathrm{~min}: 40 / 60$	C	99
69	11.98	2.61	0 min: 0.05% TFA/MeCN 90/10, 20 min: 40/60	C	100
70	13.26	2.99	0 min: 0.05\% TFA/MeCN 90/10, 20 min: $40 / 60$	C	84
71	14.69	3.43	0 min: 0.05% TFA/MeCN 90/10, 20 min : 40/60	C	99
72	13.89	3.19	$0 \mathrm{~min}: 0.05 \%$ TFA/MeCN 90/10, $20 \mathrm{~min}: 40 / 60$	C	99
73	17.12	4.94	0 min: 0.05% TFA/MeCN 80/20, 20 min: 64/36	B	100
74	13.14	3.56	$0 \mathrm{~min}: 0.05 \%$ TFA/MeCN 90/10, 20 min : 70/30	B	100
75	12.89	2.89	0 min: 0.05% TFA/MeCN 90/10, 20 min : 40/60	C	100
76	14.61	4.07	0 min: 0.05% TFA/MeCN 80/20, 20 min : 64/36	B	100
77	16.39	3.94	0 min: 0.05% TFA/MeCN 90/10, 20 min : 40/60	C	97

HPLC-tracing of compound 46

HPLC-tracing of compound 47

HPLC-tracing of compound 48

HPLC-tracing of compound 49

HPLC-tracing of compound 50

HPLC-tracing of compound 51

HPLC-tracing of compound 52

HPLC-tracing of compound 55

HPLC-tracing of compound 56

HPLC-tracing of compound 57

HPLC-tracing of compound 58

HPLC-tracing of compound 59

HPLC-tracing of compound 61

HPLC-tracing of compound 62

HPLC-tracing of compound 63

HPLC-tracing of compound 64

HPLC-tracing of compound 65

HPLC-tracing of compound 66

HPLC-tracing of compound 67

HPLC-tracing of compound 68

HPLC-tracing of compound 69

HPLC-tracing of compound 70

HPLC-tracing of compound 73

HPLC-tracing of compound $\mathbf{7 4}$

HPLC-tracing of compound $\mathbf{7 5}$

HPLC-tracing of compound 77

5. Pharmacological methods

Investigations on isolated guinea pig organs

Histamine \mathbf{H}_{1} receptor assay on the isolated guinea pig ileum. Guinea pigs of either sex (250-500 g) were stunned by a blow on the neck and exsanguinated. The ileum was rapidly removed, rinsed and cut into segments of $1.5-2 \mathrm{~cm}$ length. The tissues were mounted isotonically (preload of 5 mN) in a jacketed $20-\mathrm{mL}$ organ bath that was filled with Tyrode's solution of the following composition [mM]: $\mathrm{NaCl} 137, \mathrm{KCl} 2.7, \mathrm{CaCl}_{2} 1.8, \mathrm{MgCl}_{2} 1.0, \mathrm{NaH}_{2} \mathrm{PO}_{4} 0.4, \mathrm{NaHCO}_{3} 11.9$, and glucose 5.0. The solution additionally contained atropine to block cholinergic M receptors at a concentration not affecting H_{1} receptors $(0.05 \mu \mathrm{M})$. The solution was aerated with $95 \% \mathrm{O}_{2}-5 \% \mathrm{CO}_{2}$ and warmed to a constant temperature of $37{ }^{\circ} \mathrm{C}$. During an equilibration period of 80 min , the tissues were stimulated three times with histamine $(1 \mu \mathrm{M}$, then $10 \mu \mathrm{M})$ followed by washout. Up to four cumulative concentration-response curves were determined on each organ preparation: a first to histamine ($0.01-30 \mu \mathrm{M}$), and the second to fourth curve to histamine in the presence of increasing concentrations of antagonist (incubation time $10-15 \mathrm{~min}) . \mathrm{pEC}_{50}$ differences were not corrected since four successive curves for histamine were superimposable ($n>10$).

Histamine $\mathbf{H}_{\mathbf{2}}$ receptor assay on isolated guinea pig right atrium (spontaneously beating). Hearts were rapidly removed from guinea pigs used for studies on the ileum (see above). The right atrium was quickly dissected and set up isometrically in Krebs-Henseleit solution under a diastolic resting force of 5 mN in a jacketed 20 mL -organ bath of $32.5^{\circ} \mathrm{C}$ as previously described. ${ }^{27}$ The bath fluid (composition [mM]: $\mathrm{NaCl} 118.1, \mathrm{KCl} 4.7, \mathrm{CaCl}_{2} 1.8, \mathrm{MgSO}_{4} 1.64, \mathrm{KH}_{2} \mathrm{PO}_{4} 1.2, \mathrm{NaHCO}_{3} 25.0$, glucose 5.0, sodium pyruvate 2.0) was equilibrated with $95 \% \mathrm{O}_{2}-5 \% \mathrm{CO}_{2}$ and additionally contained ($R S$)-propranolol (0.3 $\mu \mathrm{M})$ to block β-adrenergic receptors and mepyramine $(1 \mu \mathrm{M})$ to block H_{1}-receptors. Experiments were started after 30 min of continuous washing and an additional equilibration period of 15 min . Antagonists: Two successive concentration-frequency curves to histamine ($0.1-30 \mu \mathrm{M}$) were established, the first in the absence and the second in the presence of the compound under study (incubation time 30 min). Two successive curves for histamine displayed a significant desensitization of 0.13 ± 0.02 ($\mathrm{N}=16$ control organs). This value was used to correct each individual experiment. Agonists: Two successive concentration-frequency curves were established, the first to histamine (0.1$30 \mu \mathrm{M})$ and the second for the agonist under study in the absence or presence of cimetidine ($10 \mu \mathrm{M}, 30$ min incubation time). Furthermore, the sensitivity to $30 \mu \mathrm{M}$ cimetidine was routinely checked at the end of each $\mathrm{H}_{2} \mathrm{R}$ agonist concentration-effect curve established in the absence of an H_{2} receptor antagonist, and a significant reduction of frequency was always observed after 15-45 min.

Calcium assays with U-373 MG cells

Cells and culture conditions. The human U-373 MG (HTB 17) glioblastoma/astrocytoma cell line was obtained from the American Type Culture Collection (Rockville, MD, USA). Cell banking and quality control were performed according to the "seed stock concept". Cells were grown in Eagle's minimum essential medium containing L-glutamine, $2.2 \mathrm{~g} / \mathrm{L} \mathrm{NaHCO}_{3}, 110 \mathrm{mg} / \mathrm{L}$ sodium pyruvate (Sigma, Deisenhofen, Germany), and 10\% (v/v) FCS (GIBCO, Eggenstein, Germany). The cells were cultured in a water-saturated atmosphere of 95% air and 5% carbon dioxide at $37^{\circ} \mathrm{C}$ in $75-\mathrm{cm}^{2}$ culture flasks (Costar, Tecnomara, Fernwald, Germany) and were serially passaged following trypsinization using trypsin ($0.05 \%, \mathrm{v} / \mathrm{v}$) / EDTA (0.02%, v/v) (Roche Diagnostics, Mannheim, Germany).

Preparation of the cells. Adherently growing U-373 MG cells were trypsinized and transferred from a $75-\mathrm{cm}^{2}$ flask to $175-\mathrm{cm}^{2}$ flask (Nunclon, 178883, Nunc, Wiesbaden, Germany) 5-6 days before the experiment. At approx. 80% confluence cells were trypsinized, the suspension ($2-4 \cdot 10^{5}$ cells per mL), was centrifuged for 10 min at 200 g and room temperature. After resuspension in 10 mL of loading buffer (25 mM HEPES (Sigma, Deisenhofen, Germany), $120 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{KCl}, 2 \mathrm{mM} \mathrm{MgCl} 2,1.5$ $\mathrm{mM} \mathrm{CaCl} 2,10 \mathrm{mM}$ glucose), pH 7.4 , cell number was determined with a hemocytometer
(Neubauer, improved), and the cells were adjusted to a density of $1.3 \cdot 10^{6}$ per mL by addition of an appropriate volume of loading buffer.

Loading of the cells with $\mathbf{C a}^{\mathbf{2 +}}$ indicator Fura-2/AM. To three volumes of the prepared cell suspension, one volume of loading dispersion was added, before the cells were incubated in the dark at room temperature for 30 min . The loading dispersion was freshly made by mixing 10 mL of loading buffer, containing 2% bovine serum albumin (BSA), with $50 \mu \mathrm{~L}$ of Pluronic-F-127 (Molecular Probes, Eugene, Oregon, USA) (20% in DMSO), and $40 \mu \mathrm{~L}$ of Fura-2/AM (Molecular Probes, Eugene, Oregon, USA) (1 mM in anhydrous DMSO).
Cells were centrifuged ($200 \mathrm{~g}, 7 \mathrm{~min}$), resuspended in fresh loading buffer and allowed to stand for another 30 min at room temperature in the dark. After two washing/centrifugation cycles (loading buffer, $200 \mathrm{~g}, 7 \mathrm{~min}$) and adjustment of the cell number to a value of $10^{6} / \mathrm{mL}$, cells were incubated for at least 15 min at $20^{\circ} \mathrm{C}$ in the dark.

Fluorimetric determination of intracellular [$\left.\mathbf{C a}^{2+}\right] .1 \mathrm{~mL}$-aliquots of loading buffer were filled into disposable acrylic cuvettes (Sarstedt, No. 67.755, Nuembrecht, Germany), which were thermostatted at $30^{\circ} \mathrm{C}$ in an incubator hood (Infors AG, Bottmingen, Switzerland). Immediately after addition of 1 mL of the Fura-2/AM loaded cell suspension and a magnetic stirrer, the cuvette was placed into the thermostatted $\left(25{ }^{\circ} \mathrm{C}\right)$ stirred cell holder of a LS 50 B Luminescence Spectrometer (Perkin Elmer, Ueberlingen, Germany), equipped with a fast filter accessory. Fluorescence signals were registered (instrument settings: excitation $340 / 380 \mathrm{~nm}$, emission 510 nm , slits 10 nm , resolution 0.1, stirrer low) for 300 s after addition of $10 \mu \mathrm{~L}$ of 6 mM histamine dihydrochloride dissolved in millipore water.

Calculation of $\mathbf{C a}^{2+}$ concentrations. Calcium concentrations were calculated from dual wavelength fluorescence intensities according to the Grynkiewicz equation:

$$
\left[C a^{2+}\right]=K_{d} \cdot \frac{\left(R-R_{\min }\right)}{\left(R_{\max }-R\right)} \cdot S F B
$$

were $\mathrm{K}_{\mathrm{d}}(224 \mathrm{nM})$ is the dissociation constant of the Fura-2-Ca ${ }^{2+}$-complex, R is the experimental fluorescence ratio value $\left(\mathrm{F}_{340} / \mathrm{F}_{380}\right)$, $\mathrm{R}_{\text {min }}$ and $\mathrm{R}_{\text {max }}$ are the fluorescence value ratios ($\mathrm{F}_{340} / \mathrm{F}_{380}$) under Ca^{2+}-free and Ca^{2+}-saturation conditions, respectively, and SFB is the ratio of fluorescence intensities for Ca^{2+}-free/ Ca^{2+}-bound indicator, measured at $380 \mathrm{~nm} . \mathrm{R}_{\text {min }}, \mathrm{R}_{\text {max }}$ and SFB were determined by calibration experiments, performed in every test series.

To measure $\mathrm{R}_{\max }, 10 \mu \mathrm{~L}$ of an aqueous solution of 2% digitonin (Sigma, Deisenhofen, Germany), were pipetted into the cuvette, wheras $\mathrm{R}_{\min }$ was determined after subsequent addition of $50 \mu \mathrm{~L}$ of a 0.6 M EGTA solution (in $1 \mathrm{M} \mathrm{Tris/HCl}, \mathrm{pH} 8.7$).

Investigation of histamine H_{1} receptor antagonists on U-373 MG cells: ${ }^{28}$ To determine the histamine H_{1} receptor antagonism on U-373 MG cells, the inhibition of the (submaximal) increase in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ elicited by $30 \mu \mathrm{M}$ histamine was measured. Prior to stimulation with histamine the cells were incubated with the putative antagonists for 15 min in the dark with stirring. The inhibition (\%) was calculated as follows:

$$
\text { Inhibition }[\%]=\left(100-\frac{\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}} \text {-increase (antagonist }+30 \mu \mathrm{Mhist} \text {) }[\mu \mathrm{M}]}{\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}} \text {-increase }(\text { control })[\mu \mathrm{M}]}\right) \cdot 100
$$

At least seven concentrations of the antagonists were used and at least two independent experiments were carried out on different days. The mean values of the resulting inhibition curves were used to
calculate IC_{50} and pK B values, respectively.
Calculation of $\mathbf{I C}_{\mathbf{5 0}}$ values: IC_{50} values were calculated from at least two antagonist concentrations [B], inhibiting the agonist-stimulated increase in intracellular $\left[\mathrm{Ca}^{2+}\right]$ between 20 and 80%. The mean percentual inhibition values P with $\mathrm{SEM}<10 \%$, determined from at least 3 independent experiments, performed on different days, were logit transformed, according to the equation

$$
\operatorname{logit}(P)=\log \frac{P}{100-P}
$$

and IC_{50} values (logit $\mathrm{P}=0$) were determined from the plot logit (P) versus $\log [B]$ with the slope n according to

$$
\log \frac{\mathrm{P}}{100-\mathrm{P}}=\mathrm{n} \cdot \log [\mathrm{~B}]-\mathrm{n} \cdot \log \mathrm{IC}_{50}
$$

by linear regression.
K_{B} values were calculated according to the Cheng-Prusoff equation with $\mathrm{EC}_{50}=5.37 \mu \mathrm{M}$ for histamine.

Determination of histamine receptor agonism and antagonism in GTPase assays

Generation of recombinant baculoviruses, cell culture and membrane preparation. Recombinant baculoviruses encoding human $H_{1} R$ or a fusion protein of the human $H_{2} R$ with $G_{s \alpha S}$ were prepared as described. ${ }^{29,}{ }^{30}$ Receptors were N-terminally tagged with the FLAG epitope and C-terminally tagged with a hexahistidine tag. The cDNA of the human $\mathrm{H}_{3} \mathrm{R}$ was kindly provided by Dr. Robin Thurmond (Johnson \& Johnson Research and Development, La Jolla, CA), and the cDNA of the human $\mathrm{H}_{4} \mathrm{R}$ was from the UMR cDNA Resource Center at the University of Missouri-Rolla (Rolla, MO). Baculoviruses for the human $\mathrm{H}_{3} \mathrm{R}$ and a fusion protein of the human $\mathrm{H}_{4} \mathrm{R}$ with the RGS-protein GAIP were prepared in analogy to the procedures for the $\mathrm{H}_{1} \mathrm{R}$ and the $\mathrm{H}_{2} \mathrm{R}-\mathrm{G}_{\text {sas }}$ fusion protein ${ }^{29,30}$ using the BaculoGOLD transfection kit (BDPharmingen, San Diego, CA) according to the manufacturer's instructions.

Sf9 cells were cultured in 250- or $500-\mathrm{mL}$ disposable Erlenmeyer flasks at $28^{\circ} \mathrm{C}$ under rotation at 150 r.p.m in SF 900 II medium (Invitrogen, Carlsbad, CA) supplemented with $5 \%(\mathrm{v} / \mathrm{v})$ fetal calf serum (Biochrom, Berlin, Germany) and $0.1 \mathrm{mg} / \mathrm{mL}$ gentamicin (Cambrex Bio Science, Walkersville, MD). Cells were maintained at a density of $0.5-6.0 \times 10^{6}$ cells $/ \mathrm{mL}$. After initial transfection, high-titer virus stocks were generated by two sequential virus amplifications. In the first amplification, cells were seeded at 2.0×10^{6} cells $/ \mathrm{mL}$ and infected with a $1: 100$ dilution of the supernatant from the initial transfection. Cells were cultured for 7 days, resulting in the death of virtually the entire cell population. The supernatant fluid of this infection was harvested and stored under light protection at $4{ }^{\circ} \mathrm{C}$. In a second amplification, cells were seeded at 3.0×10^{6} cells $/ \mathrm{mL}$ and infected with a $1: 20$ dilution of the supernatant fluid from the first amplification. Cells were cultured for 48 h , and the supernatant fluid was harvested. After the 48 h culture period, the majority of cells showed signs of infections (e.g. altered morphology, viral inclusion bodies), but most of the cells were still intact. The supernatant fluid from the second amplification was stored under light protection at $4{ }^{\circ} \mathrm{C}$ and used as routine virus stock for membrane preparations.

In infections for membrane preparation, cells were sedimented by centrifugation and suspended in fresh medium at 3.0×10^{6} cells $/ \mathrm{mL}$. Cells were infected with $1: 100$ dilutions of high-titer baculovirus stocks encoding the various histamine receptors, histamine receptor fusion proteins, G-protein subunits and RGS proteins. Cells were cultured for 48 h before membrane preparation. Sf9 membranes were prepared as described, ${ }^{31}$ using 1 mM EDTA, 0.2 mM phenylmethylsulfonyl fluoride, $10 \mu \mathrm{~g} / \mathrm{mL}$ benzamidine and $10 \mu \mathrm{~g} / \mathrm{mL}$ leupeptin as protease inhibitors. Membranes were suspended in binding
buffer (12.5 mM MgCl 2 , 1 mM EDTA and 75 mM Tris/ $\mathrm{HCl}, \mathrm{pH} 7.4$) and stored at $-80^{\circ} \mathrm{C}$ until use. Protein concentrations were determined using the DC protein assay kit (Bio-Rad, Hercules, CA).

Synthesis of $\left[\gamma{ }_{-}^{32} \mathbf{P}\right]$ GTP. $\left[\gamma-{ }^{32} \mathrm{P}\right]$ GTP was synthesized by enzymatic phosphorylation of GDP according to a previously described procedure. $\left.{ }^{32}{ }^{[32} \mathrm{P}\right] \mathrm{P}_{\mathrm{i}}(8,500-9,100 \mathrm{Ci} / \mathrm{mmol}$ orthophosphoric acid $)$ was from PerkinElmer Life Sciences (Boston, MA, USA). All unlabeled nucleotides, glycerol-3phosphate dehydrogenase, triose phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, and lactate dehydrogenase were from Roche (Mannheim, Germany). 3-Phosphoglycerate kinase and L-glycerol-3-phosphate was from Sigma.

Steady-state GTPase activity assay with Sf9 insect cell membranes expressing histamine \mathbf{H}_{1-4} receptors. Membranes were thawed, sedimented and resuspended in $10 \mathrm{mM} \mathrm{Tris} / \mathrm{HCl}, \mathrm{pH} 7.4$. In the case of the $H_{1} R$ and $H_{2} R$, Sf9 membranes expressing either $H_{1} R$ isoforms plus RGS4 or $H_{2} R-G_{s \alpha}$ fusion proteins, respectively, were used. ${ }^{33,34} \mathrm{H}_{3} \mathrm{R}$-regulated GTP hydrolysis was determined with membranes co-expressing human $H_{3} R$, mammalian $\mathrm{Gi}_{\alpha_{2}}, \mathrm{G}_{\beta 1} \gamma_{2}$ and RGS4. Human $\mathrm{H}_{4} \mathrm{R}$ activity was measured with membranes co-expressing an $\mathrm{H}_{4} \mathrm{R}$-RGS19 fusion protein with $\mathrm{Gi}_{\alpha 2}$ and $\mathrm{G}_{\beta 1} \gamma_{2}$. Assay tubes contained Sf9 membranes ($10-20 \mu \mathrm{~g}$ of protein/tube), $\mathrm{MgCl}_{2}\left(\mathrm{H}_{1} R, \mathrm{H}_{2} \mathrm{R}: 1.0 \mathrm{mM} ; \mathrm{H}_{3} \mathrm{R}, \mathrm{H}_{4} \mathrm{R}: 5.0 \mathrm{mM}\right.$), $100 \mu \mathrm{M}$ EDTA, $100 \mu \mathrm{M}$ ATP, 100 nM GTP, $100 \mu \mathrm{M}$ adenylyl imidodiphosphate, 5 mM creatine phosphate, 40 $\mu \mathrm{g}$ creatine kinase and 0.2% (w/v) bovine serum albumin in $50 \mathrm{mM} \mathrm{Tris/} / \mathrm{HCl}, \mathrm{pH} 7.4$, as well as ligands at various concentrations. In $\mathrm{H}_{4} \mathrm{R}$ assays, NaCl (final concentration of 100 mM) was included. Reaction mixtures ($80 \mu \mathrm{~L}$) were incubated for 2 min at $25^{\circ} \mathrm{C}$ before the addition of $20 \mu \mathrm{~L}\left[\gamma_{-}{ }^{32} \mathrm{P}\right] \mathrm{GTP}$ $(0.1 \mu \mathrm{Ci} /$ tube $)$. Reactions were conducted for 20 min at $25^{\circ} \mathrm{C}$ and terminated by the addition of $900 \mu \mathrm{~L}$ of slurry consisting of $5 \%(\mathrm{w} / \mathrm{v})$ activated charcoal suspended in $50 \mathrm{mM} \mathrm{NaH} \mathrm{NO}_{4}, \mathrm{pH} 2.0$. Charcoal absorbs nucleotides but not P_{i}. Charcoal-quenched reaction mixtures were centrifuged for 7 min at room temperature at 15.000 g . Sixhundred $\mu \mathrm{L}$ of the supernatant fluid were removed, and ${ }^{32} \mathrm{P}_{\mathrm{i}}$ was determined by liquid scintillation counting. Enzyme activities were corrected for spontaneous degradation of $[\gamma-$ ${ }^{32}$ P]GTP. Spontaneous $\left[\gamma-{ }^{32}\right.$ P]GTP degradation was determined in tubes containing all components described above, plus a high concentration of unlabeled GTP $(1 \mathrm{mM})$ that, by competition with $[\gamma-$ $\left.{ }^{32} \mathrm{P}\right]$ GTP, prevents $\left[\gamma-{ }^{32} \mathrm{P}\right]$ GTP hydrolysis by enzymatic activities present in Sf 9 membranes. Spontaneous $\left[\gamma-{ }^{32} \mathrm{P}\right]$ GTP degradation was $<1 \%$ of the total amount of radioactivity added. The experimental conditions chosen ensured that not more than 10% of the total amount of $\left[\gamma_{-}{ }^{32} \mathrm{P}\right]$ GTP added was converted to ${ }^{32} \mathrm{P}_{\mathrm{i}}$. All experimental data were analyzed by non-linear regression with the Prism 4 program (GraphPad Software, San Diego, CA).

6. References

1. Stark, H.; Purand, K.; Hüls, A.; Ligneau, X.; Garbarg, M.; Schwartz, J.-C.; Schunack, W. ${ }^{125}$ I]Iodoproxyfan and Related Compounds: A Reversible Radioligand and Novel Classes of Antagonists with High Affinity and Selectivity for the Histamine H_{3} Receptor. J. Med. Chem. 1996, 39, 1220-1226.
2. Nystrom, R. F.; Brown, W. G. Reduction of Organic Compounds by Lithium Aluminum Hydride. II. Carboxylic Acids. J. Am. Chem. Soc. 1947, 69, 2548-2549.
3. Feichtinger, K.; Sings, H. L.; Baker, T. J.; Matthews, K.; Goodman, M. Triurethane-Protected Guanidines and Triflyldiurethane-Protected Guanidines: New Reagents for Guanidinylation Reactions. J. Org. Chem. 1998, 63, 8432-8439.
4. Eleftheriou, S.; Gatos, D.; Panagopoulos, A.; Stathopoulos, S.; Barlos, K. Attachment of histidine, histamine and urocanic acid to resins of the trityl-type. Tetrahedron Lett. 1999, 40, 2825-2828.
5. Maerten, E.; Sauthier, M.; Mortreux, A.; Castanet, Y. Palladium-N-heterocyclic carbene an
efficient catalytic system for the carbonylative cross-coupling of pyridine halides with boronic acids. Tetrahedron 2007, 63, 682-689.
6. Rahman, O.; Llop, J.; Långström, B. Organic Bases as Additives to Improve the Radiochemical Yields of [${ }^{11}$ C]Ketones Prepared by the Suzuki Coupling Reaction. Eur. J. Org. Chem. 2004, 26742678.
7. Dondoni, A.; Fantin, G.; Fogagnolo, M.; Medici, A.; Pedrini, P. Synthesis of (trimethylsilyl)thiazoles and reactions with carbonyl compounds. Selectivity aspects and synthetic utility. J. Org. Chem. 1988, 53, 1748-1761.
8. Ishikawa, F. Cyclic guanidines. X. Synthesis of 2-(2,2-disubstituted ethenyl- and ethyl)-2imidazolines as potent hypoglycemics. Chem. Pharm. Bull. (Tokyo). 1980, 28, 1394-1402.
9. Macco, A. A.; De Brouwer, R. J.; Buck, H. M. Asymmetric induction in the synthesis of thiophenecontaining steroidlike molecules via olefinic cyclization. Precoiling as model description for the stereochemical course of the reaction. J. Org. Chem. 1977, 42, 3196-3199.
10. Tucker, T. J.; Lumma, W. C.; Lewis, S. D.; Gardell, S. J.; Lucas, B. J.; Sisko, J. T.; Lynch, J. J.; Lyle, E. A.; Baskin, E. P.; Woltmann, R. F.; Appleby, S. D.; Chen, I. W.; Dancheck, K. B.; NaylorOlsen, A. M.; Krueger, J. A.; Cooper, C. M.; Vacca, J. P. Synthesis of a Series of Potent and Orally Bioavailable Thrombin Inhibitors That Utilize 3,3-Disubstituted Propionic Acid Derivatives in the P3 Position. J. Med. Chem. 1997, 40, 3687-3693.
11. Macco, A. A.; Buck, H. M. Preparation of a 6a-substituted optically pure steroid with thiophene as the A ring via asymmetric induction. A circular dichroism study. J. Org. Chem. 1981, 46, 26552660.
12. Uenishi, J.; Hiraoka, T.; Hata, S.; Nishiwaki, K.; Yonemitsu, O.; Nakamura, K.; Tsukube, H. Chiral Pyridines: Optical Resolution of 1-(2-Pyridyl)- and 1-[6-(2,2'-Bipyridyl)]ethanols by LipaseCatalyzed Enantioselective Acetylation. J. Org. Chem. 1998, 63, 2481-2487.
13. Abarbri, M.; Thibonnet, J.; Berillon, L.; Dehmel, F.; Rottlander, M.; Knochel, P. Preparation of New Polyfunctional Magnesiated Heterocycles Using a Chlorine-, Bromine-, or Iodine-Magnesium Exchange. J. Org. Chem. 2000, 65, 4618-4634.
14. Uenishi, J. i.; Hiraoka, T.; Yuyama, K.; Yonemitsu, O. Synthesis of optically pure 1-(2pyridinyl)ethylamine and 4-(2-pyridinyl)-1,3-oxazolin-2-one. Heterocycles 2000, 52, 719-732.
15. Uenishi, J.; Hamada, M. Stereospecific substitution of enantiomerically pure 1-(2-pyridinyl)ethyl methanesulfonate with β-dicarbonyl compounds. Chem. Pharm. Bull. (Tokyo). 2002, 50, 697-700.
16. Kuo, Y. C.; Aoyama, T.; Shioiri, T. New methods and reagents in organic synthesis. 26. Reductive desulfonylation of α-sulfonylacetates. Chem. Pharm. Bull. (Tokyo). 1982, 30, 2787-2792.
17. Sibi, M. P.; Ji, J.; Wu, J. H.; Gurtler, S.; Porter, N. A. Chiral Lewis Acid Catalysis in Radical Reactions: Enantioselective Conjugate Radical Additions. J. Am. Chem. Soc. 1996, 118, 92009201.
18. Sinha, A. K.; Sharma, A.; Joshi, B. P. One-pot two-step synthesis of 4-vinylphenols from 4hydroxy substituted benzaldehydes under microwave irradiation: a new perspective on the classical Knoevenagel-Doebner reaction. Tetrahedron 2007, 63, 960-965.
19. Matasi, J. J.; Caldwell, J. P.; Hao, J.; Neustadt, B.; Arik, L.; Foster, C. J.; Lachowicz, J.; Tulshian, D. B. The discovery and synthesis of novel adenosine receptor ($\mathrm{A}_{2 \mathrm{~A}}$) antagonists. Bioorg. Med. Chem. Lett. 2005, 15, 1333-1336.
20. Bott, K. Carbonsäuresynthesen mit 1,1-Dichloräthylen, II. β-Alkyl- und β-Arylzimtsäuren. Chem. Ber. 1967, 100, 2791-2797.
21. Pfeiffer, P.; Schmitz, E.; Stocker, H.; Kramer, H.; Reuter, G. Autoxidation reactions. VII. Liebigs Ann. Chem. 1953, 581, 149-159.
22. Effenberger, R.; Eisenstadt, A. Process for the preparation of disubstituted benzophenones, their novel intermediates and process for the preparation of said intermediates. IL 115855, 2001. Chem. Abstr. 140:217384.
23. Botella, L.; Najera, C. Mono- and β, β-Double-Heck Reactions of α, β-Unsaturated Carbonyl Compounds in Aqueous Media. J. Org. Chem. 2005, 70, 4360-4369.
24. Boegesoe, K. P. Neuroleptic activity and dopamine-uptake inhibition in 1-piperazino-3phenylindans. J. Med. Chem. 1983, 26, 935-947.
25. Menghin, S.; Pertz, H. H.; Kramer, K.; Seifert, R.; Schunack, W.; Elz, S. N^{α}-Imidazolylalkyl and Pyridylalkyl Derivatives of Histaprodifen: Synthesis and in Vitro Evaluation of Highly Potent Histamine H_{1} Receptor Agonists. J. Med. Chem. 2003, 46, 5458-5470.
26. Bonjean, J.; Schunack, W. H_{2}-Antihistaminika, 35. Mitt. Synthese und H_{2}-antagonistische Wirkung imidazolylmethylthioalkyl-substituierter 1,2,4-Triazole. Arch. Pharm. (Weinheim) 1987, 320, 554562.
27. Black, J. W.; Duncan, W. A.; Durant, C. J.; Ganellin, C. R.; Parsons, E. M. Definition and antagonism of histamine H_{2}-receptors. Nature (London) 1972, 236, 385-390.
28. Li, L.; Kracht, J.; Peng, S.; Bernhardt, G.; Buschauer, A. Synthesis and pharmacological activity of fluorescent histamine H_{1} receptor antagonists related to mepyramine. Bioorg. Med. Chem. Lett. 2003, 13, 1245-1248.
29. Houston, C.; Wenzel-Seifert, K.; Bürckstümmer, T.; Seifert, R. The human histamine H_{2}-receptor couples more efficiently to Sf 9 insect cell G_{s}-proteins than to insect cell G_{q}-proteins: limitations of Sf9 cells for the analysis of receptor/ G_{q}-protein coupling. J. Neurochem. 2002, 80, 678-696.
30. Kelley, M. T.; Bürckstümmer, T.; Wenzel-Seifert, K.; Dove, S.; Buschauer, A.; Seifert, R. Distinct interaction of human and guinea pig histamine H_{2}-receptor with guanidine-type agonists. Mol. Pharmacol. 2001, 60, 1210-1225.
31. Seifert, R.; Lee, T. W.; Lam, V. T.; Kobilka, B. K. Reconstitution of beta2-adrenoceptor-GTP-binding-protein interaction in Sf9 cells--high coupling efficiency in a beta2-adrenoceptor-G(s alpha) fusion protein. Eur. J. Biochem. 1998, 255, 369-382.
32. Walseth, T. F.; Johnson, R. A. The enzymatic preparation of [alpha-(32)P]nucleoside triphosphates, cyclic $\left[{ }^{32} \mathrm{P}\right]$ AMP, and cyclic $\left[{ }^{32} \mathrm{P}\right]$ GMP. Biochim. Biophys. Acta 1979, 562, 11-31.
33. Preuss, H.; Ghorai, P.; Kraus, A.; Dove, S.; Buschauer, A.; Seifert, R. Constitutive activity and ligand selectivity of human, guinea pig, rat, and canine histamine H_{2} receptors. J. Pharmacol. Exp. Ther. 2007, 321, 983-995.
34. Straßer, A.; Striegl, B.; Wittmann, H.-J.; Seifert, R. Pharmacological profile of histaprodifens at four recombinant histamine H_{1} receptor species isoforms. J. Pharmacol. Exp. Ther. 2008, 324, 6071.
