Supporting Information

Acylguanidines as Bioisosteres of Guanidines: N^{G} -Acylated Imidazolylpropylguanidines, a New Class of Histamine H₂ Receptor Agonists

Prasanta Ghorai,[†] Anja Kraus, [†] Max Keller,[†] Carsten Götte,[†] Patrick Igel,[†] Erich Schneider,[‡] David Schnell,[‡] Günther Bernhardt,[†] Stefan Dove,[†] Manfred Zabel,[§] Sigurd Elz,[†] Roland Seifert,[‡] Armin Buschauer[†]*

[†]Pharmaceutical/Medicinal Chemistry, [‡]Pharmacology and Toxicology, [§]Center for Chemical Analysis, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany

Contents			
19-	perimental details for the building blocks and intermediates 10, 12, 13, 21, 24a-d, 25a-d, 29, 26a-d, 30, 27a-d, 31, 32a,b, 33a,b, 34a,b, 35a,b, 37a,b, a,b, 40a,b, 42a-c, 43a-c, 44, 45	S2 - S9	
2. Exp	perimental details for the trityl-protected intermediates 47a-52a, 55a-59a, 61a-77a	S9 - S13	
3. Exp	perimental details for the acylguanidines 47-52, 55, 57-62, 65-77	S14 - S19	
4. HP	LC data for the acylguanidines 46-77 and tracings of key target compounds	S20 - S34	
5. Pha	armacological methods	S35 – S38	
6. Ref	ferences	S38 - S40	

1. Experimental details for the building blocks and intermediates 10, 12, 13, 19-21, 24a-d, 25a-d, 29, 26a-d, 30, 27a-d, 31, 32a,b, 33a,b, 34a,b, 35a,b, 37a,b, 39a,b, 40a,b, 42a-c, 43a-c, 44, and 45

3-[1-(Triphenylmethyl)-1*H***-imidazol-4-yl]propanol (10).** This compound was synthesized starting from urocanic acid according to the method published¹.

3-Phenylbutan-1-ol (12).² To a suspension of LiAlH₄ (15 mmol) in 50 mL abs. THF was slowly added a solution of 3-phenylbutyric acid (12.2 mmol) in abs. THF and stirred for 2 h. After cooling of the flask (ice bath), water was added cautiously to decompose excess hydride. Then 20 mL of 10% H₂SO₄ was added and a clear solution resulted. The solution was extracted three times with CHCl₃, washed with water, dried over Na₂SO₄, and the solvent was removed *in vacuo*. The residue was purified by flash column chromatography. Yield 45 %; colorless oil; ¹H-NMR (CDCl₃) δ (ppm): 7.23 (m, 5H, Ph), 3.54 (m, 2H, CH₂OH), 2.88 (m, 1H, CH₃CH), 1.85 (q, 2H, *J* = 6.9 Hz, *J* = 13.8 Hz, CH₃CHCH₂), 1.27 (d, 3H, *J* = 7.0 Hz, CH₃); MS (PI-EIMS), *m/z*: 150 ([M]⁺), 105 ([PhCHCH₃]⁺), 91 ([C₇H₇]⁺); C₁₀H₁₄O (150.2).

N,*N*'-Bis(benzyloxycarbonyl)guanidine (13) and *N*,*N*'-bis(benzyloxycarbonyl)-*N*"-trifluoromethanesulfonylguanidine (21). These compounds were synthesized according to the method published.³

N-**Trityl-2**-(**1**-**trityl-1***H*-**imidazol-4**-**yl**)**ethanamine** (**19**).⁴ To a solution of histamine dihydrochloride (20 mmol) and Et₃N (80 mmol) in 50 mL CHCl₃ was added dropwise a solution of trityl chloride (50 mmol) in 50 mL CHCl₃ under external cooling with ice. The mixture was allowed to warm up at ambient temperature and stirred for 20 h. The solvent was evaporated under reduced pressure, and the solid residue was suspended in 100 mL of water. After stirring for 1 h, the product was extracted with CHCl₃ (2 x 100 mL), dried over anhydrous Na₂SO₄ and evaporated. Yield 62 %; colorless crystalline solid; mp 202-203 °C; ¹H-NMR (CDCl₃) δ (ppm): 7.42-7.30 (m, 7H, Ph-*H* and Im-2-*H*), 7.31-7.08 (m, 24H, Ph-*H*), 6.50 (s, 1H, Im-5-*H*), 2.73 (t, *J* = 6.2 Hz, 2H, Im-CH₂), 2.40 (t, *J* = 6.3 Hz, 2H, CH₂NH₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc), *m/z*: 596 (MH⁺); C₄₃H₃₇N₃ (595.8).

2-(1-Trityl-1*H***-imidazol-4-yl)ethanamine (20).⁴** To a solution of **19** (0.017 mol) in 47.5 mL CH₂Cl₂ at 0 °C, 2.5 mL of TFA was added drop by drop. After stirring for 10 min at the same temperature, the mixture was allowed to warm to rt and was stirred for additional 45 min. After removing the solvent, the residue was neutralised with saturated sodium bicarbonate solution and then extracted with CHCl₃ (4 x 50 mL), washed with water, brine and dried over anhydrous Na₂SO₄. After removing the solvent, the residue was chromatographed with CHCl₃/MeOH/TEA (94 : 5 : 1) on silica. Yield 68 %; yellowish sticky oil; ¹H-NMR (CDCl₃) δ (ppm): 7.40 (s, 1H, Im-2-CH), 7.35-7.28 (m, 9H, Ph-*H*), 7.18-7.10 (m, 6H, Ph-*H*), 6.60 (s, 1H, Im-5-CH), 2.97 (t, *J* = 6.7 Hz, 2H, CH₂NH₂), 2.70 (t, *J* = 6.7 Hz, 2H, Im-4-CH₂), 1.78 (s br., 2H, CH₂NH₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc), *m/z*: 354 (MH⁺), 243 ([Ph₃C]⁺); C₂4H₂₃N₃ (353.5).

General procedure for the synthesis of ketones 24a-d

A 250 mL three-necked flask fitted with a magnetic pellet was connected to a sidearm dumper that contained of the pertinent benzonitrile (ArCN) (23 mmol), to a pressure equalizing addition funnel, and to the Schlenk line by a vacuum adapter. The apparatus was purged with N₂ for 30 min, and then 23 mmol of the appropriate heteroarylbromide (ArBr) and 100 mL of Et₂O were added sequentially by syringe to the flask via the addition funnel. Then, 14 mL of 1.6 M solution (23 mmol) of ⁿBuLi in hexane and 20 mL of Et₂O were transferred to the addition funnel. The flask was cooled to -78 °C, and the ⁿBuLi solution was added dropwise to the ethereal ArBr solution. After complete addition, the resulting red solution of 2-lithioaren was stirred for 20 min, and then ArCN was added in several portions over 5 min. The reaction mixture was stirred at -78 °C for 1 h, the cold bath was removed, and the mixture was allowed to warm to room temperature with stirring over night. The resulting red-

violet slurry was poured into 100 mL of cold (0 °C) 3 M HCl. After the mixture had been stirred for 20 min, the organic and aqueous fractions were separated, 3 M NaOH was added to the aqueous fraction until the mixture was slightly basic to litmus, and the aqueous fraction was extracted with ether (3 x 100 mL). The combined organic fractions were dried over MgSO₄ and filtered, and solvent was removed by rotatory evaporation to leave dark orange oil. The residue was purified by flash column chromatography.

Phenyl(pyridin-2-yl)methanone (24a). Synthesized from 2-bromopyridine and benzonitrile. Yield 77 %; colorless crystalline solid; mp 42 °C (Lit.⁵ 42 °C); ¹H-NMR (CDCl₃) δ (ppm): 8.73 (m, 1H, Pyr-6-*H*), 8.05 (m, 3H, Pyr-*H* & Ph-*H*), 7.90 (m, 1H, Pyr-*H*), 7.59 (m, 1H, Pyr-*H*), 7.48 (m, 3H, Ph-*H*); EI-MS, *m*/*z* (rel. intensity, %): 183 (M⁺⁺, 63), 105 ([M – Pyr]⁺, 100), 78 ([Pyr]⁺, 18), 77 ([Ph]⁺, 84); C₁₂H₉NO (183.2).

4-Fluorophenyl(pyridin-2-yl)methanone (24b).⁶ Synthesized from 2-bromopyridine and 4-fluorobenzonitrile. Yield 69 %; colorless crystalline solid; mp 68-69 °C; ¹H-NMR (CDCl₃) δ (ppm): 8.73 (m, 1H, Pyr-6-*H*), 8.21-8.11 (m, 2H, Ar-*H*), 8.06 (m, 1H, Pyr-*H*), 7.93 (m, 1H, Pyr-*H*), 7.50 (ddd, 1H, J = 1.4 Hz, J = 4.7 Hz, J = 7.7 Hz, Pyr-*H*), 7.22-7.12 (m, 2H, Ar-*H*); EI-MS, *m*/*z* (rel. intensity, %): 201 (M⁺, 40), 173 ([M – CO]⁺, 79), 123 ([M – Pyr]⁺, 100), 95 ([M – Pyr-CO]⁺, 63); C₁₂H₈FNO (201.2).

Phenyl(thiazol-2-yl)methanone (24c). Synthesized from 2-bromothiazole and benzonitrile. Yield 86 %; colorless crystalline solid; mp 35-37 °C (Lit.⁷ 44-46 °C); ¹H-NMR (CDCl₃) δ (ppm): 8.50-8.45 (m, 2H, Ph-*H*), 8.10 (d, *J* = 3.0 Hz, 1H, Thiaz-4-*H*), 7.72 (d, *J* = 3.0 Hz, 1H, Thiaz-5-*H*), 7.68-7.6 (m, 1H, Ph-*H*), 7.57-7.49 (m, 2H, Ph-*H*); EI-MS, *m*/*z* (rel. intensity, %): 189 (M⁺⁺, 41), 161 ([M – CO]⁺, 54), 105 ([M – Thiaz]⁺, 100), 77 ([M – Thiaz-CO]⁺, 77); C₁₀H₇NOS (189.2).

3,4-Difluorophenyl(thiazol-2-yl)methanone (24d). Synthesized from 2-bromothiazole and 3,4-difluorobenzonitrile. Yield 87 %; colorless crystalline solid; mp 59-60 °C; ¹H-NMR (CDCl₃) δ (ppm): 8.09 (d, J = 3.0 Hz, 1H, Thiaz-4-*H*), 7.75 (d, J = 3.0 Hz, 1H, Thiaz-5-*H*), 7.30 (m, 3H, Ar-*H*), EI-MS, *m/z* (rel. intensity, %): 225 (M⁺, 44), 197 ([M – CO]⁺, 40), 141 ([M – Thiaz]⁺, 100), 113 ([M – Thiaz-CO]⁺, 59), 58 (15); C₁₀H₅F₂NOS (225.2).

General procedure for the synthesis of the ethyl propenoates 25a-d, 29

To a stirred suspension of sodium hydride (0.74 g, 18.5 mmol as 60 % dispersion in oil) in 20 mL of dry THF, triethyl phosphonoacetate (3.95 g, 17.4 mmol) under nitrogen atmosphere was added at a rate such that the reaction temperature was maintained at 30-35 °C. The mixture was stirred at room temperature for 1 h and the solution of the pertinent ketone (18 mmol) in 40 mL of THF was added dropwise over 30 min. The mixture was refluxed for 16-24 h and poured into ice water, extracted with diethyl ether, washed with water, dried and concentrated to give a mixture of *E* and *Z* isomeric ethyl esters, as an oil. The residue was separated by flash column chromatography.

(E/Z)-Ethyl 3-phenyl-3-(pyridin-2-yl)propenoate (25a).⁸ Synthesized from phenyl(pyridin-2-yl)methanone (24a). Yield 72 %; colorless oil; EI-MS, m/z (rel. intensity, %): 252 (M⁺, 96), 224 ([M – Et]⁺, 90), 208 ([M – OEt]⁺, 35), 180 ([M – CO₂Et]⁺, 100), 167 ([M – CHCOOEt]⁺, 9); C₁₆H₁₅NO₂ (253.3).

(E/Z)-Ethyl 3-(4-fluorophenyl)-3-(pyridin-2-yl)propenoate (25b). Synthesized from 4-fluorophenyl(pyridin-2-yl)methanone (25b). Yield 75 %; colorless oil; EI-MS, m/z (rel. intensity, %): 271 ((M⁺, 78), 242 ([M – Et]⁺, 68), 226 ([M – OEt]⁺, 47), 198 ([M – CO₂Et]⁺, 100); C₁₆H₁₄FNO₂ (271.3).

(*E/Z*)-Ethyl 3-phenyl-3-(thiazol-2-yl)propenoate (25c). Synthesized from phenyl(thiazol-2-yl)methanone (22c). Yield 79 %; colorless oil; EI-MS, m/z (rel. intensity, %): 259 (M⁺, 45), 230 ([M – $[Et]^+$, 70), 214 ($[M - OEt]^+$, 40), 186 ($[M - CO_2Et]^+$, 100), 173 ($[M - CHCO_2Et]^+$, 3); $C_{14}H_{13}NO_2S$ (259.3).

(*E*/Z)-Ethyl 3-(3,4-difluorophenyl)-3-(thiazol-2-yl)propenoate (25d). Synthesized from 3,4-difluorophenyl(thiazol-2-yl)methanone (22d). Yield 68 %; colorless oil; EI-MS, *m/z* (rel. intensity, %): 295 (M^{+} , 27), 266 ($[M - Et]^{+}$, 26), 250 ($[M - OEt]^{+}$, 49), 222 ($[M - CO_2Et]^{+}$, 100); C₁₄H₁₁F₂NO₂S (295.3).

(E/Z)-Ethyl 3-(thiophen-2-yl)but-2-enoate (29).⁹ Synthesized from 1-(thiophenyl-2-yl)ethanone (28). Yield 83 %; colorless oil; EI-MS, m/z (rel. intensity, %): 196 (M⁺⁺, 53), 151 ([M – OEt]⁺, 100), 124 ([M – CO₂Et]⁺, 57), 111 ([M – CHCO₂Et]⁺, 15); C₁₀H₁₂O₂S (196.3).

General procedure for the synthesis of the ethyl propanoates 26a-d, 30

The ethyl acrylates were dissolved in THF (100 mL) and 10 % Pd/C (cat.) was added, and the mixture was stirred at room temperature for 12 h under a hydrogen atmosphere. The catalyst was filtered off through Celite pad and the filtrate was concentrated to obtain the corresponding ethyl propanoates.

Ethyl 3-phenyl-3-(pyridin-2-yl)propanoate (**26a**).¹⁰ Synthesized from ethyl 3-phenyl-3-(pyridin-2-yl)propenoate (**25a**). Yield 96 %; colorless oil; EI-MS, *m/z* (rel. intensity, %): 255 (M⁺, 19), 254 (17), 210 ([M – OEt]⁺, 20), 182 ([M – CO₂Et]⁺, 100), 167 ([M – CH₂CO₂Et]⁺, 60); C₁₆H₁₇NO₂ (255.3). ¹H-NMR (CDCl₃) δ (ppm): 8.54 (m, 1H, Pyr-6-*H*), 7.52 (m, 1H, Pyr-4-*H*), 7.35- 7.00 (m, 7H, Pyr-3-*H*, Pyr-5-*H* and 5 Ph-*H*), 6.64 (dd, *J* = 8.8 Hz, *J* = 6.8 Hz, 1H, CHCH₂COOEt), 4.03 (ddq, *J* = 8.7 and 6.8 Hz, 2H, COOCH₂CH₃), 3.44 (dd, *J* = 8.7 Hz, *J* = 16.0 Hz, 1H, CH₂COOEt), 2.98 (dd, *J* = 6.8 Hz, *J* = 16.0 Hz, 1H, CH₂COOEt), 1.12 (t, *J* = 7.1 Hz, 3H, COOCH₂CH₃).

Ethyl 3-(4-fluorophenyl)-3-(pyridin-2-yl)propanoate (26b). Synthesized from ethyl 3-(4-fluorophenyl)-3-(pyridin-2-yl)propenoate (**25b).** Yield 93 %; colorless oil; EI-MS, m/z (rel. intensity, %): 273 (M⁺, 19), 228 ([M – OEt]⁺, 18), 200 ([M – CO₂Et]⁺, 100), 185 ([M – CH₂CO₂Et]⁺, 55); C₁₆H₁₆FNO₂ (273.3). ¹H-NMR (CDCl₃) δ (ppm): 8.53 (m, 1H, Pyr-6-*H*), 7.54 (m, 1H, Pyr-4-*H*), 7.33-7.25 (m, 2H, 2 Ph-*o*-*H*), 7.16-7.05 (m, 2H, Pyr-*H*), 7.03-6.89 (m, 2H, 2 Ph-*m*-*H*), 4.62 (ddq, J = 8.2 and 7.1 Hz, 1H, CHCH₂COOEt), 4.02 (q, J = 7.1 Hz, 2H, COOCH₂CH₃), 3.40 (dd, J = 8.2 Hz, J = 15.9 Hz, 1H, CH₂COOEt), 2.96 (dd, J = 7.1 Hz, J = 15.9 Hz, 1H, CH₂COOEt), 1.11 (t, J = 7.1 Hz, 3H, COOCH₂CH₃).

Ethyl 3-phenyl-3-(thiazol-2-yl)propanoate (26c). Synthesized from ethyl 3-phenyl-3-(thiazol-2-yl)propenoate (**25c**). Yield 91 %; colorless oil; EI-MS, *m/z* (rel. intensity, %): 261 (M^+ , 45), 216 ([M - OEt]⁺, 18), 188 ([$M - CO_2Et$]⁺, 100), 173 ([$M - CH_2CO_2Et$]⁺, 28); C₁₄H₁₅NO₂S (261.3). ¹H-NMR (CDCl₃) δ (ppm): 7.71 (d, *J* = 3.3 Hz, 1H, Thiaz-4-*H*), 7.50-7.20 (m, 5H, Ph-*H*), 7.18 (d, *J* = 3.3 Hz, 1H, Thiaz-5-*H*), 4.90 (ddq, *J* = 7.9 and 7.1 Hz, 1H, CHCH₂COOEt), 4.06 (q, *J* = 7.1 Hz, 2H, COOCH₂CH₃), 3.45 (dd, *J* = 7.9 Hz, *J* = 16.1 Hz, 1H, CH₂COOEt), 2.96 (dd, *J* = 7.5 Hz, *J* = 16.1 Hz, 1H, CH₂COOEt), 1.14 (t, *J* = 7.1 Hz, 3H, COOCH₂CH₃).

Ethyl 3-(3,4-difluorophenyl)-3-(thiazol-2-yl)propanoate (26d). Synthesized from ethyl 3-(3,4-difluorophenyl)-3-(thiazol-2-yl)propenoate (**25d**). Yield 88 %; colorless oil; EI-MS, *m/z* (rel. intensity, %): 297 (M⁺, 34), 252 ([M – OEt]⁺, 17), 224 ([M – CO₂Et]⁺, 100), 209 ([M – CH₂CO₂Et]⁺, 33); C₁₄H₁₃F₂NO₂S (297.3). ¹H-NMR (CDCl₃) δ (ppm): 7.72 (d, *J* = 3.3 Hz, 1H, Thiaz-4-*H*), 7.23 (d, *J* = 3.3 Hz, 1H, Thiaz-5-*H*), 7.22-7.04 (m, 3H, Ar-*H*), 4.85 (ddq, *J* = 7.5 and 7.8 Hz, 1H, CHCH₂CO), 4.08 (q, *J* = 7.1 Hz, 2H, COOCH₂), 3.41 (dd, *J* = 7.5 Hz, *J* = 16.3 Hz, 1H, CH₂COOEt), 3.01 (dd, *J* = 7.8 Hz, *J* = 16.3 Hz, 1H, CH₂COOEt), 1.17 (t, *J* = 7.1 Hz, 3H, OCH₂CH₃).

Ethyl 3-(thiophen-2-yl)butanoate (30).⁹ Synthesized from (*E*)-ethyl 3-(thiophen-2-yl)but-2-enoate (**29**). Yield 96 %; colorless oil; EI-MS, m/z (rel. intensity, %): 198 (M^{+,}, 17), 169 ([M – Et]⁺, 5),

151 ($[M - OEt]^+$, 23), 124 ($[M - CO_2Et]^+$, 56), 111 ($[M - CH_2CO_2Et]^+$, 100); $C_{10}H_{14}O_2S$ (198.3). ¹H-NMR (CDCl₃) δ (ppm): 7.12 (m, 1H, Thio-5-*H*), 6.90 (m, 1H, Thio-3-*H*), 6.83 (m, 1H, Thio-4-*H*), 4.11 (ddq, *J* = 7.1 Hz, OCH₂), 3.59 (m, 1H, CHCH₂CO), 2.68 (dd, *J* = 6.9 Hz, *J* = 15.4 Hz, 1H, CH₂CO), 2.54 (dd, *J* = 7.9 Hz, *J* = 15.4 Hz, 1H, CH₂CO), 1.38 (d, *J* = 6.9 Hz, 3H, CH₃CHCH₂CO), 1.22 (t, *J* = 7.1 Hz, 3H, COOCH₂CH₃).

General procedure for the synthesis of propanoic acids (27a-d, 31)

To a solution of the pertinent ethyl ester (5.0 mmol) in 20 mL of dimethoxyethane was added a solution of LiOH (7.5 mmol) in 5 mL of water, and the mixture was stirred at room temperature for 3 h. The pH of the reaction mixture was adjusted with aqueous HCl to 6 (**27a,b**) or 3 (**27c,d,31**), and the solution was extracted twice with 300 mL portions of EtOAc. The combined extracts were dried with anhydrous MgSO₄ and concentrated *in vacuo* to give the desired product.

3-Phenyl-3-(pyridin-2-yl)propanoic acid (**27a**).¹⁰ Synthesized from ethyl 3-phenyl-3-(pyridin-2-yl)propanoate (**26a**). Yield 96 %; colorless crystalline solid; mp 105 °C; ¹H-NMR (CDCl₃) δ (ppm): 12.98 (br, 1H, COO*H*), 8.53 (m, 1H, Pyr-6-*H*), 7.61 (m, 1H, Pyr-4-*H*), 7.35-7.10 (m, 7H, 2 Pyr-*H* and 5 Ph-*H*), 4.64 (ddq, *J* = 5.2 Hz, *J* = 8.2 Hz, 1H, C*H*CH₂COOH), 3.37 (dd, *J* = 8.2 Hz, *J* = 15.9 Hz, 1H, C*H*₂COOH), 3.06 (dd, *J* = 5.2 Hz, *J* = 15.9 Hz, 1H, C*H*₂COOH); EI-MS, *m*/*z* (rel. intensity, %): 227 (M⁺, 27), 226 (28), 182 ([M – CO₂H]⁺, 100), 167 ([M – CH₂CO₂H]⁺, 62); C₁₄H₁₃NO₂ (227.3).

3-(4-Fluorophenyl)-3-(pyridin-2-yl)propanoic acid (27b). Synthesized from ethyl 3-(4-fluorophenyl)-3-(pyridin-2-yl)propanoate (**26b**). Yield 97 %; colorless crystalline solid; mp 127 °C; ¹H-NMR (CDCl₃) δ (ppm): 11.85 (br. 1H, COO*H*), 8.56 (m, 1H, Pyr-6-*H*), 7.66 (m, 1H, Pyr-4-*H*), 7.20 (m, 4H, 2 Pyr-*H* and 2 Ph-*H*), 6.96 (m, 2H, 2 Ph-*H*), 4.63 (ddq, *J* = 5.5 Hz, *J* = 8.2 Hz, 1H, CHCH₂COOH), 3.34 (dd, *J* = 8.2 Hz, *J* = 15.9 Hz, 1H, CH₂COOH), 3.07 (dd, *J* = 5.5, *J* = 15.9 Hz, 1H, CH₂COOH); EI-MS, *m*/*z* (rel. intensity, %): 245 (M⁺⁺, 32), 227 ([M – OH]⁺, 5), 200 ([M – CO₂H]⁺, 100), 185 ([M – CH₂CO₂H]⁺, 51); C₁₄H₁₂FNO₂ (245.2).

3-Phenyl-3-(thiazol-2-yl)propanoic acid (27c). Synthesized from ethyl 3-phenyl-3-(thiazol-2-yl)propanoate (**26c**). Yield 82 %; colorless crystalline solid; mp 208 °C ; ¹H-NMR (CDCl₃ + CD₃OD) δ (ppm): 7.70 (d, *J* = 3.4 Hz, 1H, Thiaz-4-*H*), 7.21-7.43 (m, 6H, Ph-*H* and Thiaz-5-*H*), 4.89 (ddq, *J* = 7.1 and 8.0 Hz, CHCH₂CO), 3.45 (dd, *J* = 8.0 Hz, *J* = 16.5 Hz, 1H, CH₂CO), 3.07 (dd, *J* = 7.1 Hz, *J* = 16.5 Hz, 1H, CH₂CO); EI-MS, *m/z* (rel. intensity, %): 233 (M⁺⁺, 51), 215 ([M – OH]⁺, 7), 188 ([M – CO₂H]⁺, 100), 173 ([M – CH₂CO₂H]⁺, 40); C₁₂H₁₁NO₂S (233.3).

3-(3,4-Difluorophenyl)-3-(thiazol-2-yl)propanoic acid (27d). Synthesized from ethyl 3-(3,4-difluorophenyl)-3-(thiazol-2-yl)propanoate (**26d**). Yield 92 %; colorless crystalline solid; mp 90 °C; ¹H-NMR (CDCl₃) δ (ppm): 10.70 (s br, 1H, COO*H*), 7.72 (d, *J* = 3.3 Hz, 1H, Thiaz-4-*H*), 7.25 (d, *J* = 3.3 Hz, 1H, Thiaz-5-*H*), 7.20-7.02 (m, 3H, Ar-*H*), 4.84 (t, *J* = 7.4 Hz, C*H*CH₂CO), 3.44 (dd, *J* = 7.4 Hz, *J* = 16.7 Hz, 1H, CH₂CO); EI-MS, *m/z* (rel. intensity, %): 269 (M⁺⁺, 30), 251 ([M – OH]⁺, 6), 224 ([M – CO₂H]⁺, 100), 210 ([M – CH₂CO₂H]⁺, 24); C₁₂H₉F₂NO₂S (269.3).

3-(Thiophen-2-yl)butanoic acid (31).¹¹ Synthesized from ethyl 3-(thiophen-2-yl)butanoate (**30**). Yield 95 %; oil; ¹H-NMR (CDCl₃) δ (ppm): 7.13 (m, 1H, Thio-5-*H*), 6.94-6.89 (m, 1H, Thio-4-*H*), 6.86-6.83 (m, 1H, Thio-3-*H*), 3.61 (m, 1H, CHCH₂CO), 2.76 (dd, J = 6.6 Hz, J = 15.7 Hz, 1H, CH₂CO), 2.62 (dd, J = 8.0 Hz, J = 15.7 Hz, 1H, CH₂CO), 1.43 (d, J = 6.9 Hz, 3H, CH₃CHCH₂CO), EI-MS, *m/z* (rel. intensity, %): 170 (M⁺⁺, 44), 154 ([M – OH]⁺, 6), 125 ([M – CO₂H]⁺, 8), 111 ([M – CH₂CO₂H]⁺, 100); C₈H₁₀O₂S (170.2).

1-(Pyridin-2-yl)ethanol (32a). This compound was synthesized according to the method published¹².

1-(Thiazol-2-yl)ethanol (32b). This compound was synthesized according to the method published¹³.

General procedure for the preparation of the tosylates 33a,b

To a stirred solution of alcohol **32a** or **32b** (29 mmol) and DMAP (7.1 g, 58 mmol) in CH_2Cl_2 (100 mL) was added MsCl (5.6 mL, 72.5 mmol) at 0 °C. The mixture was stirred for 10 min at the same temperature and for an additional time (see below) at rt. Ice water was added to the reaction mixture and the mixture was extracted with CH_2Cl_2 . The organic layer was washed with water, brine and dried over anhydrous Na_2SO_4 . After removal of the solvent, the residual oil was purified by column chromatography on flash silica gel (elution with a mixture of EtOAc and hexane).

1-(Pyridin-2-yl)ethyl methanesulfonate (**33a**).¹⁴ Synthesized from 1-(pyridin-2-yl)ethanol (**32a**); stirred for 1 h. Yield 96 %; colorless oil; ¹H-NMR (CDCl₃) δ (ppm): 8.52 (m, 1H, Pyr-6-*H*), 7.69 (m, 1H, Pyr-4-*H*), 7.40 (m, 1H, Pyr-3-*H*), 7.25 (m, 1H, Pyr-5-*H*), 5.71 (quart, J = 6.6 Hz, 1H, PyrC*H*(OMs)), 2.86 (s, 3H, SO₂C*H*₃), 1.68 (d, J = 6.6 Hz, CHC*H*₃); CI-MS (NH₃), *m/z* (rel. intensity, %): 202 (MH⁺); C₈H₁₁NO₃S (201.2).

1-(Thiazol-2-yl)ethyl methanesulfonate (33b). Synthesized from 1-(thiazol-2-yl)ethanol (**32b**); stirred for 16 h. Yield 96 %; colorless oil; ¹H-NMR (CDCl₃) δ (ppm): 7.72 (d, *J* = 3.3 Hz, 1H, Thiaz-4-*H*), 7.34 (d, *J* = 3.3 Hz, 1H, Thiaz-5-*H*), 5.36 (q, *J* = 6.8 Hz, 1H, CHOMs), 3.66 (s, 3H, SO₂CH₃), 1.96 (d, *J* = 6.8 Hz, 3H, CHCH₃); CI-MS (NH₃), *m/z* (rel. intensity, %): 208 (MH⁺); C₆H₉NO₃S₂ (207.3).

General procedure for the preparation of the 2-substituted dimethyl malonates 34a,b

To a suspension of sodium hydride (72 mg, 3.0 mmol) in THF (6.0 mL) was added dimethyl malonate (3.22 mmol) at 0 °C. After the hydrogen formation had ceased at room temperature, the mixture was added to a solution of 1-(pyridin-2yl)ethyl methanesulfonate (**33a**) or 1-(thiazol-2yl)ethyl methanesulfonate (**33b**) (1.0 mmol) in DMSO (4.0 mL). The reaction mixture was warmed to 60 °C and stirred until the reaction was completed (12 h). After cooling, EtOAc and water were added. The organic phase was separated and the aqueous layer was extracted with EtOAc. The combined organic extracts were washed with water, brine and dried over MgSO₄. After the solvent was removed, the residue was purified by flash column chromatography on silica gel (eluent: mixture of EtOAc and hexane) to give the products.

Dimethyl 2-[1-(pyridin-2-yl)ethyl]malonate (**34a**).¹⁵ Synthesized from 1-(pyridin-2-yl)ethyl methanesulfonate (**33a**). Yield 82 %; colorless oil; ¹H-NMR (CDCl₃) δ (ppm): 8.49 (m, 1H, Pyr-6-*H*), 7.61 (m, 1H, Pyr-4-*H*), 7.23 (m, 1H, Pyr-3-*H*), 7.11 (m, 1H, Pyr-5-*H*), 4.17 (d, J = 10.4 Hz, C*H*(CO₂Me)₂), 3.77 (s, 3H, COOC*H*₃), 3.70 (dq, J = 7.0 Hz, J = 10.4 Hz, 1H, C*H*CH₃), 3.54 (s, 3H, COOC*H*₃), 1.23 (d, J = 7.0 Hz, 3H, CHCH₃); CI-MS (NH₃), *m/z* (rel. intensity, %): 238.0 (MH⁺, 100); C₁₂H₁₅NO₄ (237.3).

Dimethyl 2-[1-(thiazol-2-yl)ethyl]malonate (34b). Synthesized from 1-(thiazol-2-yl)ethyl methanesulfonate (**33b**). Yield 87 %; colorless oil; ¹H-NMR (CDCl₃) δ (ppm): 7.59 (d, *J* = 3.3 Hz, 1H, Thiaz-4-*H*), 7.16 (d, *J* = 3.3 Hz, 1H, Thiaz-5-*H*), 3.98 (d, *J* = 10.3 Hz, CH(CO₂Me)₂), 3.93 (dq, J = 6.7 Hz, *J* = 10.3 Hz, 1H, CHCH₃), 3.68 (s, 3H, COOCH₃), 3.56 (s, 3H, COOCH₃), 1.38 (d, *J* = 6.7 Hz, 3H, CHCH₃); EI-MS, *m*/*z* (rel. intensity, %): 243 (M⁺, 9), 212 ([M – 2 x Me]⁺, 17), 184 ([M – CO₂Me]⁺, 100), 180 ([M – 2 x OMe]⁺, 21), 152 ([C₇H₇NOS]⁺, 97), 124 ([M – 2 x CO₂Me]⁺, 29), 112 ([M – CH(CO₂Me)₂]⁺, 38); C₁₀H₁₃NO₄S (243.3).

General procedure for the preparation of 3-heteroarylbutanoic acids (35a,b)

A solution of diester **34a** or **34b** (1 mmol) in MeOH (3 mL) was treated with NaOH (2.2 N, 1.8 mL) in water, the resulting mixture was heated to reflux, and the reaction was monitored by TLC. When no starting material remained (12-18 h), the reaction mixture was allowed to come to room temperature. Volatiles were removed *in vacuo* and the crude dicarboxylic acid was taken up in AcOH (6 mL) and heated to reflux. The reaction was monitored by TLC, and when no starting material remained (12-18 h), the solution was concentrated *in vacuo*. The resultant crude acid was dissolved in water (5 mL), extracted with EtOAc (3 x 3 mL), and the combined extracts were dried over MgSO₄ and concentrated to give product.

3-(Pyridin-2-yl)butanoic acid (35a). Synthesized from dimethyl 2-[1-(pyridin-2-yl)ethyl]malonate (**34a**); refluxed for 15 h each time. Yield 87 %; yellow oil; ¹H-NMR (CD₃OD) δ (ppm): 8.45 (m, 1H, Pyr-6-*H*), 7.77 (m, 1H, Pyr-4-*H*), 7.36 (m, 1H, Pyr-3-*H*), 7.25 (m, 1H, Pyr-5-*H*), 3.40 (m, 1H, CH₃CHCH₂), 2.80 (dd, *J* = 7.4 Hz, *J* = 15.6 Hz, 1H, CH₂CO), 2.63 (dd, *J* = 7.1 Hz, *J* = 15.6 Hz, 1H, CH₂CO), 1.32 (d, *J* = 6.9 Hz, 3H, CH₃CHCH₂CO); EI-MS, *m/z* (rel. intensity, %): 165 (M^{+*}, 4), 150 ([M – OH]⁺, 6), 132 ([M – O₂H]⁺, 12), 120 ([M – CO₂H]⁺, 100), 106 ([M – CH₂CO₂H]⁺, 62); C₉H₁₁NO₂ (165.2).

3-(Thiazol-2-yl)butanoic acid (35b). Synthesized from dimethyl 2-[1-(thiazol-2-yl)ethyl]malonate (**34b**); refluxed for 15 h each time. Yield 91 %; colorless oil; ¹H-NMR (CDCl₃) δ (ppm): 12.42 (s, COOH), 7.71 (d, *J* = 3.3 Hz, 1H, Thiaz-4-*H*), 7.22 (d, , *J* = 3.3 Hz, 1H, Thiaz-5-*H*), 3.75 (m, 1H, CHCH₂CO₂H), 2.90 (dd, *J* = 6.9 Hz, *J* = 16.0 Hz, 1H, CHCH₂CO₂H), 2.65 (dd, *J* = 7.3 Hz, *J* = 16.0 Hz, 1H, CHCH₂CO₂H), 1.45 (d, *J* = 7.0 Hz, 3H, CH₃CH); EI-MS, *m*/*z* (rel. intensity, %): 171 (M⁺, 21), 156 ([M – Me]⁺, 7), 126 ([M – CO₂H]⁺, 100), 112 ([M – CH₂CO₂H]⁺, 23); C₇H₉NO₂S (171.2).

General procedure for the preparation of cyclohexylalkanoic acids (37a,b)

 $0.5 \text{ g of Rh/Al}_2O_3$ was added to solution of the corresponding phenylalkanoic acid (9 mmol) in acetic acid (30 mL). The mixture was hydrogenated 40 h with constant stirring at 5-6 bar H₂ pressure, filtered through celite pad, washed with acetic acid, and the solvent was removed *in vacuo*. The remaining crude solid was purified by column chromatography on silica gel (eluent: mixture of EtOAc and petrol ether) to give the product.

2-Cyclohexylpropanoic acid (**37a**)¹⁶. Synthesized from 2-phenylpropanoic acid. Yield 92 %; colorless crystalline solid; mp 56-58 °C; ¹H-NMR (CDCl₃) δ (ppm): 11.52 (br s, COOH), 2.28 (m, 1H, - CH₃CH-), 1.67 (m, 6H, cHex-CH₂), 1.23 (m, 3H, cHex-CH₂, cHex-CH), 1.13 (d, 3H, *J* = 7.04 Hz, CH₃), 1.01 (m, 2H, cHex-CH₂); EI-MS: *m/z* (rel. Intens., %): 157 (MH⁺,20), 156 (M⁺, 15); C₉H₁₆O₂ (156.2).

3-Cyclohexylbutanoic acid (**37b**)¹⁷. Synthesized from 3-phenylbutyric acid. Yield 75 %; colorless oil; ¹H-NMR (CDCl₃) δ (ppm): 11.40 (br s, COOH), 2.43 (dd, 1H, *J* = 14.9 Hz, *J* = 5.0 Hz, CHH), 2.11 (dd, 1H, *J* = 14.9 Hz, *J* = 9.2 Hz, CHH), 1.65-1.74 (m, 5H, cHex-CH₂, cHex-CH), 1.87 (m, 1H, CH₃CH), 1.03-1.20 (m, 6H, cHex-CH₂), 0.93 (d, 3H, *J* = 6.8 Hz, CH₃); CI-MS: *m/z* (rel. Intens., %): 188 ([M+NH₄]⁺, 100); C₁₀H₁₈O₂ (170.3).

General procedure for the preparation of 3-(4-halophenyl)propenoic acids (39a,b)

A solution of 4-halobenzaldehyde (70 mmol) and anhydrous NaOAc (61 mmol) were heated to reflux in acetic anhydride (127 mmol) for 6 h. After cooling, the mixture were poured into water and crystallized some days at low temperature. The precipitate were collected and recrystallized.

3-(4-Chlorophenyl)propenoic acid (**39a**)¹⁸. Synthesized from 4-chlorobenzaldehyde. Yield 20 %; colorless solid, mp 248 °C; ¹H-NMR (DMSO-d₆) δ (ppm): 12.50 (br, 1H, COO*H*), 7.50-7.75 (m, 4H, Ar-*H*), 7.60 (d, 1H, *J* = 16.0 Hz, Ar-*CH*), 6.58 (d, *J* = 1H, 16.0 Hz, CHCOOH); C₉H₇ClO₂ (182.6).

3-(4-Bromophenyl)propenoic acid (**39b**)¹⁹. Synthesized from 4-bromobenzaldehyde. Yield 32 %; colorless solid; mp 253 °C; ¹H-NMR (DMSO-d₆), δ (ppm): 12.50 (br, 1H, COO*H*), 7.50-7.70 (m, 4H, Ar-*H*), 7.59 (d, 1H, *J* = 16.3 Hz, Ar-*CH*), 6.57 (d, *J* = 1H, 16.2 Hz, C*H*COOH); C₉H₇BrO₂ (227.1).

General procedure for the synthesis of 3,3-bis(4-halophenyl)propanoic acids (40a,b)

The corresponding 3-(4-halophenyl)propenoic acid (**39a,b**) (22 mmol) and AlCl₃ (75 mmol) were added to the corresponding halobenzene (0.29 mol) and stirred at room temperature. After 2 h, more AlCl₃ (32.5 mmol) was added and the mixture was stirred for another 1 h. Subsequently, the reaction mixture was poured on a mixture of ice water (50 mL) and conc. HCl (30 mL) and excess halobenzene was removed by steam destillation. The aqueous solution was discarded and the remaining residue dissolved in aqueous NaHCO₃ solution. After the addition of a small amount of activated charcoal, the mixture was refluxed for 1 h and filtered after cooling. The filtrate was acidified with 10% HCl/aq (50 mL) and after two days the crystalline solid was recrystallized from MeOH.

3,3-Bis(4-chlorophenyl)propanoic acid (40a). Synthesized from 3-(4-chlorophenyl)propenoic acid (**39a**) and chlorobenzene. Yield 47 %; colorless crystals; mp 194 °C (Lit.²⁰: 194-195 °C); ¹H-NMR (DMSO-d₆) δ (ppm): 7.15-7.31 (m, 8H, Ar-*H*), 4.49 (t, 1H, *J* = 8.0 Hz, CHCH₂), 3.03 (d, 2H, *J* = 8.0 Hz, CHCH₂); C₁₅H₁₂Cl₂O₂ (295.2).

3,3-Bis(4-bromophenyl)propanoic acid (40b). Synthesized from 3-(4-bromophenyl)propenoic acid (**39b**) and bromobenzene. Yield 55 %; colorless crystals; mp 198 °C (Lit.²¹: mp 201-202 °C); ¹H-NMR (DMSO-d₆) δ (ppm): 7.25-7.53 (m, 8H, Ar-*H*), 4.49 (t, 1H, *J* = 8.0 Hz, CHCH₂), 3.01 (d, 2H, *J* = 8.0 Hz, CHCH₂); C₁₅H₁₂Br₂O₂ (384.1).

General procedure for the preparation of propenoic acids (42a-c)

The ketones **41a**, **41b** or **41c** (8.7 mmol) and potassium *tert*-butoxide (2.25 g, 20 mmol) were taken in a 250 mL flask with *tert*-butanol (100 mL), and triethyl phosphonoacetate (1.95 g, 8.7 mmol) was added. The mixture was refluxed overnight. After cooling, the solvent was removed on a rotatory evaporator. After addition of 100 mL 1 N NaOH and 75 mL MeOH the mixture was refluxed for 24 h, concentrated *in vacuo* to remove MeOH, diluted with water (300 mL) and extracted with CHCl₃ (3 x 75 mL). These CHCl₃ extractions were discarded. The aqueous layer was acidified with concentrated hydrochloric acid and extracted again with CHCl₃. This CHCl₃ layer was washed with brine and water, and dried over anhydrous Na₂SO₄. The solvent was removed *in vacuo* and the remaining solid was recrystallized from EtOAc/n-hexane.

(E/Z)-3,3-Bis(4-fluorophenyl)propenoic acid $(42a)^{22}$. Synthesized from bis(4-fluorophenyl)methanone (41a). Yield 91 %; colorless crystalline solid; mp 97-98 °C; EI-MS, *m/z* (rel. intensity, %): 260 (M⁺⁺, 100), 259 (43), 243 ([M – OH]⁺, 20), 214 ([M – CO₂H]⁺, 61), 201 ([M – CHCO₂H]⁺, 30); C₁₅H₁₀F₂O₂ (260.2).

(*E*/*Z*)-3-(4-Fluorophenyl)-3-phenylpropenoic acid (42b)²³. Synthesized from (4-fluorophenyl)-phenylmethanone, a mixture of *E* and *Z* (41b). Yield 85 %; colorless crystalline solid; mp 97-98 °C; EI-MS, *m*/*z* (rel. intensity, %): 242 ($M^{+,}$, 100), 225 ([M - OH]⁺, 16), 196 ([$M - CO_2H$]⁺, 53), 183 ([$M - CHCO_2H$]⁺, 16); C₁₅H₁₁FO₂ (242.2).

(E/Z)-3-(3,4-Difluorophenyl)-3-phenylpropenoic acid (42c). Synthesized from (3,4-difluorophenyl)phenylmethanone (41c). Yield 89 %; colorless crystalline solid; mp 134-136 °C; EI-MS, m/z (rel. intensity, %): 260 (M⁺, 100), 243 ([M – OH]⁺, 21), 214 ([M – CO₂H]⁺, 70); C₁₅H₁₀F₂O₂ (260.2).

General procedure for the preparation of propanoic acids (43a-c)

0.05 g of Pd/C (10 %) was added to solution of the pertinent acrylic acid (**42a-c**, 8 mmol) in methanol (100 mL). The mixture was hydrogenated with constant stirring at 5 bar H₂ pressure overnight, filtered through celite pad, washed with methanol, and the solvent was removed in *vacuo*. The remaining crude solid was recrystallized from chloroform/n-hexane.

3,3-Bis(4-fluorophenyl)propanoic acid (43a). Synthesized from 3,3-bis(4-fluorophenyl)propenoic acid (**42a**). Yield 94 %; colorless crystalline solid; mp 97-98 °C (Lit.²⁴: mp 107-108 °C); ¹H-NMR (CDCl₃) δ (ppm): 7.2-7.1 (m, 4H, Ph-*H*), 7.05-6.80 (m, 4H, Ph-*H*), 4.48 (t, *J* = 7.9 Hz, 1H, Ar₂C*H*), 3.02 (d, *J* = 7.9 Hz, 2H, CH₂COOH); EI-MS, *m*/*z* (rel. intensity, %): 262 (M⁺, 22), 203 ([M – CH₂CO₂H]⁺, 100), 183 (([M – FCH₂CO₂H]⁺, 11); C₁₅H₁₂F₂O₂ (262.3).

3-(4-Fluorophenyl)-3-phenylpropanoic acid (43b). Synthesized from (4-fluorophenyl)phenylpropenoic acid (**42b**). Yield 96 %; colorless crystalline solid; mp 108-110 °C (Lit.²⁴: mp 107-108 °C); ¹H-NMR (CDCl₃) δ (ppm): 7.3-7.1 (m, 7H, Ph-*H*), 6.9-7.0 (m, 2H, Ph-*H*), 4.5 (t, *J* = 8.0 Hz, 1H, Ar₂C*H*), 3.0 (d, *J* = 8.0 Hz, 2H, CH₂COOH); EI-MS, *m*/*z* (rel. intensity, %): 244 (M⁺, 19), 185 ([M – CH₂CO₂H]⁺, 100), 165 ([M – FCH₂CO₂H]⁺, 25); C₁₅H₁₃FO₂ (244.3).

3-(3,4-Difluorophenyl)-3-phenylpropanoic acid (43c). Synthesized from (3,4-difluorophenyl)-phenylpropenoic acid (**42c**). Yield 92 %; colorless crystalline solid; mp 105-106 °C; ¹H-NMR (CDCl₃) δ (ppm): 7.1-7.3 (m, 3H, Ph-*H*), 7.0-6.8 (m, 5H, Ph-*H*), 4.48 (t, *J* = 7.9 Hz, 1H, Ar₂C*H*), 3.02 (d, *J* = 7.9 Hz, 2H, CH₂COOH); EI-MS, *m/z* (rel. intensity, %): 262 (M^{+*}, 20), 216 (([M – CO₂H]⁺, 11), 203 (([M – CH₂CO₂H]⁺, 100), 183 (([M – FCH₂CO₂H]⁺, 34); C₁₅H₁₂F₂O₂ (262.3).

3-(1-Trityl-1*H***-imidazol-4-yl)propanoic acid (44).** To a solution of **8** (5 mmol) in THF (50 mL) was added 8 mL of a 1 M solution of LiOH/aq, followed by stirring over night. Subsequently, 10 % HCl/aq was added under ice cooling until pH = 4-5, extracted with EtOAc and washed with saturated NaCl/aq. The organic phase was dried over Na₂SO₄ and the solvent was removed in *vacuo*. The crude product was recrystallized from EtOAc/THF. Yield 83 %; colorless solid; mp 185 °C (Lit.²⁵: 188-190 °C); ¹H-NMR (CDCl₃) δ (ppm): 7.41 (d, 1H, *J* = 1.4 Hz, Im-2-*H*), 7.36 (m, 9H, Ph), 7.31 (m, 6H, Ph), 6.70 (s, 1H, Im-5-*H*), 2.82 (t, 2H, *J* = 7.4 Hz, Im-4-CH₂), 2.58 (t, 2H, *J* = 7.3 Hz, CH₂CO); C₂₅H₂₂N₂O₂ (382.4).

[(5-Methyl-1*H*-imidazol-4-yl)methylsulfanyl]acetic acid (45).²⁶ A solution of (5-methyl-1*H*-imidazol-4-yl)methanol (4 g, 21.7 mmol) and sulfanylacetic acid (1.51 mL, 21.7 mmol) in 50 mL acetic acid was refluxed for 24 h. After removing the solvent in *vacuo*, the residue was neutralised by sodium carbonate. The precipitate was filtered off and washed with water, dried and recrystallized from MeOH. Yield 82 %; colorless crystalline solid; mp 170 °C; ¹H-NMR (DMSO-d₆) δ (ppm): 14.49 (br s, 1H, COOH), 8.93 (s, 1H, Im-2-H), 3.89 (s, 2H, Im-4-CH₂S), 3.24 (s, 2H, CH₂COOH), 2.25 (s, 3H, CH₃); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): *m/z* 187 (MH⁺); C₇H₁₀N₂O₂S (186.2).

2. Experimental details of the trityl-protected intermediates 47a-52a, 55a-59a, 61a-77a

 N^{1} -(3,3-Diphenylpropanoyl)- N^{2} -[2-(1-trityl-1*H*-imidazol-4-yl)ethyl]guanidine (47a). Synthesized from 3,3-diphenylpropanoic acid and 23. Yield 62 %; colorless foam-like solid; ¹H-NMR (CDCl₃) δ (ppm): 7.36-7.05 (m, 26H, Ph-*H* and Im-2-*H*), 6.59 (s, 1H, Im-5-*H*), 4.65 (t, *J* = 7.8 Hz, 1H, Ph₂C*H*), 3.84 (t, *J* = 6.1 Hz, 2H, CH₂NH), 3.05 (d, *J* = 7.7 Hz, 2H, CH₂CO), 2.71 (t, *J* = 6.0 Hz, 2H, Im-4-CH₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 604 (MH⁺), 1207 ([2M + H]⁺); C₄₀H₃₇N₅O (603.8).

 N^{1} -(3,3-Diphenylpropanoyl)- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (48a). Synthesized from 3,3-diphenylpropanoic acid and 16. Yield 55 %; colorless foam-like solid; ¹H-NMR (CDCl₃)

δ (ppm): 7.45-7.05 (m, 26 H, Ph-*H* and Im-2-*H*), 6.54 (s, 1H, Im-5-*H*), 4.65 (t, *J* = 7.8 Hz, 1H, Ph₂C*H*), 3.30 (t, *J* = 6.7 Hz, 2H, CH₂NH), 3.06 (d, *J* = 7.7 Hz, 2H, COCH₂), 2.53 (m, 2H, Im-4-CH₂), 1.82 (m, 2H, Im-4-CH₂CH₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 618 (MH⁺), 1235 ([2M + H]⁺); C₄₁H₃₉N₅O (617.8).

 N^{1} -(2,2-Diphenylacetyl)- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (49a). Synthesized from 2,2-diphenylacetic acid and 16. Yield 55 %; colorless foam-like solid; a few crystals were obtained from hexane and the structure was determined by x-ray analysis. ¹H-NMR (CDCl₃) δ (ppm): 7.39-7.01 (m, 26H, Ph-*H* and Im-2-*H*), 6.54 (s, 1H, Im-5-*H*), 4.98 (s, 1H, Ph₂C*H*), 3.24 (t, *J* = 6.7 Hz, 2H, CH₂NH), 2.54 (t, *J* = 6.0 Hz, 2H, Im-4-CH₂), 1.81 (m, 2H, Im-4-CH₂CH₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 604 (MH⁺), 1207 ([2M + H]⁺); C₄₀H₃₇N₅O (603.8).

 N^{1} -[3,3-Bis(4-fluorophenyl)propanoyl]- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (50a). Synthesized from 3,3-bis(4-fluorophenyl)propanoic acid (43a) and 16. Yield 61 %; colorless foam-like solid; ¹H-NMR (CDCl₃) δ (ppm): 7.40-6.80 (m, 24H, Ar-*H* and Im-2-*H*), 6.58 (s, 1H, Im-5-*H*), 4.68 (t, *J* = 8.0 Hz, 1H, Ar₂C*H*), 3.50 (m, 2H, C*H*₂NH), 3.22 (d, *J* = 8.0 Hz, 2H, COC*H*₂), 2.50 (m, 2H, Im-4-CH₂), 1.85 (m, 2H, Im-4-CH₂C*H*₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 654 (MH⁺); C₄₁H₃₇F₂N₅O (653.8).

 N^{1} -[3-(4-Fluorophenyl)-3-phenylpropanoyl]- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)-propyl]guanidine (51a). Synthesized from 3-(4-fluorophenyl)-3-phenylpropanoic acid (43b) and 16. Yield 53 %; colorless foam like solid; ¹H-NMR (CDCl₃) δ (ppm): 7.42-6.73 (m, 25H, Ar-*H* and Im-2-*H*), 6.54 (s, 1H, Im-5-*H*), 4.62 (t, *J* = 7.8 Hz, 1H, Ar₂C*H*), 3.33 (t, *J* = 6.7 Hz, 2H, CH₂NH), 3.00 (d, *J* = 7.8 Hz, 2H, CH₂CO), 2.53 (m, 2H, Im-4-CH₂), 1.82 (m, 2H, Im-4-CH₂CH₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 636 (MH⁺), 1273 ([2M + H]⁺); C₄₁H₃₈FN₅O (635.8).

 N^{1} -[3-(3,4-Difluorophenyl)-3-phenylpropanoyl]- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (52a). Synthesized from 3-(3,4-difluorophenyl)-3-phenylpropanoic acid (43c) and 16. Yield 55 %; colorless foam-like solid; ¹H-NMR (CDCl₃) δ (ppm): 7.40-6.76 (m, 24H, Ar-*H* and Im-2-*H*), 6.55 (s, 1H, Im-5-*H*), 4.63 (t, *J* = 7.7 Hz, 1H, Ar₂C*H*), 3.34 (t, *J* = 6.7 Hz, 2H, C*H*₂NH), 3.01 (d, *J* = 7.9 Hz, 2H, COC*H*₂), 2.54 (m, 2H, Im-C*H*₂), 1.84 (m, 2H, Im-CH₂C*H*₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 654 (MH⁺); C₄₁H₃₇F₂N₅O (653.8).

 N^{1} -[3-Phenyl-3-(pyridin-2-yl)propanoyl]- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (55a). Synthesized from 3-phenyl-3-(pyridin-2-yl)propanoic acid (27a) and 16. Yield 50 %; colorless foam-like solid; ¹H-NMR (CDCl₃) δ (ppm): 8.52 (m, 1H, Pyr-6-*H*), 7.56-7.49 (m, 1H, Pyr-4-*H*), 7.40-7.00 (m, 23H, Pyr-3-*H*, -5-*H*, Im-2-*H* and 20 Ph-*H*), 6.56 (s, 1H, Im-5-*H*), 4.80 (ddq, *J* = 8.5 and 6.7 Hz, 1H, Ar₂C*H*), 3.60 (dd, *J* = 8.5 Hz, *J* = 15.7 Hz, 1H, CH₂CO), 3.45 (t, *J* = 6.8 Hz, 2H, NHCH₂), 3.16 (dd, *J* = 6.7 Hz, *J* = 15.7 Hz, 1H, CH₂CO), 2.53 (m, 2H, Im-4-CH₂), 1.86 (m, 2H, Im-4-CH₂CH₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 619 (MH⁺), 1237 ([2M - H]⁺); C₄₀H₃₈N₆O (618.8).

 N^{1} -[3-(4-Fluorophenyl)-3-(pyridin-2-yl)propanoyl]- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (56a). Synthesized from 3-(4-fluorophenyl)-3-(pyridin-2-yl)propanoic acid (27b) and 16. Yield 49 %; ¹H-NMR (CDCl₃) δ (ppm): 8.50 (dm, 1H, Pyr-6-*H*), 7.56 (dt, *J* = 1.8 Hz, *J* = 7.7 Hz,1H, Pyr-4-*H*), 7.41-6.85 (m, 22H, Pyr-3-*H*, -5-*H*, Im-2-*H* and 19 Ph-*H*), 6.54 (s, 1H, Im-5-*H*), 4.73 (dd, *J* = 7.2 and 7.8 Hz, 1H, Ar₂C*H*), 3.30 (m, 3H, one H of CH₂CO and CH₂NH₂), 2.97 (dd, *J* = 7.2 Hz, *J* = 15.6 Hz, 1H, one H of CH₂CO), 2.54 (m, 2H, Im-4-CH₂), 1.84 (m, 2H, Im-4-CH₂CH₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 637 (MH⁺); C₄₀H₃₇FN₆O (636.8).

 N^{1} -[3-Phenyl-3-(thiazol-2-yl)propanoyl]- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (57a). Synthesized from 3-phenyl-3-(thiazol-2-yl)propanoic acid (27c) and 16. Yield 46 %; colorless foam-like solid; ¹H-NMR (CDCl₃) δ (ppm): 7.67 (d, J = 3.4 Hz, 1H, Thiaz-4-*H*), 7.40-6.98 (m, 22H, Ph-*H*, Thia-5-*H*, Im-2-*H*), 6.55 (s, 1H, Im-5-*H*), 4.99 (ddq, J = 7.7 Hz, 1H, CHCH₂CO), 3.51 (dd, J = 7.7 Hz, J = 15.9 Hz, 1H, one H of CH₂CO), 3.40 (t, 2H, NHCH₂), 2.98 (dd, J = 7.7 Hz, J = 15.9 Hz, 1H, one H of CH₂CO), 2.54 (m, 2H, Im-4-CH₂), 1.84 (m, 2H, Im-4-CH₂CH₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 625 (MH⁺); C₃₈H₃₆N₆OS (624.8).

 N^{1} -[3-(3,4-Difluorophenyl)-3-(thiazol-2-yl)propanoyl]- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (58a). Synthesized from 3-(3,4-difluorophenyl)-3-(thiazol-2-yl)propanoic acid (27d) and 16. Yield 52 %; colorless foam-like solid; ¹H-NMR (CDCl₃) δ (ppm): 7.95 (s br, H, N*H*), 7.64 (d, *J* = 3.3 Hz, 1H, Thiaz-4-*H*), 7.40-6.98 (m, 20H, Ph-*H*, Thiaz-5-*H*, Im-2-*H*), 6.55 (s, 1H, Im-5-*H*), 4.96 (m, 1H, CHCH₂CO), 3.32 (m, 3H, CH₂NH and one H of COCH₂), 2.98 (dd, *J* = 7.7 Hz, *J* = 15.9 Hz, 1H, one H of CH₂CO), 2.54 (m, 2H, Im-4-CH₂), 1.84 (m, 2H, Im-4-CH₂CH₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 243 ([Ph₃C]⁺), 661 (MH⁺), 1321 ([2M + H]⁺), 1343 ([2M + Na]⁺); C₃₈H₃₄F₂N₆OS (660.8).

 N^{1} -[3-(1-Benzyl-1*H*-imidazol-2-yl)-3-(3,4-difluorophenyl)propanoyl]- N^{2} -[3-(1-trityl-1*H*-imidazol-2-yl)-3-(3,4-difluorophenyl)propanoic acid and 16. Yield 55 %; colorless foam-like solid; ¹H-NMR (CD₃OD) δ (ppm): 10.53 (s, 1H), 9.03 (s, 1H), 8.08 (s, 1H), 7.51-6.96 (m, 24H, Im-*H*, Ph-*H*), 5.30 (m, 2H, PhC*H*₂), 4.80 (m, 1H, C*H*CH₂CO), 3.78 (dd, *J* = 10.6 Hz, *J* = 16.8 Hz, 1H, one H of COC*H*₂), 3.36 (m, 2H, C*H*₂NH), 3.23 (dd, *J* = 5.2 Hz, *J* = 16.8 Hz, 1H, one H of COC*H*₂), 2.83 (t, *J* = 7.3 Hz, 2H, Im-4-C*H*₂), 2.00 (m, 2H, Im-4-CH₂C*H*₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 734 (MH⁺); C₄₅H₄₁F₂N₇O (733.9).

 N^{1} -(3-Phenylbutyl)- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propanoyl]guanidine (61a). Synthesized from (1-trityl-1*H*-imidazol-4-yl)propanoic acid (44) and 17. Yield 23 %; pale yellow foam-like solid; ¹H-NMR (CDCl₃) δ (ppm): 7.31-7.10 (m, 16H, CPh₃, Im-2-*H*), 6.58 (d, 1H, *J* = 1.0 Hz, Im-5-*H*), 3.05 (t, 2H, *J* = 7.1 Hz, Im-4-CH₂CH₂), 2.87 (m, 2H, NHCH₂), 2.75 (m, 3H, Im-4-CH₂CH₂, CHCH₃), 1.87 (m, 2H, NHCH₂CH₂), 1.23 (d, 3H, *J* = 7.0, CH₃); ES-MS (CH₂Cl₂/MeOH + NH₄OAc) *m/z* (%): 556 (MH⁺, 100); C₃₆H₃₇N₅O (555.7).

 N^{1} -(2-Phenylpropanoyl)- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (62a). Synthesized from 2-phenylpropanoic acid and 16. Yield 45 %; colorless foam-like solid; ¹H-NMR (CDCl₃) δ (ppm): 1.44 (d, 3H, J = 7.1 Hz, CH₃), 1.84 (m, 2H, Im-CH₂CH₂CH₂), 2.55 (t, 2H, J = 6.1 Hz, Im-CH₂CH₂CH₂), 3.30 (t, 2H, J = 6.7 Hz, Im-CH₂CH₂CH₂), 3.64 (m, 1H, COCHCH₃), 6.54 (s, 1H, Im-5-H), 7.08-7.34 (m, 21H, CPh₃, Ph, Im-2-H), 8.01 (s, 1H, NH); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): *m/z* (%): 542 (MH⁺, 100); C₃₅H₃₅N₅O (541.7).

 N^{1} -(3-Phenylbutanoyl)- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (63a). Synthesized from 3-phenylbutanoic acid and 16. Yield 47 %; colorless foam-like solid; ¹H-NMR (CDCl₃) δ (ppm): 1.32 (d, 3H, J = 6.9 Hz, CH₃), 1.87 (m, 2H, Im-CH₂CH₂CH₂), 2.56 (m, 4H, Im-CH₂CH₂CH₂, COCH₂), 3.35 (m, 3H, Im-CH₂CH₂CH₂, COCH₂CHCH₃), 6.55 (s, 1H, Im-5-H), 7.07-7.37 (m, 21H, CPh₃, Ph, Im-2-H); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): m/z 556 (MH⁺, 100); C₃₆H₃₇N₅O (555.7).

 N^{1} -[3-(Thiophen-2-yl)butanoyl]- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (64a). Synthesized from 3-(thiophen-2-yl)butanoic acid (31) and 16. Yield 47 %; colorless foam-like solid; ¹H-NMR (CDCl₃) δ (ppm): 7.41-7.29 (m, 10H, Ph-*H*), 7.52-7.05 (m, 7H, Ph-*H*, Im-2-*H* and Thio-5-*H*), 6.91-6.83 (m, 2H, Thio-*H*) 6.57 (s, 1H, Im-5-*H*), 3.67 (m, 1H, COCH₂C*H*), 3.58 (m, 2H, NHC*H*₂), 2.79 (dd, *J* = 6.6 Hz, *J* = 15.1 Hz, 1H, one H of C*H*₂CO), 2.61 (dd, *J* = 8.1 Hz, *J* = 15.1 Hz, 1H, one H of C*H*₂CO), 2.58 (m, 2H, Im-4-CH₂), 2.00 (m, 2H, Im-4-CH₂C*H*₂), 1.36 (d, *J* = 7.0 Hz, 3H, CH₃); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 562 (MH⁺); C₃₄H₃₅N₅OS (561.7).

 N^{1} -[3-(Pyridin-2-yl)butanoyl]- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (65a). Synthesized from 3-(pyridin-2-yl)butanoic acid (35a) and 16. Yield 52 %; colorless foam-like solid; ¹H-NMR

(CDCl₃) δ (ppm): 8.57 (m, 1H, Pyr-6-*H*), 7.52 (m, 1H, Pyr-4-*H*), 7.63-7.00 (m, 18H, Pyr-3-*H*, -5-*H*, Im-2-*H* and Ph-*H*), 6.55 (s, 1H, Im-*H*-5), 3.62 (m, 1H, CHCH₂CO), 3.45 (m, 2H, CH₂NH), 3.00 (dd, *J* = 8.3 Hz, *J* = 16.6 Hz, 1H, one H of CH₂CO), 2.90 (dd, *J* = 6.2 Hz, *J* = 16.6 Hz, 1H, one H of CH₂CO), 2.83 (t, *J* = 7.6 Hz, 2H, Im-4-CH₂), 2.01 (m, 2H, Im-4-CH₂CH₂), 1.41 (d, *J* = 7.0 Hz, 3H, CH₃CH); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): *m/z* 557 (MH⁺); C₃₅H₃₆N₆O (556.7).

 N^{1} -[3-(Thiazol-2-yl)butanoyl]- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (66a). Synthesized from 3-(thiazol-2-yl)butanoic acid (35b) and 16. Yield 55 %; colorless foam-like solid; ¹H-NMR (CDCl₃) δ (ppm): 7.65 (d, *J* = 3.3 Hz, 1H, Thiaz-4-*H*), 7.41-7.05 (m, 17H, Ph-*H*, Thiaz-5-*H* and Im-2-*H*), 6.58 (s, 1H, Im-5-*H*), 3.85 (m, 1H, CHCH₂CO), 3.51 (t, *J* = 6.5 Hz, 2H, NHCH₂), 3.11 (dd, *J* = 7.3 Hz, *J* = 16.0 Hz, 1H, one H of COCH₂), 2.81 (dd, *J* = 6.9 Hz, *J* = 16.0 Hz, 1H, one H of COCH₂), 2.57 (m, 2H, Im-4-CH₂), 1.89 (m, 2H, Im-4-CH₂CH₂), 1.46 (d, *J* = 7.0 Hz, 3H, *C*H₃); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): *m/z* 563 (MH⁺); C₃₃H₃₄N₆OS (562.7).

 N^{1} -Benzoyl- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (67a). Synthesized from benzoic acid and 16. Yield 52 %; colorless foam-like solid; ¹H-NMR (CDCl₃) δ (ppm): 1.91 (m, 2H, Im-CH₂CH₂CH₂), 2.61 (t, 2H, *J* = 5.9 Hz, Im-CH₂CH₂CH₂), 3.45 (t, 2H, *J* = 6.4 Hz, Im-CH₂CH₂CH₂), 6.56 (s, 1H, Im-5-H), 7.13-7.37 (m, 19H, CPh₃, Ph, Im-2-H), 8.17 (d, 2H, Ph); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): *m/z* (%): 514 (MH⁺, 100), 243 (Ph₃C⁺, 50); C₃₃H₃₁N₅O (513.6).

 N^{1} -Phenylacetyl- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (68a). Synthesized from 2-phenylacetic acid and 16. Yield 47 %, colorless foam-like solid; ¹H-NMR (CDCl₃) δ (ppm): 1.83 (m, 2H, Im-CH₂CH₂CH₂), 2.55 (t, 2H, J = 6.1 Hz, Im-CH₂CH₂CH₂), 3.32 (t, 2H, J = 6.7 Hz, Im-CH₂CH₂CH₂), 3.58 (s, 2H, COCH₂), 6.54 (s, 1H, Im-5-H), 7.09-7.38 (m, 21H, CPh₃, Ph, Im-2-H), 8.01 (s, 1H, NH); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): m/z 528 (MH⁺, 100); C₃₄H₃₃N₅O (527.7).

 N^{1} -(3-Phenylpropanoyl)- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (69a). Synthesized from 3-phenylpropanoic acid and 16. Yield 67 %, colorless foam-like solid; ¹H-NMR (CDCl₃) δ (ppm): 1.87 (m, 2H, Im-CH₂CH₂CH₂), 2.59 (m, 4H, Im-CH₂CH₂CH₂, COCH₂CH₂), 2.98 (t, 2H, *J* = 8.1 Hz, Im-CH₂CH₂CH₂), 3.56 (t, 2H, *J* = 6.7 Hz, COCH₂CH₂), 6.56 (s, 1H, Im-5-H), 7.11-7.35 (m, 21H, CPh₃, Ph, Im-2-H), 8.02 (s, 1H, NH); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): *m/z* 542 (MH⁺, 100); C₃₅H₃₅N₅O (541.7).

 N^{1} -(4-Phenylbutanoyl)- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (70a). Synthesized from 4-phenylbutanoic acid and 16. Yield 54 %, colorless foam-like solid; ¹H-NMR (CDCl₃) δ (ppm): 1.87 (m, 2H, Im-CH₂CH₂CH₂), 1.97 (m, 2H, COCH₂CH₂CH₂), 2.38 (m, 2H, COCH₂CH₂CH₂), 2.56 (m, 2H, Im-CH₂CH₂CH₂), 2.65 (m, 2H, COCH₂CH₂CH₂), 3.39 (m, 2H, Im-CH₂CH₂CH₂), 6.55 (s, 1H, Im-5H), 7.06-7.40 (m, 21H, CPh₃, Ph, Im-2H), 8.01 (s, 1H, NH); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): *m/z* 556 (MH⁺, 100); C₃₆H₃₇N₅O (555.7).

 N^{1} -(5-Phenylpentanoyl)- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (71a). Synthesized from 5-phenylpentanoic acid and 16. Yield 45 %; colorless foam-like solid; ¹H-NMR (CDCl₃) δ (ppm): 1.66 (m, 4H, COCH₂CH₂CH₂CH₂), 1.87 (m, 2H, Im-CH₂CH₂CH₂), 2.29 (t, 2H, J = 7.2 Hz, COCH₂CH₂CH₂CH₂), 2.59 (m, 4H, Im-CH₂CH₂CH₂, COCH₂CH₂CH₂), 3.34 (t, 2H, J = 6.6 Hz, Im-CH₂CH₂CH₂), 6.54 (s, 1H, Im-5-H), 7.10-7.36 (m, 21H, CPh₃, Ph, Im-2-H); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): *m/z* 570 (MH⁺, 100); C₃₇H₃₉N₅O (569.7).

 N^{1} -(2-Cyclohexylpropanoyl)- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (72a). Synthesized from 2-cyclohexylpropanoic acid (37a) and 16. Yield 60 %; colorless foam-like solid; ¹H-NMR (CDCl₃) δ (ppm): 1.06 (d, 3H, *J* = 6.9 Hz, CH₃), 1.22 (m, 7H, cHex-CH₂, cHex-CH), 1.68 (m, 4H, cHex-CH₂), 1.88 (m, 2H, Im-CH₂CH₂CH₂), 2.08 (m, 1H, CH₃C*H*), 2.56 (t, 2H, *J* = 6.2 Hz, Im-CH₂CH₂CH₂), 3.33 (t, 2H, *J* = 6.8 Hz, Im-CH₂CH₂CH₂), 6.55 (s, 1H, Im-5-H), 7.12-7.34 (m, 16H, S12 CPh₃, Im-2-H); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): m/z 549 (MH⁺, 100), 243 (Ph₃C⁺, 30); C₃₅H₄₁N₅O (547.7).

 N^{1} -(3-Cyclohexylbutanoyl)- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (73a). Synthesized from 3-cyclohexylbutanoic acid (37b) and 16. Yield 29 %; colorless foam-like solid; ¹H-NMR (CDCl₃) δ (ppm): 0.88 (d, 3H, *J* = 6.8 Hz, CH₃), 1.00-1.19 (m, 6H, cHex-CH₂), 1.67 (m, 6H, cHex-CH₂), 1.89 (m, 3H, Im-CH₂CH₂CH₂, CH₃C*H*), 2.13 (dd, 1H, ²J = 14.3 Hz, *J* = 9.4 Hz, C*H*H), 2.47 (dd, 1H, ²J = 14.5 Hz, *J* = 4.7 Hz, CHH), 2.57 (t, 2H, ³J=5.8 Hz, Im-CH₂CH₂CH₂), 3.44 (t, 2H, *J* = 6.6 Hz, Im-CH₂CH₂CH₂), 6.57 (s, 1H, Im-5-H), 7.11-7.34 (m, 16H, CPh₃, Im-2-H); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): *m*/z 562 (MH⁺, 100); C₃₆H₄₃N₅O (561.8).

 N^{1} -Cyclohexylcarbonyl- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (74a). Synthesized from cyclohexanecarboxylic acid and 16. Yield 59 %; colorless foam-like solid; ¹H-NMR (CDCl₃) δ (ppm): 1.34 (m, 6H, cHex-CH₂), 1.74 (m, 2H, Im-CH₂CH₂CH₂), 1.89 (m, 4H, cHex-CH₂), 2.46 (t, 1H, *J* = 5.8 Hz, cHex-CH), 2.56 (t, 2H, *J* = 10.4 Hz, Im-CH₂CH₂CH₂), 3.45 (t, 2H, *J* = 6.5 Hz, Im-CH₂CH₂CH₂), 6.56 (s, 1H, Im-5-H), 7.12-7.35 (m, 16H, CPh₃, Im-2-H), 8.02 (s, 1H, NH); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): *m/z* 520 (MH⁺, 100), 243 (Ph₃C⁺); C₃₃H₃₇N₅O (519.7).

 N^{1} -Cyclohexylacetyl- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (75a). Synthesized from cyclohexylacetic acid and 16. Yield 66 %; colorless foam-like solid; ¹H-NMR (CDCl₃) δ (ppm): 0.94 (m, 2H, Im-CH₂CH₂CH₂), 1.21 (m, 4H, cHex-CH₂), 1.74 (m, 7H, cHex-CH₂, cHex-CH), 2.14 (d, 2H, *J* = 6.1 Hz, COCH₂), 2.56 (m, 2H, Im-CH₂CH₂CH₂), 3.34 (t, 2H, *J* = 6.7 Hz, Im-CH₂CH₂CH₂), 6.55 (s, 1H, Im-5-H), 7.11-7.34 (m, 16H, CPh₃, Im-2-H); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): *m/z* 534 (MH⁺, 100); C₃₄H₃₉N₅O (533.7).

 N^{1} -(3-Cyclohexylpropanoyl)- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (76a). Synthesized from 3-cyclohexylpropanoic acid and 16. Yield 30 %; colorless foam-like solid; ¹H-NMR (CDCl₃) δ (ppm): 1.26 (m, 5H, cHex-CH₂, cHex-CH), 1.55 (m, 7H, cHex-CH₂, COCH₂CH₂), 1.88 (m, 2H, Im-CH₂CH₂CH₂), 2.35 (t, 2H, *J* = 8.2 Hz, COCH₂CH₂), 2.57 (t, 2H, *J* = 6.0 Hz, ImCH₂CH₂CH₂CH₂), 3.40 (t, 2H, *J* = 6.6 Hz, Im-CH₂CH₂CH₂), 3.72 (m, 1H, cHex-CH), 6.57 (s, 1H, Im-5-H), 7.11-7.34 (m, 16H, CPh₃, Im-2-H), 7.61 (s, 1H, NH); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): *m/z* 548 (MH⁺, 100), 243 (Ph₃C⁺, 20); C₃₅H₄₁N₅O (547.7).

 N^{1} -(4-Cyclohexylbutanoyl)- N^{2} -[3-(1-trityl-1*H*-imidazol-4-yl)propyl]guanidine (77a). Synthesized from 4-cyclohexylbutanoic acid and 16. Yield 57 %; colorless foam-like solid; ¹H-NMR (CDCl₃) δ (ppm): 0.86 (m, 4H, COCH₂CH₂CH₂), 1.18 (m, 7H, cHex-CH₂, cHex-CH), 1.62 (m, 4H, cHex-CH₂), 1.86 (m, 2H, Im-CH₂CH₂CH₂), 2.23 (m, 2H, COCH₂CH₂CH₂), 2.57 (t, 2H, *J* = 6.1 Hz, Im-CH₂CH₂CH₂), 3.34 (t, 2H, *J* = 6.7 Hz, Im-CH₂CH₂CH₂CH₂), 6.56 (s, 1H, Im-5-H), 7.12-7.34 (m, 16H, Im-2-H, CPh₃); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): *m/z* 562 (MH⁺, 100); C₃₆H₄₅N₅O (561.7).

3. Experimental details of 61 and of the N^1 -acyl- N^2 -[1*H*-imidazol-4-yl)alkyl]guanidines 47-52, 55, 57-60, 62, 65-77

 N^{1} -(3,3-Diphenylpropanoyl)- N^{2} -[2-(1*H*-imidazol-4-yl)ethyl]guanidine (47). Yield 92% (deprotection of compound 47a); colorless sticky oil; ¹H-NMR (CD₃OD) δ (ppm): 8.81 (s, 1H, Im-2-*H*), 7.35 (s, 1H, Im-*H*-5), 7.32-7.12 (m, 10H, Ph-*H*), 4.57 (t, *J* = 8.0 Hz, 1H, CHCH₂CO), 3.58 (t, *J* = 6.7 Hz, 2H, CH₂NH), 3.31 (m, 1H, N*H*), 3.25 (d, *J* = 8.0 Hz, 2H, COCH₂), 3.03 (t, *J* = 6.7 Hz, 2H, Im-4-CH₂); ¹³C-NMR (CD₃OD) δ (ppm): 175.5 (quart, CO), 162.6 (quart, *C*=NH), 144.4 (quart, Ph-*C*-1), 135.2 (+, Im-*C*-2), 131.4 (quart, Im-*C*-4), 129.6, 128.8, 127.8 (+, Ph-*C*), 118.1 (+, Im-*C*-5), 48.0 (+, CHCH₂CO), 43.7 (-, COCH₂), 41.0 (-, CH₂NH₂), 28.3 (-, Im-4-CH₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 361 (MH⁺); HRMS [EI-MS]: *m*/*z*, calculated for (C₂₁H₂₃N₅O) 361.1903, found: 361.1901; C₂₁H₂₃N₅O · 2 TFA (589.5).

 N^{1} -(3,3-Diphenylpropanoyl)- N^{2} -[3-(1*H*-imidazol-4-yl)propyl]guanidine (48). Yield 92% (deprotection of compound 48a); colorless sticky oil; ¹H-NMR (CD₃OD) δ (ppm): 7.40 (s, 1H, Im-2-*H*), 7.10-7.35 (m, 10H, Ph-*H*), 4.65 (t, *J* = 7.7 Hz, 1H, Ph₂C*H*), 3.26 (t, *J* = 6.5 Hz, 2H, CH₂NH), 3.06 (d, *J* = 7.7 Hz, 2H, CH₂CO), 2.59 (m, 2H, Im-4-CH₂), 1.82 (m, 2H, Im-4-CH₂CH₂); ¹³C-NMR (CD₃OD) (ppm): 183.5 (quart, *C*O), 161.7 (quart, *C*=NH), 145.0 (quart, Ph-*C*-1), 134.6 (quart, Im-*C*-4), 134.2 (+, Im-*C*-2), 128.4, 128.0, 126.0 (+, Ph-*C*), 47.4 (+, Ph₂CH), 46.5 (-, COCH₂), 40.0 (-, NHCH₂), 29.1 (-, Im-4-CH₂CH₂); 22.9 (-, Im-4-CH₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 376.2 (MH⁺); HRMS [FAB (CH₂Cl₂/MeOH)]: *m*/*z*, calculated for [C₂₁H₂₃N₅O + H]⁺ 376.2132, found: 376.2137; C₂₂H₂₅N₅O · 2 TFA (603.5).

*N*¹-Diphenylacetyl-*N*²-[3-(1*H*-imidazol-4-yl)propyl]guanidine (49). Yield 92% (deprotection of compound 49a); colorless sticky oil; ¹H-NMR (CD₃OD) δ (ppm): 8.74 (s, 1H, Im-2-*H*), 7.86 (s, 1H, Im-5-*H*), 7.40-7.10 (m, 10H, Ph-*H*), 5.27 (s, 1H, Ph₂C*H*), 3.35 (t, *J* = 6.7 Hz, 2H, C*H*₂NH), 2.80 (t, *J* = 7.6 Hz, 2H, Im-4-C*H*₂), 2.01 (m, 2H, Im-4-CH₂C*H*₂); ¹³C-NMR (CD₃OD) δ (ppm): 176.1 (quart, *C*O), 155.4 (quart, *C*=NH), 139.0 (quart, Ph-C-1), 134.8 (quart, Im-C-4), 134.2 (+, Im-C-2), 129.9, 129.7, 128.7 (+, Ph-C), 117.1 (+, Im-C-5), 59.4 (+, Ph₂CH), 41.6 (-, *C*H₂NH₂), 27.8 (-, Im-4-CH₂CH₂) 22.5 (-, Im-4-CH₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 362 (MH⁺); HRMS [EI-MS]: *m/z*, calculated for [C₂₁H₂₃N₅O] 361.1903, found: 361.1903; C₂₁H₂₃N₅O · 2 TFA (589.5).

*N*¹-[3,3-Bis(4-fluorophenyl)propanoyl]-*N*²-[3-(1*H*-imidazol-4-yl)propyl]guanidine (50). Yield 85% (deprotection of compound 50a); colorless sticky oil; ¹H-NMR (CDCl₃) δ (ppm): 7.42 (s, 1H, Im-2-*H*), 7.12-7.22 (m, 4H, Ar-*H*), 6.86-6.97 (m, 4H, Ar-*H*), 6.73 (s, 1H, Im-5-*H*), 4.62 (t, *J* = 7.9 Hz, 1H, Ar₂C*H*), 3.28 (t, *J* = 6.7 Hz, 2H, NHC*H*₂), 2.98 (d, *J* = 7.9 Hz, 2H, C*H*₂CO), 2.58 (m, 2H, Im-4-C*H*₂), 1.83 (m, 2H, Im-4-CH₂C*H*₂); ¹³C-NMR (CDCl₃) δ (ppm): 183.2 (quart, CO), 161.2 (quart, d, *J* = 244.2 Hz, 2C, *C*F), 161.9 (quart, *C*=NH), 140.0 (quart, Ar-*C*-1), 134.6 (quart, Im-*C*-4), 134.1 (+, Im-*C*-2), 129.1 (+, d, *J* = 8.0 Hz, 4C, Ar-*C*-2,6), 117.1 (+, Im-*C*-5), 115.2 (+, d, *J* = 21.1 Hz, 4C, Ar-*C*-3,5), 46.8 (-, *C*H₂CO), 45.9 (+, Ar₂*C*H), 39.9 (-, *C*H₂NH), 29.3 (-, Im-4-CH₂*C*H₂), 22.9 (-, Im-4-*C*H₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 412 (MH⁺); HRMS [EI-MS]: *m*/*z*, calculated for (C₂₂H₂₃F₂N₅O) 411.1871, found: 411.1866; C₂₂H₂₃F₂N₅O · 2 TFA (639.5).

 N^{1} -[3-(4-Fluorophenyl)-3-phenylpropanoyl]- N^{2} -[3-(1*H*-imidazol-4-yl)propyl]guanidine (51). Yield 91% (deprotection of compound 51a); colorless sticky oil; ¹H-NMR (CDCl₃) δ (ppm): 7.41 (s, 1H, Im-2-*H*), 7.10-7.30 (m, 7H, Ar-*H*), 6.87-6.97 (m, 2H, Ar-*H*), 6.72 (s, 1H, Im-5-*H*), 4.64 (t, *J* = 7.9 Hz, 1H, Ar₂C*H*), 3.28 (t, *J* = 6.5 Hz, 2H, C*H*₂NH), 3.03 (d, *J* = 7.9 Hz, 2H, C*H*₂CO), 2.60 (m, 2H, Im-4-C*H*₂), 1.83 (m, 2H, Im-4-CH₂C*H*₂); ¹³C-NMR (CDCl₃) δ (ppm): 183.3 (quart, CO), 161.2 (quart, d, *J* = 243.8 Hz, Ar-CF), 161.8 (quart, C=NH), 144.8 (quart, Ph-C-1), 140.6 (quart, d, *J* = 3.3 Hz, Ar-C-1), 134.8 (quart, Im-C-4), 134.1 (+, Im-C-2), 129.2 (+, d, *J* = 8.0 Hz, 2C, Ar-C-2,6), 128.4 (+, 2C, Ph-C-2,6), 127.8 (+, 2C, Ph-C-3,5), 126.1 (+, Ph-C-4), 118.0 (+, Im-C-5), 115.1 (+, d, *J* = 21.1 Hz, 2C, Ar-C-S14 3,5), 46.6 (-, Ar₂CH), 45.6 (+, COCH₂), 39.9 (-, NHCH₂), 29.3 (-, Im-4-CH₂CH₂), 22.9 (-, Im-4-CH₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 394.3 (MH⁺); HRMS [EI-MS]: *m/z*, calculated for [C₂₂H₂₄FN₅O] 393.1965, found: 393.1964; C₂₂H₂₄FN₅O \cdot 2 TFA (621.5).

*N*¹-[3-(3,4-Difluorophenyl)-3-phenylpropanoyl]-*N*²-[3-(1*H*-imidazol-4-yl)propyl]guanidine (52). Yield 91% (deprotection of compound 52a); colorless sticky oil; ¹H-NMR (CDCl₃) δ (ppm): 7.50 (s, 1H, Im-2-*H*), 7.11-7.27 (m, 3H, Ar-*H*), 6.78-7.06 (m, 5H, Ar-*H*), 6.76 (s, 1H, Im-5-*H*), 4.64 (t, *J* = 7.9 *Hz*, 1H, Ar₂C*H*), 3.33 (t, *J* = 6.7 Hz, 2H, NHC*H*₂), 3.03 (d, *J* = 7.9 Hz, 2H, C*H*₂CO), 2.65 (m, 2H, Im-4-C*H*₂), 1.86 (m, 2H, Im-4-CH₂C*H*₂); ¹³C-NMR (CDCl₃) δ (ppm): 183.1 (quart, *C*O), 162.9 (quart, d, *J* = 246.8 Hz, 3-CF), 161.6 (quart, d, *J* = 245.3 Hz, 4-CF), 161.8 (quart, *C*=NH), 144.6 (quart, Ph-C-1), 140.0 (quart, d, *J* = 3.3 Hz, Ar-C-1), 139.8 (quart, Im-C-4), 134.1 (+, Im-C-2), 129.9 (+, Ph-C-4), 129.3, 129.4 (+, 2C, Ph-C-3,5), 123.5 (+, d, *J* = 3.3 Hz, Ar-C-6), 118.1 (+, Im-C-5), 115.4, 115.1 (+, 2C, Ph-C-2,6), 114.7 (+, d, *J* = 21.3 Hz, Ar-C-5), 113.0 (+, d, *J* = 21.1 Hz, Ar-C-2), 46.6 (+, Ar₂CHCO), 45.9 (-, COCH₂), 39.9 (-, NHCH₂), 29.3 (-, Im-4-CH₂CH₂), 22.9 (-, Im-4-CH₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 412 (MH⁺); HRMS [EI-MS]: *m*/*z*, calculated for [C₂₂H₂₃F₂N₅O] 411.1871, found: 411.1866; C₂₂H₂₃F₂N₅O · 2 TFA (639.5).

*N*¹-[3-(1*H*-Imidazol-4-yl)propyl]-*N*²-[3-phenyl-3-(pyridin-2-yl)propanoyl]guanidine (55). Yield 85% (deprotection of compound 55a); colorless sticky oil; ¹H-NMR (CD₃OD) δ (ppm): 8.80 (m, 1H, Pyr-6-*H*), 8.57 (m, 1H, Pyr-4-*H*), 7.99 (m, 1H, Pyr-5-*H*), 7.58 (d, *J* = 8.3 Hz, 1H, Pyr-3-*H*), 7.46 (m, 1H, Ph-*H*), 7.21-7.39 (m, 6H, Ph-*H* and Im-2-*H*), 4.84 (t overlap with H₂O, 1H, Ar₂C*H*), 3.61 (dd, *J* = 8.8 Hz *J* = 16.7 Hz, 1H, CH₂CO), 3.40-3.31 (m, 3H, CH₂CO and NHCH₂), 2.80 (t, *J* = 7.8 Hz, 2H, Im-4-CH₂), 1.99 (m, 2H, Im-4-CH₂CH₂); ¹³C-NMR (CD₃OD) δ (ppm): 175.1 (quart, CO), 161.7 (quart, Py-C-2), 155.1 (quart, *C*=NH), 147.4 (+, Pyr-C-6), 142.0 (quart, Ph-C-1), 141.8 (+, Im-C-2), 134.9 (+, Pyr-C-4), 134.5 (quart, Im-C-4), 130.1, 129.0, 128.6 (+, Ph-C), 125.6 (+, Pyr-C-3), 124.4 (+, Pyr-C-5), 117.1 (+, Im-C-5), 48.1 (+, COCH₂CH), 42.2 (-, COCH₂), 41.5 (-, NHCH₂), 27.8 (-, Im-4-CH₂CH₂); 22.5 (-, Im-4-CH₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 377 (MH⁺) ; HRMS [EI-MS]: *m/z*, calculated for (C₂₁H₂₄N₆O) 376.2012, found: 376.2002; C₂₁H₂₄N₆O · 3 TFA (718.5);

*N*¹-[3-(1*H*-Imidazol-4-yl)propyl]-*N*²-[3-phenyl-3-(thiazol-2-yl)propanoyl]guanidine (57). Yield 79% (deprotection of compound 57a); colorless sticky oil; ¹H-NMR (CD₃OD) δ (ppm): 8.81 (s, 1H, Im-*H*-2), 7.70 (d, *J* = 3.3 Hz, 1H, Thiaz-4-*H*), 7.49 (d, *J* = 3.3 Hz, 1H, Thiaz-5-*H*), 7.35-7.15 (m, 6H, Ph-*H* and Im-5-*H*), 5.04 (t, *J* = 7.7 Hz, 1H, COCH₂C*H*), 3.59 (dd, *J* = 8.2 Hz, *J* = 16.5 Hz, 1H, one of COC*H*₂), 3.38 (m, 3H, C*H*₂NH and one of COC*H*₂), 2.84 (t, *J* = 7.7 Hz, Im-C*H*₂), 2.00 (m, 2H, Im-CH₂C*H*₂); ¹³C-NMR (CD₃OD) δ (ppm): 174.8 (quart, *C*O), 174.4 (quart, Thiaz-C-2), 155.5 (quart, *C*=NH), 142.7 (+, Thiaz-C-4), 142.2 (quart, Ph-C-1), 134.8 (+, Im-C-2), 134.2 (quart, Im-C-4), 130.0, 129.8, 129.3, 128.9 (+, Ph-C), 121.2 (+, Thiaz-C-5), 117.0 (+, Im-C-5), 45.2 (+, CHCH₂CO), 43.4 (-, *C*H₂CO), 41.5 (-, *C*H₂NH), 27.9 (-, ImCH₂*C*H₂), 22.5 (-, Im-*C*H₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 383 (MH⁺); HRMS [EI-MS]: *m/z*, calculated for (C₁₉H₂₂N₆OS) 382.1576, found 382.1576; C₁₉H₂₂N₆OS · 2 TFA (610.5).

 N^{1} -[3-(3,4-Difluorophenyl)-3-(thiazol-2-yl)propanoyl]- N^{2} -[3-(1*H*-imidazol-4-yl)-propyl]guanidine (58). Yield 86% (deprotection of compound 58a); colorless sticky oil; ¹H-NMR (CD₃OD) δ (ppm): 8.80 (s, 1H, Im-2-*H*), 7.73 (d, *J* = 3.3 Hz, 1H, Thiaz-4-*H*), 7.48 (d, *J* = 3.3 Hz, 1H, Thiaz-5-*H*), 7.35 (s, 1H, Im-5-*H*), 7.35-7.15 (m, 3H, ArC), 5.02 (ddq, *J* = 8.2 and 6.6 Hz, 1H, CHCH₂CO), 3.59 (dd, *J* = 8.2 Hz, *J* = 16.5 Hz, 1H, one of CH₂CO), 3.38 (t, *J* = 6.8 Hz, CH₂NH), 3.27 (dd, *J* = 6.6 Hz, *J* = 16.5 Hz, 1H, one of COCH₂), 2.84 (t, *J* = 7.7 Hz, Im-4-CH₂), 2.03 (m, Im-4-CH₂CH₂); ¹³C-NMR (CD₃OD) δ (ppm): 174.5 (quart, Thiaz-C-2), 173.1 (quart, CO), 155.1 (quart, C=NH), 151.3 (quart, dd, *J* = 12.5 Hz, *J* = 247.6 Hz, CF), 150.8 (quart, dd, *J* = 12.6 Hz, *J* = 247.1 Hz, CF), 143.1 (+, Thiaz-C-4), 139.6 (quart, Ar-C-1), 134.8 (+, Im-C-2), 134.2 (quart, Im-C-4), 125.7 (+, Ar-C-6), 121.3 (+, Thiaz-C-5), 118.7 (+, d, *J* = 17.2 Hz, Ar-C-5), 118.2 (+, d, *J* = 17.2, Hz, Ar-C-2), 117.1 (+, Im-C-5), 44.8 (+, CHCH₂CO), 43.3 (-, *C*H₂CO), 41.5 (-, *C*H₂NH), 27.9 (-, Im-4-CH₂CH₂), 22.5 (-, Im-4-*C*H₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 419 (MH⁺); HRMS [EI-MS]: m/z, calculated for (C₁₉H₂₀F₂N₆OS) 418.1387, found 418.1387; C₁₉H₂₀F₂N₆OS · 2 TFA (646.5).

*N*¹-[3-(1-Benzyl-1*H*-imidazol-2-yl)-3-(3,4-difluorophenyl)propanoyl]-*N*²-[3-(1*H*-imidazol-4-yl)propyl]guanidine (59). Yield 87% (deprotection of compound 59a); colorless sticky oil; ¹H-NMR (CD₃OD) δ (ppm): 8.79 (s, 1H, Im-2-H), 7.65 (dd, *J* = 1.9 Hz, *J* = 5.8 Hz, Benzyl-Im-4-H and -5-H), 7.35 (s, 1H, Im-5-H), 7.33-7.24 (m, 3H, Ar-H), 7.20-7.00 (m, 4H, Ph-H), 6.90 (m, 1H, Ph-H), 5.51 (s, 2H, PhCH₂), 5.13 (t overlap with H₂O, 1H, CHCH₂CO), 3.62 (AMX, *J* = 9.6 Hz, *J* = 17.6 Hz, CH₂CO), 3.45-3.32 (AMX and m overlap, 3H, CH₂CO and CH₂NH), 2.83 (t, *J* = 7.8 Hz, 2H, Im-4-CH₂), 2.03 (m, 2H, Im-4-CH₂CH₂); ¹³C-NMR (CD₃OD) δ (ppm): 173.5 (quart, CO), 163.0 (quart, C=NH), 154.9 (quart, C=NH), (quart, Benzyl-Im-C-2), 151.5 (quart, dd, *J* = 12.9 Hz, *J* = 248.9 Hz, CF), 151.3 (quart, dd, *J* = 12.6 Hz, *J* = 248.9 Hz, CF), 148.1 (quart, Benzyl-Im-C-2), 135.1 (quart, Im-C-4), 134.9 (+, Im-C-2), 134.4 (quart, Ar-C-1), 134.3 (quart, Ph-C-1), 130.2, 129.9, 128.6 (+, Ph-C), 125.5 (+, Ar-C-6), 124.8 (+, Benzyl-Im-C-4), 120.6 (+, Benzyl-Im-C-5), 119.2 (+, d, J = 17.7 Hz, Ar-C-5), 118.4 (+, d, J = 18.7 Hz, Ar-C-2), 117.1 (+, Im-C-5), 52.4 (-, PhCH₂), 41.6 (-, COCH₂), 41.5 (-, NHCH₂), 37.6 (+, CHCH₂CO), 27.9 (-, Im-4-CH₂CH₂), 22.4 (-, Im-4-CH₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 419 (MH⁺); HRMS (EI-MS): m/z calculated for [C₂₆H₂₇F₂N₇O], 491.2245, found 491.2234; C₂₆H₂₇F₂N₇O · 3 TFA (833.6).

 N^{I} -[3-(3,4-Difluorophenyl)-3-(1*H*-imidazol-2-yl)propanoyl]- N^{2} -[3-(1*H*-imidazol-4-yl)propyl]guanidine (60). Synthesized from 59 by hydrogenation at 7-10 bar over 10% Pd-C catalyst in tetrahydrofuran (addition of 2 equivalents of HCl) overnight. Yield 88%; colorless sticky oil; ¹H-NMR (CD₃OD) δ (ppm): 8.79 (s, 1H, 1*H*-Im-2-*H*), 7.94 (s, 2H, 2*H*-Im-3-*H* and -4-*H*), 7.47 (s, 1H, 1*H*-Im-5-*H*), 7.41-7.10 (m, 4H, Ar-*H* and N*H*), 5.03 (t overlap with H₂O, 1H, C*H*CH₂CO), 3.61 (dd, *J* = 8.2 Hz, *J* = 17.2 Hz, C*H*₂CO), 3.44 (dd, *J* = 6.9 Hz, *J* = 17.2 Hz, COC*H*₂), 3.30 (m, 2H, C*H*₂NH), 2.81 (t, *J* = 7.8 Hz, 2H, 1*H*-Im-4-C*H*₂), 2.01 (m, 2H, 1*H*-Im-4-CH₂C*H*₂). ¹³C-NMR (CDCl₃) δ (ppm): 173.4 (quart, CO), 155.0 (quart, C=NH), 151.8 (quart, dd, *J* = 12.5 Hz, *J* = 249.0 Hz, CF), 151.4 (quart, dd, *J* = 12.6 Hz, *J* = 248.9 Hz, CF), 148.8 (quart, 2*H*-Im-C-2), 135.5 (quart, Ar-C-1), 134.9 (+, 1*H*-Im-C-2), 134.2 (quart, 1*H*-Im-C-4), 125.6 (+, Ar-C-6), 120.6 (+, 2*H*-Im-C-5), 120.4 (+, 2*H*-Im-C-4), 119.4 (+, d, *J* = 17.7 Hz, Ar-C-5), 118.3 (+, d, *J* = 18.1 Hz, Ar-C-2), 117.1 (+, 1*H*-Im-C-5), 41.6 (-, CH₂CO), 40.4 (-, CH₂NH), 39.1 (+, CHCH₂CO), 27.8 (-, 1*H*-Im-4-CH₂CH₂), 22.5 (-, 1*H*-Im-4-CH₂); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 402 (MH⁺); HRMS: FAB-MS: *m*/z for ([C₁₉H₂₁F₂N₇O + H]⁺) calcd. 402.1854, found 402.1842; C₁₉H₂₁F₂N₇O · 3 TFA (743.5).

*N*¹-[3-(1*H*-Imidazol-4-yl)propanoyl]-*N*²-(3-phenylbutyl)guanidine (61). Yield 84 % (deprotection of compound 61a); colorless sticky oil; ¹H-NMR (CD₃OD) δ (ppm): 8.78 (d, 1H, *J* = 1.3 Hz, Im-2-*H*), 7.36 (s, 1H, Im-5-*H*), 7.23 (m, 5H, Ph), 3.17 (t, 2H, *J* = 7.1 Hz, Im-4-CH₂CH₂), 3.06 (t, 2H, *J* = 7.1 Hz, NHCH₂), 2.90 (t, 2H, *J* = 7.0 Hz, Im-4-CH₂CH₂), 2.82 (dd, 1H, *J* = 7.2 Hz, J=14.5 Hz, NH-CH₂CH₂CH₂CHCH₃), 1.96 (q, 2H, *J* = 7.3 Hz, NH-CH₂CH₂) 1.28 (d, 3H, *J* = 7.0, CH₃); ¹³C-NMR (CD₃OD) δ (ppm): 175.68 (quart, CO), 155.30 (quart, *C*=NH), 147.30 (quart. Ph-C-1), 134.99 (+, Im-C-2), 134.17 (quart, Im-C-4), 127.90, 128.39, 129.96 (+, arom. CH), 117.68 (+, Im-C-5), 41.48 (-, Im-4-CH₂CH₂), 39.10 (+, NH-CH₂CH₂CH), 37.19 (-, NH-CH₂CH₂), 36.30 (-, NH-CH₂CH₂), 23.34 (+, CH₃), 20.13 (-, Im-4-CH₂); HRMS: HRMS: EI-MS: *m*/*z* for (C₁₇H₂₃N₅O) calcd. 313.1903, found 313.1902; C₁₇H₂₃N₅O) · 2 TFA (541.4).

*N*¹-[3-(1*H*-Imidazol-4-yl)propyl]-*N*²-(2-phenylpropanoyl)guanidine (62). Yield 33 % (deprotection of compound 62a); colorless sticky oil; ¹H-NMR (CD₃OD) δ (ppm): 8.76 (d, 1H, *J* = 1.2 Hz, Im-2-*H*), 7.32 (m, 5H, Ph, Im-5-*H*), 3.90 (q, 1H, *J* = 6.8 Hz, COC*H*CH₃), 3.34 (t, 2H, *J* = 7.0 Hz, Im-4-CH₂CH₂), 2.80 (m, 2H, Im-4-CH₂CH₂CH₂); ¹³C-NMR (CD₃OD) δ (ppm): 178.24 (quart, *CO*), 155.53 (quart, *C*=NH), 140.88 (quart. Ph-*C*-1), 134.91 (+, Im-*C*-2), 134.31 (quart, Im-*C*-4), 130.03,

129.73, 128.84 (+, arom. *CH*), 117.13 (+, Im-*C*-5), 48.50 (+, COC*H*), 41.61 (-, Im-4--CH₂CH₂CH), 27.91 (-, Im-4-CH₂CH₂), 22.55 (-, Im-4-CH₂CH₂), 18.65 (+, *C*H₃); HRMS: EI-MS: m/z for (C₁₆H₂₁N₅O) calcd. 299.1746, found 299.1745; C₁₆H₂₁N₅O · 2 TFA (527.4).

*N*¹-[3-(1*H*-Imidazol-4-yl)propyl]-*N*²-[3-(pyridin-2-yl)butanoyl]guanidine (65). Yield 89% (deprotection of compound 65a); colorless sticky oil; ¹H-NMR (CD₃OD) δ (ppm): 8.79 (s, 1H, Im-2-*H*), 8.57 (d, *J* = 8.3 Hz, 1H, Pyr-6-*H*), 8.09 (dt, *J* = 1.7 Hz, *J* = 7.8 Hz, 1H, Pyr-4-*H*), 7.67 (d, *J* = 8.0 Hz, 1H, Pyr-3-*H*), 7.53 (ddd, *J* = 1.0 Hz, *J* = 5.3 Hz, *J* = 6.4 Hz, 1H, Pyr-5-*H*), 7.53 (s, 1H, Im-5-*H*), 3.60 (m, 1H, Ar₂C*H*), 3.35 (m, 2H, CH₂NH), 3.09 (dd, *J* = 8.3 Hz, *J* = 16.6 Hz, 1H, CH₂CO), 2.92 (dd, *J* = 6.2 Hz, *J* = 16.6 Hz, 1H, CH₂CO), 2.82 (t, *J* = 7.6 Hz, 2H, Im-4-CH₂), 2.01 (m, 2H, Im-4-CH₂CH₂), 1.40 (d, *J* = 7.0 Hz, 3H, CH₃CH); ¹³C-NMR (CD₃OD) δ (ppm): 175.4 (quart, CO), 163.7 (quart, Py-C-2), 155.2 (quart, C=NH), 146.7 (+, Pyr-C-6), 142.5 (+, Pyr-C-4), 134.9 (+, Im-C-2), 134.3 (+, Im-C-4), 125.4 (+, Pyr-C-3), 124.8 (+, Pyr-C-5), 117.1 (+, Im-C-5), 43.4 (-, COCH₂CH), 41.5 (-, CH₂NH), 37.4 (+, COCH₂CH), 27.9 (-, Im-4-CH₂CH₂), 22.5 (-, Im-4-CH₂), 20.7 (+, CH₃); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 315 (MH⁺); HRMS: EI-MS: *m*/*z* for (C₁₆H₂₂N₆O) calcd. 314.1855, found 314.1863; C₁₆H₂₂N₆O · 3 TFA (656.5).

 N^{1} -[3-(1*H*-Imidazol-4-yl)propyl]- N^{2} -[3-(thiazol-2-yl)butanoyl]guanidine (66). Yield 84% (deprotection of compound 66a) colorless sticky oil; ¹H-NMR (CD₃OD) δ (ppm): 8.84 (s, 1H, Im-2-*H*), 7.70 (d, *J* = 3.3 Hz, 1H, Thiaz-4-*H*), 7.49 (d, *J* = 3.3 Hz, 1H, Thiaz-5-*H*), 7.28 (s, 1H, Im-*H*-5), 3.90 (m, 1H, C*H*CH₂CO),), 3.38 (m, 2H, C*H*₂NH), 3.12 (dd, *J* = 8.2 Hz, *J* = 16.5 Hz, 1H, one of COC*H*₂), 2.92 (m, 3H, Im-4-CH₂ and one of COC*H*₂), 2.00 (m, 2H, Im-4-CH₂C*H*₂), 1.42 (d, *J* = 7.0 Hz, 3H, CH₃); ¹³C-NMR (CD₃OD) δ (ppm): 176.4 (quart, CO), 175.1 (quart, Thiaz-C-2), 155.2 (quart, C=NH), 142.7 (+, Thiaz-C-4), 134.9 (+, Im-C-2), 134.3 (quart, Im-C-4), 120.2 (+, Thiaz-C-5), 117.1 (+, Im-C-5), 44.3 (-, CHCH₂CO), 41.6 (-, CH₂NH), 35.1 (+, CHCH₂CO), 27.9 (-, Im-4-CH₂CH₂), 22.5 (-, Im-4-CH₂), 21.7 (+, CH₃); ES-MS (CH₂Cl₂/MeOH + 10 mM NH₄OAc): 321.5 (MH⁺); HRMS: FAB-MS: *m*/z for ([C₁₄H₂₀N₆OS + H]⁺) calcd. 321.1498, found 321.1508; C₁₄H₂₀N₆OS · 2 TFA (548.5).

*N*¹-Benzoyl-*N*²-[3-(1*H*-imidazol-4-yl)propyl]guanidine (67). Yield 19 % (deprotection of compound 67a); colorless sticky oil; ¹H-NMR (CD₃OD) δ (ppm): 8.81 (d, 1H, *J* = 1.3 Hz, Im-2-*H*), 8.00 (m, 2H, Ph), 7.69 (m, 1H, Ph), 7.56 (m, 2H, Ph), 7.38 (s, 1H, Im-5-*H*), 3.485 (t, 2H, *J* = 6.9 Hz, Im-4-CH₂CH₂CH₂), 2.88 (t, *J* = 7.6 Hz, 2H, Im-4-CH₂CH₂CH₂), 2.09 (m, 2H, Im-4-CH₂CH), ¹³C-NMR (CD₃OD) δ (ppm): 169.93 (quart, CO), 155.91 (quart, *C*=NH), 135.27 (quart. Ph-*C*-1), 134.99 (+, Im-*C*-2), 134.31 (quart, Im-*C*-4), 132.75, 130.18, 129.34 (+, arom. CH), 117.17 (+, Im-*C*-5), 41.86 (-, Im-4-CH₂CH₂CH₂CH₂), 28.05 (-, Im-4-CH₂), 22.58 (-, Im-4-CH₂CH₂CH₂); HRMS: EI-MS: *m/z* for [C₁₄H₁₇N₅O] calcd. 271.1433, found 271.1433; C₁₄H₁₇N₅O · 2 TFA (499.4).

*N*¹-[**3**-(1*H*-Imidazol-4-yl)propyl]-*N*²-(phenylacetyl)guanidine (68).; Yield 21 % (deprotection of compound 68a); colorless sticky oil; ¹H-NMR (CD₃OD) δ (ppm): 8.78 (d, 1H, *J* = 1.2 Hz, Im-2-*H*), 7.35 (s, 1H, Im-5-*H*), 7.31 (m, 5H, Ph), 3.79 (s, 2H, COC*H*₂), 3.37 (t, 2H, *J* = 6.9 Hz, Im-4-CH₂CH₂CH₂), 2.82 (t, *J* = 7.6 Hz, 2H, Im-4-CH₂CH₂, COC*H*₂), 2.02 (m, 2H, Im-4-CH₂CH₂), ¹³C-NMR (CD₃OD) δ (ppm): 175.20 (quart, *C*O), 155.47 (quart, *C*=NH), 134.95 (quart. Ph-*C*-1), 134.41 (+, Im-*C*-2), 134.35 (quart, Im-*C*-4), 130.63, 129.82, 128.62 (+, arom. CH), 117.13 (+, Im-*C*-5), 44.40 (-, COCH₂), 41.61 (-, Im-4-CH₂CH₂CH₂), 27.93 (-, Im-4-CH₂), 22.55 (-, Im-4-CH₂CH₂); HRMS: EI-MS: *m/z* for [C₁₅H₁₉N₅O] calcd. 285.1590, found 285.1590; C₁₅H₁₉N₅O · 2 TFA (513.4).

 N^{1} -[3-(1*H*-Imidazol-4-yl)propyl]- N^{2} -(3-phenylpropanoyl)guanidine (69). Yield 45 % (deprotection of compound 69a); colorless sticky oil; ¹H-NMR (CD₃OD) δ (ppm): 8.74 (d, 1H, *J* = 1.2 Hz, Im-2-*H*), 7.32 (s, 1H, Im-5-*H*), 7.22 (m, 5H, Ph), 3.35 (t, 2H, *J* = 6.9 Hz, COCH₂CH₂), 2.94 (t, 2H, *J* = 7.3 Hz, Im-4-CH₂CH₂CH₂), 2.79 (q, 4H, *J* = 8.3 Hz, Im-4-CH₂CH₂, COCH₂), 2.01 (m, 2H, Im-4-CH₂CH₂); ¹³C-NMR (CD₃OD) δ (ppm): 176.63 (quart, *C*O), 155.33 (quart, *C*=NH), 141.36 (quart. Ph-

C-1), 134.86 (+, Im-C-2), 134.28 (quart, Im-C-4), 127.49, 129.50, 129.61 (+, arom. CH), 117.13 (+, Im-C-5), 41.53 (-, Im-4-CH₂CH₂CH₂), 39.49 (-, COCH₂), 31.30 (-, Im-4-CH₂), 27.99 (-, COCH₂CH₂), 22.54 (-, Im-4-CH₂CH₂); HRMS: EI-MS: m/z for [C₁₆H₂₁N₅O] calcd. 291.1746, found 291.1747; C₁₆H₂₁N₅O · 2 TFA (527.4).

 N^{1} -[3-(1*H*-Imidazol-4-yl)propyl]- N^{2} -(4-phenylbutanoyl)guanidine (70). Yield 27 % (deprotection of compound 70a); colorless sticky oil; ¹H-NMR (CD₃OD) δ (ppm): 8.80 (d, 1H, *J* = 1.3 Hz, Im-2-*H*), 7.36 (s, 1H, Im-5-*H*), 7.22 (m, 5H, Ph), 3.37 (m, 2H, Im-4-CH₂CH₂CH₂), 2.83 (t, 2H, *J* = 7.5 Hz, COCH₂CH₂CH₂), 2.67 (t, 2H, *J* = 7.3 Hz, Im-4-CH₂), 2.49 (t, 2H, *J* = 7.3 Hz, COCH₂), 1.99 (m, 4H, Im-4-CH₂CH₂, COCH₂CH₂); ¹³C-NMR (CD₃OD) δ (ppm): 177.24 (quart, CO), 155.36 (quart, *C*=NH), 142.61 (quart. Ph-C-1), 134.93 (+, Im-C-2), 134.33 (quart, Im-C-4), 130.83, 130.22, 129.73, 129.61, 127.14 (+, arom. CH), 117.14 (+, Im-C-5), 41.53 (-, Im-4-CH₂CH₂CH₂), 37.15 (-, COCH₂), 35.94 (-, COCH₂CH₂CH₂), 27.99 (-, Im-4-CH₂), 27.21 (-, Im-4-CH₂CH₂), 22.56 (-, COCH₂CH₂); HRMS: EI-MS: *m/z* for [C₁₇H₂₃N₅O] calcd. 313.1903, found 313.1903; C₁₇H₂₃N₅O · 2 TFA (541.4).

 N^{1} -[3-(1*H*-Imidazol-4-yl)propyl]- N^{2} -(5-phenylpentanoyl)guanidine (71). Yield 24 % (deprotection of compound 71a); colorless sticky oil; ¹H-NMR (CD₃OD) δ (ppm): 8.76 (d, 1H, *J* = 1.3 Hz, Im-2-*H*), 7.33 (s, 1H, Im-5-*H*), 7.17 (m, 5H, Ph), 3.36 (t, 2H, *J* = 6.9 Hz, Im-4-CH₂CH₂CH₂), 2.82 (t, 2H, *J* = 7.7 Hz, Im-4-CH₂CH₂CH₂), 2.61 (t, 2H, *J* = 6.7 Hz, CH₂Ph), 2.48 (t, 2H, *J* = 6.5 Hz, COCH₂), 2.01 (m, 2H, Im-4-CH₂CH₂CH₂), 1.65 (m, 4H, COCH₂CH₂CH₂), ¹³C-NMR (CD₃OD) δ (ppm): 177.42 (quart, *C*O), 155.39 (quart, *C*=NH), 143.33 (quart. Ph-C-1), 134.99 (+, Im-C-2), 134.23 (quart, Im-C-4), 129.47, 129.39, 126.85 (+, arom. *C*H), 117.14 (+, Im-C-5), 41.44 (-, Im-4-CH₂CH₂CH₂), 37.56 (-, COCH₂), 36.48 (-, COCH₂CH₂CH₂), 31.81 (-, COCH₂CH₂CH₂), 27.99 (-, Im-4-CH₂), 25.02 (-, Im-4-CH₂CH₂), 22.54 (-, COCH₂CH₂); HRMS: EI-MS: *m*/*z* for [C₁₈H₂₅N₅O] calcd. 327.2059, found 327.2056; C₁₈H₂₅N₅O · 2 TFA (555.5).

 N^{1} -(2-Cyclohexylpropanoyl)- N^{2} -[3-(1*H*-imidazol-4-yl)propyl]guanidine (72). Yield 47 % (deprotection of compound 72a); colorless sticky oil; ¹H-NMR (CD₃OD) δ (ppm): 8.80 (d, 1H, *J* = 1.0 Hz, Im-2-*H*), 7.37 (d, 1H, *J* = 1.4 Hz, Im-5-*H*), 3.39 (t, 2H, *J* = 7.0 Hz, Im-4-CH₂CH₂CH₂), 2.84 (t, 2H, *J* = 7.0 Hz, Im-4-CH₂CH₂CH₂), 2.37 (m, 1H, CHCH₃), 2.04 (m, 2H, Im-4-CH₂CH₂CH₂), 1.69 (m, 6H, cHex-CH₂), 1.24 (m, 4H, cHex-CH₂), 1.14 (d, 3H, *J* = 6.5 Hz, CH₃), 1.00 (m, 1H, cHex); ¹³C-NMR (CD₃OD) δ (ppm): 180.75 (quart, CO), 155.42 (quart, *C*=NH), 134.96 (+, Im-*C*-2), 134.33 (quart, Im-*C*-4), 117.13 (+, Im-*C*-5), 42.08 (+, cHex-CH), 41.64 (-, Im-4-CH₂CH₂CH₂), 32.30 (-, Im-4-CH₂), 27.36, 27.95 (-, cHex-CH₂), 27.30 (-, Im-4-CH₂CH₂CH₂), 22.59 (-, cHex-CH₂), 22.31 (+, CHCH₃), 14.12 (+, CH₃); HRMS: EI-MS: *m*/z for [C₁₆H₂₇N₅O] calcd. 305.2216, found 305.2212; C₁₆H₂₇N₅O · 2 TFA (533.4).

*N*¹-(3-Cyclohexylbutanoyl)-*N*²-[3-(1*H*-imidazol-4-yl)propyl]guanidine (73). Yield 44 % (deprotection of compound 73a); colorless sticky oil; ¹H-NMR (CD₃OD) δ (ppm): 8.79 (d, 1H, *J* = 0.7 Hz, Im-2-*H*), 7.36 (s, 1H, Im-5-*H*), 3.37 (dd, 2H, *J* = 6.0 Hz, *J* = 12.9 Hz, Im-4-CH₂CH₂CH₂), 2.84 (t, 2H, *J* = 7.7 Hz, Im-4-CH₂CH₂CH₂), 2.56 (dd, 1H, *J* = 15.0 Hz, *J* = 5.1 Hz, CH*H*), 2.22 (dd, 1H, *J* = 15 Hz, J = 9.1 Hz, C*H*H), 2.04 (m, 3H, Im-4-CH₂CH₂, *CH*CH₃), 1.68-1.90 (m, 5H, cHex-CH₂, cHex-CH), 1.04-1.21 (m, 6H, cHex-CH₂), 0.91 (d, 3H, *J* = 6.8 Hz, CH₃); ¹³C-NMR (CD₃OD) δ (ppm): 177.54 (quart, *C*O), 154.40 (quart, *C*=NH), 134.94 (+, Im-*C*-2), 134.34 (quart, Im-*C*-4), 117.14 (+, Im-*C*-5), 43.94 (+, cHex-CH), 42.71 (-, Im-4-CH₂CH₂CH₂), 41.47 (-, COCH₂), 36.44 (+, CH₃CH), 31.48 (-, cHex-CH₂), 30.03 (-, Im-4-CH₂), 27.99, 28.85 (-, cHex-CH₂), 27.74 (-, Im-4-CH₂CH₂CH₂), 22.57 (-, cHex-CH₂), 16.61 (+, CH₃); HRMS: EI-MS: *m*/*z* for [C₁₇H₂₉N₅O] calcd. 319.2372, found 319.2372; C₁₇H₂₉N₅O · 2 TFA (547.4).

 N^1 -Cyclohexylcarbonyl- N^2 -[3-(1*H*-imidazol-4-yl)propyl]guanidine (74). Yield 27 % (deprotection of compound 74a); colorless sticky oil; ¹H-NMR (CD₃OD) δ (ppm): 8.78 (d, 1H, J = 0.9 Hz, Im-2-H), 7.35 (s, 1H, Im-5-H), 3.38 (t, 2H, J = 6.9 Hz, Im-4-CH₂CH₂CH₂), 2.83 (t, 2H, J = 7.7 Hz, Im-4-

 $CH_2CH_2CH_2$), 2.42 (m, 1H, cHex-CH), 2.03 (m, 2H, Im-4-CH₂CH₂), 1.80 (m, 5H, cHex-CH₂), 1.33 (m, 2H, cHex-CH₂), ¹³C-NMR (CD₃OD) δ (ppm): 180.46 (quart, CO), 155.89 (quart, C=NH), 134.94 (+, Im-C-2), 134.34 (quart, Im-C-4), 117.18 (+, Im-C-5), 46.70 (+, cHex-CH), 41.58 (-, Im-4-CH₂CH₂CH₂), 29.91 (-, Im-4-CH₂), 27.99 (-, Im-4-CH₂CH₂), 26.68, 26.27, 22.63 (-, cHex-CH₂), HRMS: EI-MS: *m/z* for [C₁₄H₂₃N₅O] calcd. 277.1903, found 277.1900; C₁₄H₂₃N₅O · 2 TFA (505.4).

*N*¹-Cyclohexylacetyl-*N*²-[3-(1*H*-imidazol-4-yl)propyl]guanidine (75). Yield 18 % (deprotection of compound 75a); colorless sticky oil;; ¹H-NMR (CD₃OD) δ (ppm): 8.79 (s, 1H, Im-2-*H*), 7.35 (s, 1H, Im-5-*H*), 3.37 (t, 2H, *J* = 7.7 Hz, Im-4-CH₂CH₂CH₂), 2.83 (t, 2H, *J* = 7.6 Hz, Im-4-CH₂CH₂CH₂), 2.33 (d, 1H, J = 6.9 Hz, COC*H*₂), 2.02 (m, 2H, Im-4-CH₂CH₂C*H*₂), 1.75 (m, 6H, cHex-CH₂), 1.12 (m, 5H, cHex-CH₂), ¹³C-NMR (CD₃OD) δ (ppm): 177.78 (quart, *C*O), 155.45 (quart, *C*=NH), 134.94 (+, Im-*C*-2), 134.34 (quart, Im-*C*-4), 117.15 (+, Im-*C*-5), 41.54 (-, Im-4-CH₂CH₂CH₂), 38.42 (+, cHex-CH), 35.47 (-, COCH₂), 34.13 (-, cHex-CH₂), 32.93 (-, COCH₂CH₂), 28.00 (-, Im-4-CH₂), 27.63 (-, Im-4-CH₂CH₂CH₂), 27.35, 22.56; HRMS: EI-MS: *m*/*z* for [C₁₅H₂₅N₅O] calcd. 291.2059, found 291.2059; C₁₅H₂₅N₅O · 2 TFA (519.4).

*N*¹-(3-Cyclohexylpropanoyl)-*N*²-[3-(1*H*-imidazol-4-yl)propyl]guanidine (76). Yield 56 % (deprotection of compound 76a); colorless sticky oil; ¹H-NMR (CD₃OD) δ (ppm): 8.80 (d, 1H, *J* = 1.2 Hz, Im-2-*H*), 7.37 (d, 1H, , *J* = 0.7 Hz, Im-5-*H*), 3.39 (t, 2H, *J* = 7.0 Hz, Im-4-CH₂CH₂CH₂), 2.84 (t, 2H, *J* = 7.5 Hz, Im-4-CH₂CH₂CH₂), 2.48 (t, 2H, *J* = 7.5 Hz, COC*H*₂), 2.04 (m, 2H, Im-4-CH₂CH₂CH₂), 1.72 (m, 5H, cHex-CH₂, cHex-CH), 1.54 (q, 2H, COCH₂CH₂), 1.24 (m, 4H, cHex-CH₂), 0.94 (m, 2H, cHex-CH₂); ¹³C-NMR (CD₃OD) δ (ppm): 177.78 (quart, CO), 155.45 (quart, *C*=NH), 134.94 (+, Im-C-2), 134.34 (quart, Im-C-4), 117.15 (+, Im-C-5), 41.54 (-, Im-4-CH₂CH₂CH₂), 38.42 (+, cHex-CH), 35.47 (-, COCH₂), 34.13 (-, cHex-CH₂), 32.93 (-, COCH₂CH₂), 28.00 (-, Im-4-CH₂), 27.63 (-, Im-4-CH₂CH₂CH₂), 27.35, 22.56 (-, cHex-CH₂); HRMS: EI-MS: *m*/*z* for [C₁₆H₂₇N₅O] calcd. 305.2216, found 305.2213; C₁₆H₂₇N₅O · 2 TFA (533.4).

*N*¹-(4-Cyclohexylbutanoyl)-*N*²-[3-(1*H*-imidazol-4-yl)propyl]guanidine (77). Yield 26 % (deprotection of compound 77a); colorless sticky oil; ¹H-NMR (CD₃OD) δ (ppm): 8.79 (d, 1H, *J* = 1.4 Hz, Im-2-*H*), 7.36 (d, 1H, *J* = 1.0 Hz, Im-5-*H*), 3.38 (t, 2H, *J* = 6.9 Hz, Im-4-CH₂CH₂CH₂), 2.84 (t, 2H, *J* = 7.7 Hz, Im-4-CH₂CH₂CH₂), 2.45 (t, 2H, *J* = 7.4 Hz, COC*H*₂), 2.03 (m, 2H, Im-4-CH₂CH₂CH₂), 1.68 (m, 7H, COCH₂CH₂, cHex-CH₂, cHex-CH), 1.22 (m, 6H, cHex-CH₂), 0.90 (m, 2H, COCH₂CH₂CH₂); ¹³C-NMR (CD₃OD) δ (ppm): 177.54 (quart, CO), 155.41 (quart, *C*=NH), 134.93 (+, Im-*C*-2), 134.34 (quart, Im-*C*-4), 117.14 (+, Im-*C*-5), 41.54 (-, Im-4-CH₂CH₂CH₂), 38.71 (+, cHex-CH), 38.05 (-, COCH₂), 37.81 (-, COCH₂CH₂CH₂), 34.41 (-, cHex-CH₂), 27.99 (-, cHex-CH₂), 27.78 (-, Im-4-CH₂), 27.47 (-, Im-4-CH₂CH₂CH₂), 22.93 (-, COCH₂CH₂), 22.56 (-, cHex-CH₂); HRMS: EI-MS: *m*/*z* for [C₁₇H₂₉N₅O] calcd. 319.2379, found 319.2377; C₁₇H₂₉N₅O · 2 TFA (547.4).

4. HPLC-Data of the acylguanidines 46-77

Analytical chromatography was performed on a Thermo Separation Products system equipped with a SN 400 controller, P4000 pump, an AS3000 autosampler and a Spectra Focus UV-VIS detector (Darmstadt, Germany). The columns were either: Column A: Nucleodur (Macherey-Nagel, Düren, Germany) 100-5 C18 ec (250 x 4.0, 5 μ m), t₀ (0.8 mL/min) = 2.30 min; Column B: Luna (Phenomenex, Aschaffenburg, Germany) C18 (150 x 4.6, 4 μ m), t₀ (0.7 mL/min) = 2.88 min; Column C: Eurospher-100 (Knauer, Berlin, Germany) C-18 (250 x 4.0, 5 μ m), t₀ (0.7 mL/min) = 3.32 min; Column D: Purospher (Agilent Technologies, Böblingen, Germany) 100 C18 (250 x 4.0, 5 μ m); Column E: Synergi Hydro-RP (Phenomenex, Aschaffenburg, Germany) (250 x 4.6, 4 μ m), t₀ (0.8 mL/min) = 3.10 min. The temperature was 30 °C and the UV detection was set to 254 and 210 nm. Aqueous TFA was prepared with Millipore water. k' = (t_R - t₀)/t₀.

No	t _R [min]	k'	mobile phase	column	purity [%]
46	8.75	2.80	0 min: 0.05% TFA/MeCN 97/3, 20 min: 85/15	А	93
47	14.66	5.37	0 min: 0.05% TFA/MeCN 95/5, 20 min: 50/50	А	97
48	16.51	4.73	0 min: 0.05% TFA/MeCN 80/20, 20 min: 64/36	В	100
49	14.72	4.11	0 min: 0.05% TFA/MeCN 90/10, 20 min: 75/25	В	100
50	19.50	5.77	0 min: 0.05% TFA/MeCN 80/20, 20 min: 64/36	В	95
51	18.18	5.31	0 min: 0.05% TFA/MeCN 80/20, 20 min: 64/36	В	85
52	18.59	5.45	0 min: 0.05% TFA/MeCN 80/20, 20 min: 68/32	В	97
53	4.60 8.36	0.00 0.82	0.1% TFA/MeOH 20/80 0.1% TFA/MeOH 30/70	D	>96
54	4.99 9.42	0.08 1.05	0.1% TFA/MeOH 20/80 0.1% TFA/MeOH 30/70	D	>94
55	14.27	3.95	0 min: 0.05% TFA/MeCN 90/10, 20 min: 80/20	В	86
56	17.51	5.08	0 min: 0.05% TFA/MeCN 90/10, 20 min: 80/20	В	90
57	10.91	2.79	0 min: 0.05% TFA/MeCN 80/20, 20 min: 70/30	В	95
58	12.62	3.38	0 min: 0.05% TFA/MeCN 80/20, 20 min: 62/38	В	100
59	13.78	3.78	0 min: 0.05% TFA/MeCN 80/20, 20 min: 70/30	В	98
60	9.12	2.17	0 min: 0.05% TFA/MeCN 90/10, 20 min: 75/25	В	80
61	12.76	2.85	0 min: 0.05% TFA/MeCN 90/10, 20 min: 40/60	С	100
62	11.77	2.55	0 min: 0.05% TFA/MeCN 90/10, 20 min: 40/60	С	92
63	9.54	1.27	0 min: 0.05% TFA/MeCN 80/20, 20 min: 64/36	В	91

Table 1. Retention times, capacity factors (k') and purities of compounds 46-77.

64	13.00	3.19	0 min: 0.05% TFA/MeCN 80/20, 20 min: 70/30	Е	95
65	13.00	3.51	0 min: 0.05% TFA/MeCN 98/2, 20 min: 85/15	В	95
66	11.95	3.15	0 min: 0.05% TFA/MeCN 97/3, 20 min: 65/35	В	100
67	16.23	4.63	0 min: 0.05% TFA/MeCN 90/10, 20 min: 90/10	В	97
68	10.37	2.13	0 min: 0.05% TFA/MeCN 90/10, 20 min: 40/60	С	99
69	11.98	2.61	0 min: 0.05% TFA/MeCN 90/10, 20 min: 40/60	С	100
70	13.26	2.99	0 min: 0.05% TFA/MeCN 90/10, 20 min: 40/60	С	84
71	14.69	3.43	0 min: 0.05% TFA/MeCN 90/10, 20 min: 40/60	С	99
72	13.89	3.19	0 min: 0.05% TFA/MeCN 90/10, 20 min: 40/60	С	99
73	17.12	4.94	0 min: 0.05% TFA/MeCN 80/20, 20 min: 64/36	В	100
74	13.14	3.56	0 min: 0.05% TFA/MeCN 90/10, 20 min: 70/30	В	100
75	12.89	2.89	0 min: 0.05% TFA/MeCN 90/10, 20 min: 40/60	С	100
76	14.61	4.07	0 min: 0.05% TFA/MeCN 80/20, 20 min: 64/36	В	100
77	16.39	3.94	0 min: 0.05% TFA/MeCN 90/10, 20 min: 40/60	С	97

HPLC-tracing of compound 46

HPLC-tracing of compound 48

S22

HPLC-tracing of compound 50

HPLC-tracing of compound 52

HPLC-tracing of compound 55

HPLC-tracing of compound 56

HPLC-tracing of compound 58

HPLC-tracing of compound 61

S27

HPLC-tracing of compound 63

HPLC-tracing of compound 65

HPLC-tracing of compound 67

HPLC-tracing of compound 68

HPLC-tracing of compound 69

HPLC-tracing of compound 73

HPLC-tracing of compound 75

HPLC-tracing of compound 76

HPLC-tracing of compound 77

5. Pharmacological methods

Investigations on isolated guinea pig organs

Histamine H₁ receptor assay on the isolated guinea pig ileum. Guinea pigs of either sex (250-500 g) were stunned by a blow on the neck and exsanguinated. The ileum was rapidly removed, rinsed and cut into segments of 1.5-2 cm length. The tissues were mounted isotonically (preload of 5 mN) in a jacketed 20-mL organ bath that was filled with Tyrode's solution of the following composition [mM]: NaCl 137, KCl 2.7, CaCl₂ 1.8, MgCl₂ 1.0, NaH₂PO₄ 0.4, NaHCO₃ 11.9, and glucose 5.0. The solution additionally contained atropine to block cholinergic M receptors at a concentration not affecting H₁ receptors (0.05 μ M). The solution was aerated with 95% O₂-5% CO₂ and warmed to a constant temperature of 37 °C. During an equilibration period of 80 min, the tissues were stimulated three times with histamine (1 μ M, then 10 μ M) followed by washout. Up to four cumulative concentration-response curves were determined on each organ preparation: a first to histamine (0.01-30 μ M), and the second to fourth curve to histamine in the presence of increasing concentrations of antagonist (incubation time 10–15 min). pEC₅₀ differences were not corrected since four successive curves for histamine were superimposable (*n* > 10).

Histamine H₂ receptor assay on isolated guinea pig right atrium (spontaneously beating). Hearts were rapidly removed from guinea pigs used for studies on the ileum (see above). The right atrium was quickly dissected and set up isometrically in Krebs-Henseleit solution under a diastolic resting force of 5 mN in a jacketed 20 mL-organ bath of 32.5 °C as previously described.²⁷ The bath fluid (composition [mM]: NaCl 118.1, KCl 4.7, CaCl₂ 1.8, MgSO₄ 1.64, KH₂PO₄ 1.2, NaHCO₃ 25.0, glucose 5.0, sodium pyruvate 2.0) was equilibrated with 95% O_2 -5% CO_2 and additionally contained (RS)-propranolol (0.3) μ M) to block β -adrenergic receptors and mepyramine (1 μ M) to block H₁-receptors. Experiments were started after 30 min of continuous washing and an additional equilibration period of 15 min. Antagonists: Two successive concentration-frequency curves to histamine $(0.1-30 \mu M)$ were established, the first in the absence and the second in the presence of the compound under study (incubation time 30 min). Two successive curves for histamine displayed a significant desensitization of 0.13 ± 0.02 (N = 16 control organs). This value was used to correct each individual experiment. Agonists: Two successive concentration-frequency curves were established, the first to histamine (0.1-30 μ M) and the second for the agonist under study in the absence or presence of cimetidine (10 μ M, 30 min incubation time). Furthermore, the sensitivity to 30 µM cimetidine was routinely checked at the end of each H_2R agonist concentration-effect curve established in the absence of an H_2 receptor antagonist, and a significant reduction of frequency was always observed after 15-45 min.

Calcium assays with U-373 MG cells

Cells and culture conditions. The human U-373 MG (HTB 17) glioblastoma/astrocytoma cell line was obtained from the American Type Culture Collection (Rockville, MD, USA). Cell banking and quality control were performed according to the "seed stock concept". Cells were grown in Eagle's minimum essential medium containing L-glutamine, 2.2 g/L NaHCO₃, 110 mg/L sodium pyruvate (Sigma, Deisenhofen, Germany), and 10% (v/v) FCS (GIBCO, Eggenstein, Germany). The cells were cultured in a water-saturated atmosphere of 95% air and 5% carbon dioxide at 37 °C in 75-cm² culture flasks (Costar, Tecnomara, Fernwald, Germany) and were serially passaged following trypsinization using trypsin (0.05%, v/v) / EDTA (0.02%, v/v) (Roche Diagnostics, Mannheim, Germany).

Preparation of the cells. Adherently growing U-373 MG cells were trypsinized and transferred from a 75-cm² flask to 175-cm² flask (Nunclon, 178883, Nunc, Wiesbaden, Germany) 5-6 days before the experiment. At approx. 80% confluence cells were trypsinized, the suspension $(2-4\cdot10^5$ cells per mL), was centrifuged for 10 min at 200 g and room temperature. After resuspension in 10 mL of loading buffer (25 mM HEPES (Sigma, Deisenhofen, Germany), 120 mM NaCl, 5 mM KCl, 2 mM MgCl₂, 1.5 mM CaCl₂, 10 mM glucose), pH 7.4, cell number was determined with a hemocytometer

(Neubauer, improved), and the cells were adjusted to a density of $1.3 \cdot 10^6$ per mL by addition of an appropriate volume of loading buffer.

Loading of the cells with Ca²⁺ indicator Fura-2/AM. To three volumes of the prepared cell suspension, one volume of loading dispersion was added, before the cells were incubated in the dark at room temperature for 30 min. The loading dispersion was freshly made by mixing 10 mL of loading buffer, containing 2 % bovine serum albumin (BSA), with 50 μ L of Pluronic-F-127 (Molecular Probes, Eugene, Oregon, USA) (20 % in DMSO), and 40 μ L of Fura-2/AM (Molecular Probes, Eugene, Oregon, USA) (1 mM in anhydrous DMSO).

Cells were centrifuged (200 g, 7 min), resuspended in fresh loading buffer and allowed to stand for another 30 min at room temperature in the dark. After two washing/centrifugation cycles (loading buffer, 200 g, 7 min) and adjustment of the cell number to a value of 10^6 /mL, cells were incubated for at least 15 min at 20 °C in the dark.

Fluorimetric determination of intracellular [Ca²⁺]. 1 mL-aliquots of loading buffer were filled into disposable acrylic cuvettes (Sarstedt, No. 67.755, Nuembrecht, Germany), which were thermostatted at 30 °C in an incubator hood (Infors AG, Bottmingen, Switzerland). Immediately after addition of 1 mL of the Fura-2/AM loaded cell suspension and a magnetic stirrer, the cuvette was placed into the thermostatted (25 °C) stirred cell holder of a LS 50 B Luminescence Spectrometer (Perkin Elmer, Ueberlingen, Germany), equipped with a fast filter accessory. Fluorescence signals were registered (instrument settings: excitation 340/380 nm, emission 510 nm, slits 10 nm, resolution 0.1, stirrer low) for 300 s after addition of 10 μ L of 6 mM histamine dihydrochloride dissolved in millipore water.

Calculation of Ca^{2+} concentrations. Calcium concentrations were calculated from dual wavelength fluorescence intensities according to the Grynkiewicz equation:

$$\left[Ca^{2+}\right] = K_d \cdot \frac{(R - R_{\min})}{(R_{\max} - R)} \cdot SFB$$

were K_d (224 nM) is the dissociation constant of the Fura-2-Ca²⁺-complex, R is the experimental fluorescence ratio value (F_{340} / F_{380}), R_{min} and R_{max} are the fluorescence value ratios (F_{340} / F_{380}) under Ca²⁺-free and Ca²⁺-saturation conditions, respectively, and SFB is the ratio of fluorescence intensities for Ca²⁺-free/Ca²⁺-bound indicator, measured at 380 nm. R_{min} , R_{max} and SFB were determined by calibration experiments, performed in every test series.

To measure R_{max} , 10 µL of an aqueous solution of 2 % digitonin (Sigma, Deisenhofen, Germany), were pipetted into the cuvette, wheras R_{min} was determined after subsequent addition of 50 µL of a 0.6 M EGTA solution (in 1 M Tris/HCl, pH 8.7).

Investigation of histamine H₁ **receptor antagonists on U-373 MG cells:**²⁸ To determine the histamine H₁ receptor antagonism on U-373 MG cells, the inhibition of the (submaximal) increase in $[Ca^{2+}]_i$ elicited by 30 µM histamine was measured. Prior to stimulation with histamine the cells were incubated with the putative antagonists for 15 min in the dark with stirring. The inhibition (%) was calculated as follows:

Inhibition [%] = (100 -
$$\frac{[Ca^{2+}]_{i}\text{-increase (antagonist + 30 }\mu\text{M hist.) }[\mu\text{M}]}{[Ca^{2+}]_{i}\text{-increase (control) }[\mu\text{M}]}) \cdot 100$$

At least seven concentrations of the antagonists were used and at least two independent experiments were carried out on different days. The mean values of the resulting inhibition curves were used to

calculate IC₅₀ and pK_B values, respectively.

Calculation of IC₅₀ values: IC₅₀ values were calculated from at least two antagonist concentrations [B], inhibiting the agonist-stimulated increase in intracellular [Ca²⁺] between 20 and 80 %. The mean percentual inhibition values P with SEM < 10 %, determined from at least 3 independent experiments, performed on different days, were logit transformed, according to the equation

$$logit (P) = log \frac{P}{100 - P}$$

and IC_{50} values (logit P = 0) were determined from the plot logit (P) versus log [B] with the slope n according to

$$\log \frac{P}{100 - P} = n \cdot \log [B] - n \cdot \log IC_{50}$$

by linear regression.

 K_B values were calculated according to the Cheng-Prusoff equation with $EC_{50} = 5.37 \mu M$ for histamine.

Determination of histamine receptor agonism and antagonism in GTPase assays

Generation of recombinant baculoviruses, cell culture and membrane preparation. Recombinant baculoviruses encoding human H₁R or a fusion protein of the human H₂R with $G_{s\alpha S}$ were prepared as described.^{29, 30} Receptors were N-terminally tagged with the FLAG epitope and C-terminally tagged with a hexahistidine tag. The cDNA of the human H₃R was kindly provided by Dr. Robin Thurmond (Johnson & Johnson Research and Development, La Jolla, CA), and the cDNA of the human H₄R was from the UMR cDNA Resource Center at the University of Missouri-Rolla (Rolla, MO). Baculoviruses for the human H₃R and a fusion protein of the human H₄R with the RGS-protein GAIP were prepared in analogy to the procedures for the H₁R and the H₂R-G_{s\alpha S} fusion protein^{29, 30} using the BaculoGOLD transfection kit (BDPharmingen, San Diego, CA) according to the manufacturer's instructions.

Sf9 cells were cultured in 250- or 500-mL disposable Erlenmeyer flasks at 28 °C under rotation at 150 r.p.m in SF 900 II medium (Invitrogen, Carlsbad, CA) supplemented with 5 % (v/v) fetal calf serum (Biochrom, Berlin, Germany) and 0.1 mg/mL gentamicin (Cambrex Bio Science, Walkersville, MD). Cells were maintained at a density of $0.5 - 6.0 \times 10^6$ cells/mL. After initial transfection, high-titer virus stocks were generated by two sequential virus amplifications. In the first amplification, cells were seeded at 2.0 x 10^6 cells/mL and infected with a 1:100 dilution of the supernatant from the initial transfection. Cells were cultured for 7 days, resulting in the death of virtually the entire cell population. The supernatant fluid of this infection was harvested and stored under light protection at 4 °C. In a second amplification, cells were seeded at 3.0×10^6 cells/mL and infected with a 1:20 dilution of the supernatant fluid from the first amplification. Cells were cultured for 48 h, and the supernatant fluid was harvested. After the 48 h culture period, the majority of cells showed signs of infections (e.g. altered morphology, viral inclusion bodies), but most of the cells were still intact. The supernatant fluid from the second amplification was stored under light protection at 4 °C and used as routine virus stock for membrane preparations.

In infections for membrane preparation, cells were sedimented by centrifugation and suspended in fresh medium at 3.0×10^6 cells/mL. Cells were infected with 1:100 dilutions of high-titer baculovirus stocks encoding the various histamine receptors, histamine receptor fusion proteins, G-protein subunits and RGS proteins. Cells were cultured for 48 h before membrane preparation. Sf9 membranes were prepared as described,³¹ using 1 mM EDTA, 0.2 mM phenylmethylsulfonyl fluoride, 10 µg/mL benzamidine and 10 µg/mL leupeptin as protease inhibitors. Membranes were suspended in binding

buffer (12.5 mM MgCl₂, 1 mM EDTA and 75 mM Tris/HCl, pH 7.4) and stored at -80 °C until use. Protein concentrations were determined using the DC protein assay kit (Bio-Rad, Hercules, CA).

Synthesis of $[\gamma^{-32}P]$ GTP. $[\gamma^{-32}P]$ GTP was synthesized by enzymatic phosphorylation of GDP according to a previously described procedure.³² [³²P]P_i (8,500-9,100 Ci/mmol orthophosphoric acid) was from PerkinElmer Life Sciences (Boston, MA, USA). All unlabeled nucleotides, glycerol-3-phosphate dehydrogenase, triose phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, and lactate dehydrogenase were from Roche (Mannheim, Germany). 3-Phosphoglycerate kinase and L-glycerol-3-phosphate was from Sigma.

Steady-state GTPase activity assay with Sf9 insect cell membranes expressing histamine $H_{1,4}$ receptors. Membranes were thawed, sedimented and resuspended in 10 mM Tris/HCl, pH 7.4. In the case of the H₁R and H₂R, Sf9 membranes expressing either H₁R isoforms plus RGS4 or H₂R-G_{sa} fusion proteins, respectively, were used.^{33, 34} H₃R-regulated GTP hydrolysis was determined with membranes co-expressing human H₃R, mammalian Gi_{α 2}, G_{β 1} γ_2 and RGS4. Human H₄R activity was measured with membranes co-expressing an H₄R-RGS19 fusion protein with Gi_{α 2} and G_{β 1} γ_2 . Assay tubes contained Sf9 membranes (10-20 µg of protein/tube), MgCl₂ (H₁R, H₂R: 1.0 mM; H₃R, H₄R: 5.0 mM), 100 µM EDTA, 100 µM ATP, 100 nM GTP, 100 µM adenylyl imidodiphosphate, 5 mM creatine phosphate, 40 µg creatine kinase and 0.2 % (w/v) bovine serum albumin in 50 mM Tris/HCl, pH 7.4, as well as ligands at various concentrations. In H₄R assays, NaCl (final concentration of 100 mM) was included. Reaction mixtures (80 μ L) were incubated for 2 min at 25 °C before the addition of 20 μ L [γ -³²P]GTP (0.1 µCi/tube). Reactions were conducted for 20 min at 25 °C and terminated by the addition of 900 µL of slurry consisting of 5% (w/v) activated charcoal suspended in 50 mM NaH₂PO₄, pH 2.0. Charcoal absorbs nucleotides but not Pi. Charcoal-quenched reaction mixtures were centrifuged for 7 min at room temperature at 15.000 g. Sixhundred μ L of the supernatant fluid were removed, and ³²P_i was determined by liquid scintillation counting. Enzyme activities were corrected for spontaneous degradation of γ - 32 P]GTP. Spontaneous [γ - 32 P]GTP degradation was determined in tubes containing all components described above, plus a high concentration of unlabeled GTP (1 mM) that, by competition with [γ - 32 P]GTP, prevents [γ - 32 P]GTP hydrolysis by enzymatic activities present in Sf9 membranes. Spontaneous $[\gamma^{-32}P]$ GTP degradation was <1 % of the total amount of radioactivity added. The experimental conditions chosen ensured that not more than 10% of the total amount of $[\gamma^{-32}P]GTP$ added was converted to ³²P_i. All experimental data were analyzed by non-linear regression with the Prism 4 program (GraphPad Software, San Diego, CA).

6. References

- Stark, H.; Purand, K.; Hüls, A.; Ligneau, X.; Garbarg, M.; Schwartz, J.-C.; Schunack, W. [¹²⁵I]Iodoproxyfan and Related Compounds: A Reversible Radioligand and Novel Classes of Antagonists with High Affinity and Selectivity for the Histamine H₃ Receptor. *J. Med. Chem.* 1996, 39, 1220-1226.
- 2. Nystrom, R. F.; Brown, W. G. Reduction of Organic Compounds by Lithium Aluminum Hydride. II. Carboxylic Acids. J. Am. Chem. Soc. **1947**, 69, 2548-2549.
- 3. Feichtinger, K.; Sings, H. L.; Baker, T. J.; Matthews, K.; Goodman, M. Triurethane-Protected Guanidines and Triflyldiurethane-Protected Guanidines: New Reagents for Guanidinylation Reactions. *J. Org. Chem.* **1998**, 63, 8432-8439.
- 4. Eleftheriou, S.; Gatos, D.; Panagopoulos, A.; Stathopoulos, S.; Barlos, K. Attachment of histidine, histamine and urocanic acid to resins of the trityl-type. *Tetrahedron Lett.* **1999**, 40, 2825-2828.
- 5. Maerten, E.; Sauthier, M.; Mortreux, A.; Castanet, Y. Palladium-N-heterocyclic carbene an

efficient catalytic system for the carbonylative cross-coupling of pyridine halides with boronic acids. *Tetrahedron* **2007**, 63, 682-689.

- 6. Rahman, O.; Llop, J.; Långström, B. Organic Bases as Additives to Improve the Radiochemical Yields of [¹¹C]Ketones Prepared by the Suzuki Coupling Reaction. *Eur. J. Org. Chem.* **2004**, 2674-2678.
- 7. Dondoni, A.; Fantin, G.; Fogagnolo, M.; Medici, A.; Pedrini, P. Synthesis of (trimethylsilyl)thiazoles and reactions with carbonyl compounds. Selectivity aspects and synthetic utility. *J. Org. Chem.* **1988**, 53, 1748-1761.
- 8. Ishikawa, F. Cyclic guanidines. X. Synthesis of 2-(2,2-disubstituted ethenyl- and ethyl)-2imidazolines as potent hypoglycemics. *Chem. Pharm. Bull. (Tokyo).* **1980**, 28, 1394-1402.
- 9. Macco, A. A.; De Brouwer, R. J.; Buck, H. M. Asymmetric induction in the synthesis of thiophenecontaining steroidlike molecules via olefinic cyclization. Precoiling as model description for the stereochemical course of the reaction. *J. Org. Chem.* **1977**, 42, 3196-3199.
- Tucker, T. J.; Lumma, W. C.; Lewis, S. D.; Gardell, S. J.; Lucas, B. J.; Sisko, J. T.; Lynch, J. J.; Lyle, E. A.; Baskin, E. P.; Woltmann, R. F.; Appleby, S. D.; Chen, I. W.; Dancheck, K. B.; Naylor-Olsen, A. M.; Krueger, J. A.; Cooper, C. M.; Vacca, J. P. Synthesis of a Series of Potent and Orally Bioavailable Thrombin Inhibitors That Utilize 3,3-Disubstituted Propionic Acid Derivatives in the P3 Position. J. Med. Chem. 1997, 40, 3687-3693.
- 11. Macco, A. A.; Buck, H. M. Preparation of a 6a-substituted optically pure steroid with thiophene as the A ring via asymmetric induction. A circular dichroism study. *J. Org. Chem.* **1981**, 46, 2655-2660.
- 12. Uenishi, J.; Hiraoka, T.; Hata, S.; Nishiwaki, K.; Yonemitsu, O.; Nakamura, K.; Tsukube, H. Chiral Pyridines: Optical Resolution of 1-(2-Pyridyl)- and 1-[6-(2,2'-Bipyridyl)]ethanols by Lipase-Catalyzed Enantioselective Acetylation. *J. Org. Chem.* **1998**, 63, 2481-2487.
- 13. Abarbri, M.; Thibonnet, J.; Berillon, L.; Dehmel, F.; Rottlander, M.; Knochel, P. Preparation of New Polyfunctional Magnesiated Heterocycles Using a Chlorine-, Bromine-, or Iodine-Magnesium Exchange. *J. Org. Chem.* **2000**, 65, 4618-4634.
- 14. Uenishi, J. i.; Hiraoka, T.; Yuyama, K.; Yonemitsu, O. Synthesis of optically pure 1-(2-pyridinyl)ethylamine and 4-(2-pyridinyl)-1,3-oxazolin-2-one. *Heterocycles* **2000**, 52, 719-732.
- 15. Uenishi, J.; Hamada, M. Stereospecific substitution of enantiomerically pure 1-(2-pyridinyl)ethyl methanesulfonate with β-dicarbonyl compounds. *Chem. Pharm. Bull. (Tokyo).* **2002**, 50, 697-700.
- 16. Kuo, Y. C.; Aoyama, T.; Shioiri, T. New methods and reagents in organic synthesis. 26. Reductive desulfonylation of α-sulfonylacetates. *Chem. Pharm. Bull. (Tokyo).* **1982**, 30, 2787-2792.
- Sibi, M. P.; Ji, J.; Wu, J. H.; Gurtler, S.; Porter, N. A. Chiral Lewis Acid Catalysis in Radical Reactions: Enantioselective Conjugate Radical Additions. J. Am. Chem. Soc. 1996, 118, 9200-9201.
- 18. Sinha, A. K.; Sharma, A.; Joshi, B. P. One-pot two-step synthesis of 4-vinylphenols from 4hydroxy substituted benzaldehydes under microwave irradiation: a new perspective on the classical Knoevenagel-Doebner reaction. *Tetrahedron* **2007**, 63, 960-965.
- Matasi, J. J.; Caldwell, J. P.; Hao, J.; Neustadt, B.; Arik, L.; Foster, C. J.; Lachowicz, J.; Tulshian, D. B. The discovery and synthesis of novel adenosine receptor (A_{2A}) antagonists. *Bioorg. Med. Chem. Lett.* 2005, 15, 1333-1336.
- 20. Bott, K. Carbonsäuresynthesen mit 1,1-Dichloräthylen, II. β-Alkyl- und β-Arylzimtsäuren. *Chem. Ber.* **1967**, 100, 2791-2797.
- 21. Pfeiffer, P.; Schmitz, E.; Stocker, H.; Kramer, H.; Reuter, G. Autoxidation reactions. VII. *Liebigs Ann. Chem.* **1953**, 581, 149-159.
- 22. Effenberger, R.; Eisenstadt, A. Process for the preparation of disubstituted benzophenones, their novel intermediates and process for the preparation of said intermediates. IL 115855, 2001. *Chem. Abstr.* 140:217384.
- 23. Botella, L.; Najera, C. Mono- and β , β -Double-Heck Reactions of α , β -Unsaturated Carbonyl Compounds in Aqueous Media. J. Org. Chem. **2005**, 70, 4360-4369.

- 24. Boegesoe, K. P. Neuroleptic activity and dopamine-uptake inhibition in 1-piperazino-3-phenylindans. J. Med. Chem. 1983, 26, 935-947.
- 25. Menghin, S.; Pertz, H. H.; Kramer, K.; Seifert, R.; Schunack, W.; Elz, S. N^{α} -Imidazolylalkyl and Pyridylalkyl Derivatives of Histaprodifen: Synthesis and in Vitro Evaluation of Highly Potent Histamine H₁ Receptor Agonists. *J. Med. Chem.* **2003**, 46, 5458-5470.
- Bonjean, J.; Schunack, W. H₂-Antihistaminika, 35. Mitt. Synthese und H₂-antagonistische Wirkung imidazolylmethylthioalkyl-substituierter 1,2,4-Triazole. *Arch. Pharm. (Weinheim)* 1987, 320, 554-562.
- 27. Black, J. W.; Duncan, W. A.; Durant, C. J.; Ganellin, C. R.; Parsons, E. M. Definition and antagonism of histamine H₂-receptors. *Nature (London)* **1972**, 236, 385-390.
- Li, L.; Kracht, J.; Peng, S.; Bernhardt, G.; Buschauer, A. Synthesis and pharmacological activity of fluorescent histamine H₁ receptor antagonists related to mepyramine. *Bioorg. Med. Chem. Lett.* 2003, 13, 1245-1248.
- 29. Houston, C.; Wenzel-Seifert, K.; Bürckstümmer, T.; Seifert, R. The human histamine H₂-receptor couples more efficiently to Sf9 insect cell G_s-proteins than to insect cell G_q-proteins: limitations of Sf9 cells for the analysis of receptor/G_q-protein coupling. *J. Neurochem.* **2002**, 80, 678-696.
- 30. Kelley, M. T.; Bürckstümmer, T.; Wenzel-Seifert, K.; Dove, S.; Buschauer, A.; Seifert, R. Distinct interaction of human and guinea pig histamine H₂-receptor with guanidine-type agonists. *Mol. Pharmacol.* **2001**, 60, 1210-1225.
- 31. Seifert, R.; Lee, T. W.; Lam, V. T.; Kobilka, B. K. Reconstitution of beta2-adrenoceptor-GTPbinding-protein interaction in Sf9 cells--high coupling efficiency in a beta2-adrenoceptor-G(s alpha) fusion protein. *Eur. J. Biochem.* **1998**, 255, 369-382.
- 32. Walseth, T. F.; Johnson, R. A. The enzymatic preparation of [alpha-(32)P]nucleoside triphosphates, cyclic [³²P] AMP, and cyclic [³²P] GMP. *Biochim. Biophys. Acta* **1979**, 562, 11-31.
- 33. Preuss, H.; Ghorai, P.; Kraus, A.; Dove, S.; Buschauer, A.; Seifert, R. Constitutive activity and ligand selectivity of human, guinea pig, rat, and canine histamine H₂ receptors. *J. Pharmacol. Exp. Ther.* **2007**, 321, 983-995.
- 34. Straßer, A.; Striegl, B.; Wittmann, H.-J.; Seifert, R. Pharmacological profile of histaprodifens at four recombinant histamine H₁ receptor species isoforms. *J. Pharmacol. Exp. Ther.* **2008**, 324, 60-71.