Acid-Induced Liberation of Polysubstituted Cyclopentadiene Ligands from Cyclopentadienyl Cobalt: A [2 + 2 + 1] Cycloaddition Route Toward 1,2,4-Trisubstituted Cyclopentadienes

Pengjin Qin,† Ryan L. Holland,† Kevin D. Bunker,† Joseph M. O’Connor,*† Kim K. Baldridge,*‡ and Arnold L. Rheingold†

†Department of Chemistry, University of California, San Diego, La Jolla, California 92093, and †School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, P. R. of China.

Figure S1. 1-Me 1H NMR spectrum (400 MHz, CDCl3). ... S3
Figure S2. 1-Me 13C(1H) NMR spectrum (125 MHz, CDCl3). ... S4
Figure S3. 1-Me-endo 1H NMR spectrum (400 MHz, CDCl3). .. S5
Figure S4. 1-Me-endo 13C NMR spectrum (125 MHz, CDCl3). ... S6
Figure S5. 1-ArBu 1H NMR spectrum (400 MHz, CDCl3). .. S7
Figure S6. 1-ArBu 13C(1H) NMR spectrum (125 MHz, CDCl3). ... S8
Figure S7. 1-ArBu-endo 1H NMR spectrum (400 MHz, CDCl3). .. S9
Figure S8. 1-ArBu-endo 13C(1H) NMR spectrum (125 MHz, CDCl3). ... S10
Figure S9. 1-ArNMe2 1H NMR spectrum (400 MHz, CDCl3). ... S11
Figure S10. 1-ArNMe2 13C(1H) NMR spectrum (125 MHz, CDCl3). .. S12
Figure S11. 8-Me-A and 8-Me-B 1H NMR spectrum (400 MHz, CDCl3). S13
Figure S12. 8-Me-A and 8-Me-B 13C(1H) NMR spectrum (125 MHz, CDCl3). S14
Figure S13. 8-Ph-A and 8-Ph-B 1H NMR spectrum (400 MHz, CDCl3). .. S15
Figure S14. 8-Ph-A and 8-Ph-B 13C(1H) NMR spectrum (125 MHz, CDCl3). S16
Figure S15. 8-ArBu-A and 8-ArBu-B 1H NMR spectrum (400 MHz, CDCl3). S17
Figure S16. 8-ArBu-A and 8-ArBu-B 13C(1H) NMR spectrum (125 MHz, CDCl3). S18
Figure S17. 8-ArNMe2-A and 8-ArNMe2-B 1H NMR spectrum (400 MHz, CDCl3). S19
Figure S18. 8-ArNMe2-A and 8-ArNMe2-B 13C(1H) NMR spectrum (125 MHz, CDCl3). S20
Figure S19. 11 1H NMR spectrum (400 MHz, CDCl3). ... S21
Figure S20. 11 13C(1H) NMR spectrum (125 MHz, CDCl3). .. S22
imaginary frequencies, and computed total energies.

Table S7. Computational results, Z-matrices or Cartesian coordinates, the number of imaginary frequencies, and computed total energies.
Figure S1. 1-Me 1H NMR spectrum (400 MHz, CDCl$_3$).
Figure S2. 1-Me 13C$^{1}{^1}$H NMR spectrum (125 MHz, CDCl$_3$).
Figure S3. 1-Me-endo 1H NMR spectrum (400 MHz, CDCl$_3$).
Figure S4. 1-Me-endo 13C NMR spectrum (125 MHz, CDCl$_3$).
Figure S5. 1-Ar²Bu ¹H NMR spectrum (400 MHz, CDCl₃).
Figure S6. 1-ArBu 13C/1H NMR spectrum (125 MHz, CDCl$_3$).
Figure S7. 1-<i>Ar</i>-endo ¹H NMR spectrum (400 MHz, CDCl₃).
Figure S8. 1-Ar-endo 13C{1H} NMR spectrum (125 MHz, CDCl$_3$).
Figure S9. 1-\textit{ArNM}e\textsubscript{2} 1H NMR spectrum (400 MHz, CDCl\textsubscript{3}).
Figure S10. 1-4rNMe₂ ¹³C\{¹H\} NMR spectrum (125 MHz, CDCl₃).
Figure S11. 8-Me-A and 8-Me-B 1H NMR spectrum (400 MHz, CDCl$_3$).
Figure S12. 8-Me-A and 8-Me-B 13C{H} NMR spectrum (125 MHz, CDCl$_3$).
Figure S13. 8-Ph-A and 8-Ph-B 1H NMR spectrum (400 MHz, CDCl$_3$).
Figure S14. 8-Ph-A and 8-Ph-B 13C{^1}H NMR spectrum (125 MHz, CDCl$_3$).
Figure S15. 8-Ar′Bu-A and 8-Ar′Bu-B 1H NMR spectrum (400 MHz, CDCl$_3$).
Figure S16. 8-ArBu-A and 8-ArBu-B^{13}C{[1H]} NMR spectrum (125 MHz, CDCl$_3$).
Figure S17. 8-ArNMe-A and 8-ArNMe-B 1H NMR spectrum (400 MHz, CDCl3).
Figure S18. 8-ArNMe-A and 8-ArNMe-B 13C1H NMR spectrum (125 MHz, CDCl$_3$).
Figure S19. 1H NMR spectrum (400 MHz, CDCl$_3$).
Figure S20. 11 13C-1H NMR spectrum (125 MHz, CDCl$_3$).
Figure S21. ^{1}H NMR spectrum (400 MHz, CDCl$_3$).
Figure S22. 1513C\{1H\} NMR spectrum (125 MHz, CDCl\textsubscript{3}).
Figure S23. 17-Cp 1H NMR spectrum (400 MHz, NCCD$_3$).
Figure S24. 17-Cp 13C-1H NMR spectrum (125 MHz, NCCD$_3$).
Figure S25. 17-Cp* 1H NMR spectrum (400 MHz, NCCD$_3$).
Figure S26. 17-Cp* 13C{H} NMR spectrum (125 MHz, NCCD$_3$).
Figure S27. ORTEP of 8-Ph-A/8-Ph-B. Thermal ellipsoids shown at 30% probability. Most hydrogen atoms are omitted for clarity. The sample was prepared from recrystallization in chloroform/hexanes at -20 °C.

Table S1. Crystal data and structure refinement for 8-Ph-A/8-Ph-B.

<table>
<thead>
<tr>
<th>Identification code</th>
<th>PQ_0313</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C20 H18 O4 S</td>
</tr>
<tr>
<td>Molecular formula</td>
<td>C20 H18 O4 S</td>
</tr>
<tr>
<td>Formula weight</td>
<td>354.40</td>
</tr>
<tr>
<td>Temperature</td>
<td>100.0 K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 1 21/n 1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a = 11.0617(8) Å</td>
<td>α = 90°</td>
</tr>
<tr>
<td>b = 10.3249(8) Å</td>
<td>β = 104.003(3)°</td>
</tr>
<tr>
<td>c = 15.3097(11) Å</td>
<td>γ = 90°</td>
</tr>
<tr>
<td>Volume</td>
<td>1696.6(2) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.388 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.213 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>744</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.297 x 0.086 x 0.074 mm³</td>
</tr>
<tr>
<td>Crystal color, habit</td>
<td>Light Yellow Needle</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.737 to 25.381°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-13<=h<=13, -8<=k<=12, -18<=l<=18</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>11890</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>3094 [R(int) = 0.0352, R(sigma) = 0.0363]</td>
</tr>
<tr>
<td>Completeness to theta = 25,000°</td>
<td>99.6 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.0916 and 0.0635</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3094 / 0 / 227</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.059</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0406, wR2 = 0.0894</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0541, wR2 = 0.0952</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>n/a</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.376 and -0.344 eÅ⁻³</td>
</tr>
</tbody>
</table>
Figure S28. ORTEP of 8-CO\textsubscript{2}Me. Thermal ellipsoids shown at 30% probability. Most hydrogen atoms are omitted for clarity. The sample was prepared from recrystallization in CH\textsubscript{2}Cl\textsubscript{2}/hexanes.

Table S2. Crystal data and structure refinement for 8-CO\textsubscript{2}Me.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>2KB058</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C\textsubscript{16} H\textsubscript{16} O\textsubscript{6} S</td>
</tr>
<tr>
<td>Formula weight</td>
<td>336.35</td>
</tr>
<tr>
<td>Temperature</td>
<td>296 K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>C2/c</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 21.150(3) Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 9.7675(13) Å, β = 104.705(2)°</td>
</tr>
<tr>
<td></td>
<td>c = 16.065(2) Å, γ = 90°</td>
</tr>
<tr>
<td>Volume</td>
<td>3209.9(8) Å3</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.392 Mg/m3</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.230 mm-1</td>
</tr>
<tr>
<td>F(000)</td>
<td>1408</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.50 x 0.40 x 0.40 mm3</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.99 to 25.02°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-25<=h<=17, -11<=k<=11, -18<=l<=19</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>8117</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>2824 [R(int) = 0.0817]</td>
</tr>
<tr>
<td>Completeness to theta = 25.02°</td>
<td>99.6 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>None</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.9138 and 0.8939</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>2824 / 0 / 212</td>
</tr>
<tr>
<td>Goodness-of-fit on F2</td>
<td>1.008</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0387, wR2 = 0.1074</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0473, wR2 = 0.1117</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.268 and -0.241 e Å-3</td>
</tr>
</tbody>
</table>
Figure S29. ORTEP of 9. Thermal ellipsoids shown at 30% probability. The sample was prepared from crystallization of the crude oil in the presence of small amount of chloroform overnight.

Table S3. Crystal data and structure refinement for 9.

<table>
<thead>
<tr>
<th>Identification code</th>
<th>PQ_0331</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>$\text{C}_4\text{H}_8\text{CoF}_6\text{O}_8$</td>
</tr>
<tr>
<td>Molecular formula</td>
<td>$\text{C}_4\text{H}_8\text{CoF}_6\text{O}_8$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>357.03</td>
</tr>
<tr>
<td>Temperature</td>
<td>100.0 K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>$a = 8.1249(14) \text{ Å}$, $\alpha = 75.059(12)^\circ$.</td>
</tr>
<tr>
<td></td>
<td>$b = 9.0422(14) \text{ Å}$, $\beta = 64.690(11)^\circ$.</td>
</tr>
<tr>
<td></td>
<td>$c = 9.2650(15) \text{ Å}$, $\gamma = 71.468(11)^\circ$.</td>
</tr>
<tr>
<td>Volume</td>
<td>577.49(18) Å3</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>2.053 Mg/m3</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>1.603 mm$^{-1}$</td>
</tr>
<tr>
<td>F(000)</td>
<td>354</td>
</tr>
<tr>
<td>Crystal size, habit</td>
<td>Red Needle</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.400 to 25.389$^\circ$.</td>
</tr>
<tr>
<td>Index ranges</td>
<td>$-9 \leq h \leq 9$, $-10 \leq k \leq 10$, $-11 \leq l \leq 11$</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>4179</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>4179 [R(int) = ?, R(sigma) = 0.0667]</td>
</tr>
<tr>
<td>Completeness to theta = 25.000$^\circ$</td>
<td>100.0 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.091642 and 0.061194</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4179 / 0 / 177</td>
</tr>
<tr>
<td>Goodness-of-fit on F2</td>
<td>1.057</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0551, wR2 = 0.1087</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0784, wR2 = 0.1202</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>n/a</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.532 and -0.572 e.Å$^{-3}$</td>
</tr>
</tbody>
</table>
Figure S30. ORTEP of 11. Thermal ellipsoids shown at 30% probability. Most hydrogen atoms are omitted for clarity. The sample was prepared from recrystallization in chloroform/hexanes at -20 °C.

Table S4. Crystal data and structure refinement for 11.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>PQ_0323</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C17 H22 O5 S Si</td>
</tr>
<tr>
<td>Molecular formula</td>
<td>C17 H22 O5 S Si</td>
</tr>
<tr>
<td>Formula weight</td>
<td>366.49</td>
</tr>
<tr>
<td>Temperature</td>
<td>100.0 K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 1 21/c 1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 15.5019(8) Å</td>
</tr>
<tr>
<td></td>
<td>b = 8.5732(5) Å</td>
</tr>
<tr>
<td></td>
<td>c = 14.4028(8) Å</td>
</tr>
<tr>
<td></td>
<td>α = 90°</td>
</tr>
<tr>
<td></td>
<td>β = 107.173(2)°</td>
</tr>
<tr>
<td></td>
<td>γ = 90°</td>
</tr>
<tr>
<td>Volume</td>
<td>1828.81(18) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.331 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.265 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>776</td>
</tr>
<tr>
<td>Crystal size (mm³)</td>
<td>0.346 x 0.317 x 0.294 mm³</td>
</tr>
<tr>
<td>Crystal color, habit</td>
<td>Colorless Block</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.745 to 25.786°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-18<=h<=14, -10<=k<=10, -16<=l<=17</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>31136</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>3508 [R(int) = 0.0467, R(sigma) = 0.0274]</td>
</tr>
<tr>
<td>Completeness to theta = 25.000°</td>
<td>100.0 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.0921 and 0.0667</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3508 / 0 / 221</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.051</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0349, wR2 = 0.0845</td>
</tr>
<tr>
<td></td>
<td>R1 = 0.0456, wR2 = 0.0905</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>n/a</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.398 and -0.377 e.Å⁻³</td>
</tr>
</tbody>
</table>
Figure S31. ORTEP of 15. Thermal ellipsoids shown at 30% probability. Most hydrogen atoms are omitted for clarity. The sample was prepared from recrystallization in chloroform/hexanes.

Table S5. Crystal data and structure refinement for 15.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>PQ_0388</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C24 H21 N O6 S</td>
</tr>
<tr>
<td>Molecular formula</td>
<td>C24 H21 N O6 S</td>
</tr>
<tr>
<td>Formula weight</td>
<td>451.48</td>
</tr>
<tr>
<td>Temperature</td>
<td>100.0 K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>7.5692(2) Å</td>
</tr>
<tr>
<td>α</td>
<td>69.5260(10°)</td>
</tr>
<tr>
<td>b</td>
<td>11.1619(3) Å</td>
</tr>
<tr>
<td>β</td>
<td>76.8910(10°)</td>
</tr>
<tr>
<td>c</td>
<td>13.8735(4) Å</td>
</tr>
<tr>
<td>γ</td>
<td>78.4190(10°)</td>
</tr>
<tr>
<td>Volume</td>
<td>1059.96(5) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.415 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.195 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>472</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.267 x 0.242 x 0.165 mm³</td>
</tr>
<tr>
<td>Crystal color, habit</td>
<td>Colorless Block</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.590 to 26.384°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-9<=h<=8, -13<=k<=13, -16<=l<=17</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>14618</td>
</tr>
<tr>
<td>Independent reflections</td>
<td></td>
</tr>
<tr>
<td>Completeness to theta = 25.000°</td>
<td>100.0 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.0932 and 0.0695</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4315 / 0 / 290</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.027</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0406, wR2 = 0.0966</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0488, wR2 = 0.1029</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>n/a</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.478 and -0.353 e.Å⁻³</td>
</tr>
</tbody>
</table>
Figure S32. ORTEP of 17-\(\text{Cp}^*\). Thermal ellipsoids shown at 30% probability. Most hydrogen atoms are omitted for clarity. The sample was prepared from recrystallization in toluenes/hexanes at -20 °C.

Table S6. Crystal data and structure refinement for 17-\(\text{Cp}^*\).

<table>
<thead>
<tr>
<th>Identification code</th>
<th>OCon_PQ389</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C30 H32 O4 Ru S</td>
</tr>
<tr>
<td>Molecular formula</td>
<td>C30 H32 O4 Ru S</td>
</tr>
<tr>
<td>Formula weight</td>
<td>589.68</td>
</tr>
<tr>
<td>Temperature</td>
<td>100.0 K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 1 21/c 1</td>
</tr>
</tbody>
</table>
| Unit cell dimensions| \(\begin{array}{c}
a = 15.5730(11) \text{ Å} \\
b = 15.4582(11) \text{ Å} \\
c = 11.9655(9) \text{ Å}
\end{array}\) |
| Volume | 2767.1(3) Å\(^3\) |
| Z | 4 |
| Density (calculated)| 1.415 Mg/m\(^3\) |
| Absorption coefficient| 0.675 mm\(^{-1}\) |
| F(000) | 1216 |
| Crystal size | 0.217 x 0.153 x 0.131 mm\(^3\) |
| Crystal color, habit| Light Yellow Rod |
| Theta range for data collection | 1.361 to 26.431° |
| Index ranges | -19<=h<=19, -19<=k<=19, -14<=l<=13 |
| Reflections collected| 58579 |
| Independent reflections| 5688 [R(int) = 0.0661, R(sigma) = 0.0376] |
| Completeness to theta = 25.000°| 100.0 % |
| Absorption correction| Semi-empirical from equivalents |
| Max. and min. transmission| 0.2468 and 0.2041 |
| Refinement method | Full-matrix least-squares on F\(^2\) |
| Data / restraints / parameters | 5688 / 152 / 432 |
| Goodness-of-fit on F\(^2\) | 1.043 |
| Final R indices [\(1>2\text{sigma}(I)\)] | R1 = 0.0300, wR2 = 0.0743 |
| R indices (all data) | R1 = 0.0383, wR2 = 0.0814 |
| Extinction coefficient| n/a |
| Largest diff. peak and hole | 0.438 and -0.569 e.Å\(^{-3}\) |
Figure S33. Compound Index
Table S7. Computational results, Z-matrices or Cartesian coordinates, the number of imaginary frequencies, and computed total energies.

<table>
<thead>
<tr>
<th>B97D/Def2-TZVPP trichloromethane</th>
<th>Hessian</th>
<th>Free Energy</th>
<th>ΔG</th>
</tr>
</thead>
<tbody>
<tr>
<td>cocyclopentadieneIsoA</td>
<td>PD</td>
<td>-1471.459149</td>
<td>0</td>
</tr>
<tr>
<td>cocyclopentadieneIsoB</td>
<td>PD</td>
<td>-1471.449297</td>
<td>6.18</td>
</tr>
<tr>
<td>cocyclopentadieneIsoB_3</td>
<td>PD</td>
<td>-1471.454241</td>
<td>3.08</td>
</tr>
<tr>
<td>cocyclopentadieneIsoC</td>
<td>PD</td>
<td>-1471.45877</td>
<td>0.24</td>
</tr>
<tr>
<td>cocyclopentadieneIsoD</td>
<td>PD</td>
<td>-1471.453144</td>
<td>3.77</td>
</tr>
<tr>
<td>cocyclopentadieneIsoE</td>
<td>PD</td>
<td>-1471.453259</td>
<td>3.70</td>
</tr>
<tr>
<td>cocyclopentadieneIsoANMe2</td>
<td>PD</td>
<td>-1605.329577</td>
<td>0.31</td>
</tr>
<tr>
<td>cocyclopentadieneIsoCNMe2</td>
<td>PD</td>
<td>-1605.330068</td>
<td>0.00</td>
</tr>
</tbody>
</table>

cocyclopentadieneIsoA

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-0.1127425941</td>
<td>1.2183477507</td>
<td>-0.6097285657</td>
</tr>
<tr>
<td>H</td>
<td>-0.2440680765</td>
<td>2.2929261524</td>
<td>-0.5537517789</td>
</tr>
<tr>
<td>C</td>
<td>-1.0655340314</td>
<td>0.3130519641</td>
<td>-0.9314586895</td>
</tr>
<tr>
<td>C</td>
<td>0.927872002</td>
<td>-0.828295331</td>
<td>-0.4885828842</td>
</tr>
<tr>
<td>C</td>
<td>1.1395272538</td>
<td>0.519520678</td>
<td>-0.314123699</td>
</tr>
<tr>
<td>C</td>
<td>-0.5087168051</td>
<td>-1.0742278858</td>
<td>-0.8687686565</td>
</tr>
<tr>
<td>H</td>
<td>-0.6043555132</td>
<td>-1.6061977014</td>
<td>-1.8259109696</td>
</tr>
<tr>
<td>H</td>
<td>-1.0204925886</td>
<td>-1.6965616223</td>
<td>-0.120154104</td>
</tr>
<tr>
<td>S</td>
<td>-2.7314401647</td>
<td>0.6986603572</td>
<td>-1.3525354565</td>
</tr>
<tr>
<td>O</td>
<td>-2.8586468941</td>
<td>2.1481986007</td>
<td>-1.4295199685</td>
</tr>
<tr>
<td>O</td>
<td>-3.1052808021</td>
<td>-0.1172520526</td>
<td>-2.5018266703</td>
</tr>
<tr>
<td>C</td>
<td>-3.653544438</td>
<td>0.1194201075</td>
<td>0.0710319873</td>
</tr>
<tr>
<td>C</td>
<td>-5.0359943526</td>
<td>-0.7846152567</td>
<td>2.3031882825</td>
</tr>
<tr>
<td>C</td>
<td>-3.7411078788</td>
<td>0.9419429861</td>
<td>1.2091559596</td>
</tr>
<tr>
<td>C</td>
<td>-4.2422629223</td>
<td>-1.149169308</td>
<td>0.0420007021</td>
</tr>
<tr>
<td>C</td>
<td>-4.9388105679</td>
<td>-1.5969023463</td>
<td>1.1680382063</td>
</tr>
<tr>
<td>C</td>
<td>-4.4395013312</td>
<td>0.4825319994</td>
<td>2.3189532037</td>
</tr>
<tr>
<td>H</td>
<td>-3.2759076938</td>
<td>1.9232102711</td>
<td>1.1999888583</td>
</tr>
<tr>
<td>H</td>
<td>-4.1619685456</td>
<td>-1.7671940415</td>
<td>-0.8467584389</td>
</tr>
<tr>
<td>H</td>
<td>-5.4054235272</td>
<td>-2.5784588114</td>
<td>1.1561882723</td>
</tr>
<tr>
<td>H</td>
<td>-4.5191920964</td>
<td>1.1133747023</td>
<td>3.2004708869</td>
</tr>
<tr>
<td>H</td>
<td>-5.5780928618</td>
<td>-1.1380532325</td>
<td>3.1767542295</td>
</tr>
<tr>
<td>C</td>
<td>2.3341858923</td>
<td>1.239907283</td>
<td>0.1511454116</td>
</tr>
<tr>
<td>C</td>
<td>4.5873921726</td>
<td>2.666627437</td>
<td>1.0489862583</td>
</tr>
<tr>
<td>C</td>
<td>3.1203015392</td>
<td>0.7442658605</td>
<td>1.2069208675</td>
</tr>
</tbody>
</table>
C 2.6799339959 2.4733836608 -0.4318524006
C 3.8047723962 1.4517044711 1.6513447657
H 2.8445305871 0.191412643 1.6827038757
H 2.0743728713 2.8715376176 -1.2424371691
H 4.0677943095 4.1201175081 -0.4631087765
H 4.8318540073 1.0581438701 2.4721188399
H 5.4591146071 3.2164147293 1.3957654993
C 1.8504003162 -1.9726966699 -0.3753688974
O 1.4709616325 -3.1080386178 -0.1199482986
O 3.1331701692 -1.6387674256 -0.6353828888
C 4.1526962337 -2.6732428998 -0.4629787344
H 3.7660438363 -3.6220788376 -0.8472433492
H 4.9784424101 -2.3314897567 -1.092503913
H 5.369006584 -1.6184673549 1.6991999465
H 0.5718376858 -0.7482502674 0.6871806677
C 1.370675862 0.4815743096 0.4373119183
C 0.5364544315 1.5493710482 0.5341035074
H 0.8108772221 2.5925941025 0.4436302103
C 1.0425979971 -2.143576265 0.4895747761
O 1.8601167663 -2.4705345902 -0.3530031462
O 0.4231538265 -3.006657946 1.3258534728
C 0.7347176819 -4.42298302 1.149765017
H 0.4806438276 -4.7037404668 0.1216712
H 1.8127901717 -4.5559882387 1.2921073819
C -0.0764553837 -5.1963053012 2.1717139311
H -1.150572013 -5.0415113505 2.0169957754
H 0.1849833209 -4.8904646287 3.191319392
H 0.1404646374 -6.2656984205 2.062597184
S -1.9760564207 1.5441570954 -0.5744922206
O -2.1084302425 2.994859469 -0.5351584112
O -1.5014102471 0.9029320565 -1.7915823323
C 2.8202764101 0.5516099869 0.2057983975
C 5.6015282702 0.7779508025 -0.1742875812
C 3.3479318427 1.5128503634 -0.6769261358
C 3.7086497569 -0.2957877324 0.89295149
C 5.0871165366 -0.1800172515 0.7073748916
C 4.7265396175 1.6238788985 -0.8660370291
H 2.6666146601 2.1588696536 -1.224982168
H 3.3189043983 -1.0369117833 1.5848614342
H 5.7606816764 -0.8385379046 1.2508080912
H 5.1179118582 2.3652619719 -1.5587954464

cocyлыpentadieneIsoB_3
cocyclopentadieneIsoB

C -0.817835732 1.1999673186 0.854915657
H -1.307609544 1.8054430018 1.6277231262
C -0.6403194225 -0.245232121 1.1972865127
H -1.44002752005 -0.9071244737 1.5037481345
C 0.6481296806 -0.5839768608 0.9702673327
C 1.0479009855 0.6066574645 0.504937715
C 0.5474007629 1.6572112556 0.4548374025
H 0.7871922668 2.6772854552 0.1833267168
C 1.1630397666 -1.9787545337 1.1184966517
O 1.1969627467 -2.5550491585 2.1906833005
O 1.590644575 -2.620600745 0.0136230788
C 1.4109815273 -2.0341758065 -1.3240405254
H 0.4075576567 -1.6024997148 -1.3870469875
H 2.1550145751 -1.2422210085 -1.4496508462
C 1.6093870997 -3.1479066473 -2.3335182443
H 0.8654525456 -3.9402533054 -2.1926726517
H 2.6133125785 -3.5787737182 -2.2461497873
H 1.4937637294 -2.7335086621 -3.3422966283
S -1.9548255467 1.3879949531 -0.6118639457
O -2.1361466732 2.8190362768 -0.8166374858
O -1.4510158986 0.570162897 -1.7062856779
C 2.8422878467 0.637842191 0.193233293
C 5.5903366071 0.723777242 -0.418789589
C 3.3284683387 1.500137849 -0.8094743145
C 3.7566260845 -0.1795854036 0.8836248583
C 5.1190457712 -0.1349820628 0.5797598534
C 4.6893842745 1.5432254007 -1.1109148651
H 2.6264181165 2.1178259927 -1.3637319812
H 3.4084141232 -0.8354956529 1.6763874182
H 5.8122448403 -0.7699843817 1.126084479
H 5.0474344756 2.2080684908 -1.893403926
H 6.650420568 0.7528628643 -0.658902312
C -3.4896437984 0.6836518401 -0.0188885319
C -5.8409190376 -0.418877469 0.9555513066
C -3.7914437853 -0.6491364869 -0.3173907896
cyclopentadieneIsoC

C 1.2155706603 -0.7536559643 -0.5188175257
C 1.1542947930 0.6222048546 -0.4789237478
C -0.9585277535 -0.2591503554 -1.0495609604
S -2.6447252957 -0.4093493806 -1.5029812334
O -2.9323453079 0.5944424419 -2.521748391
O -2.9260518219 -1.812782398 -1.7787780262
C 2.4195019812 -1.6777161375 -0.6040549968
C 2.0663275922 -2.8514818353 0.049433171
C 2.1691533416 1.6051105601 -0.109215141
C 4.0667137953 3.5527586272 0.6347262136
C 2.1873766834 2.8706245479 -0.7326909829
C 3.1089291481 1.3433483782 0.9085400259
C 4.0452415385 2.3076857894 1.2763733504
C 3.135749282 3.8300967643 -0.3703723618
H 1.471473395 3.0921640223 -1.5195700974
H 3.0870094549 0.3877816181 1.4218433517
H 4.7570194996 2.0907880099 2.0693183662
H 3.1423466912 4.794201235 -0.8730753458
H 4.8011239375 4.3019573293 0.9204599161
C -3.5158469376 0.0575423618 -0.0054999187
C -4.8161777027 0.779090478 2.3414005269
C -3.7035238052 -0.9024078728 0.996459005
C -3.965018127 1.3730183066 0.1507089733
H -4.6202614677 1.7291127566 1.333162408
C -4.3599516083 -0.5343899537 2.1723280301
H -3.3469777922 -1.9181154894 0.8529312033
H -3.811149201 2.0986414095 -0.6418533134
H -4.9786738687 2.74697226 1.4635111116
H -4.5167418688 -1.2723810202 2.9540808174
H -5.3264423276 1.0607714791 3.259140707
C 3.1397187812 -3.8280905169 0.243676476
H 3.8703506683 -3.7144279307 -0.5630730187
H 2.6346544998 -4.793032547 0.1497927735
C 3.7846865652 -3.6639535068 1.6124663638
H 4.2760212047 -2.6890337346 1.6953983744
H 4.5389186536 -4.4488933507 1.7493171586
H 3.0347909004 -3.7589291217 2.4063715997
C -0.1011622544 -1.2879341795 -0.8526126927
H -0.3331435762 -2.3412489714 -0.9514770793

S39
cocyclopentadieneIsoD

C 1.4511363722 0.6000560437 -0.6458473065
C 0.2408695154 1.208615836 0.6000560437
H 0.0049845553 2.1089441587 0.0050316759
C 1.3453169778 0.6260201719 -1.531534191
H 0.562613935 1.3561565253 -2.5824994338
S 2.9203869848 1.8728253821 3.1113040593
O 3.0339959937 0.0775576069 -2.4601098673
C 3.0278034136 0.4240855193 0.1412572837
C 3.6697249848 -0.2471570556 2.6990688444
C 3.2169916664 1.4388687124 1.084511266
C 3.2462125773 -0.9227280741 0.4570427478
C 3.6710757733 -1.2533329546 0.7446282003
C 3.6453091578 1.0938299992 2.3684490104
H 3.0387892659 2.4748147406 0.8138977072
H 3.083123035 1.6933741989 -0.2916652531
S 3.847689396 -2.2942207189 2.0025333462
O 3.8023869848 1.8728253821 3.1113040593
H 4.1999544817 -0.5102254974 3.7008314859
C 1.6957663395 -1.9410583131 -0.8365102248
C 2.2984615557 -4.367645705 0.4394609474
C 2.6289737114 -2.8192863682 -1.3969482855
C 1.0604511447 -2.2853199033 0.3657847484
C 1.3610736771 -3.4915058301 1.0016429517
C 2.9309240354 -4.028877203 -0.7605463777
H 3.1248365028 -2.5507416737 -2.3269965392
H 0.3339226468 -1.6029416613 0.8017222722
H 0.8650856111 -3.7482040541 1.9349399196
H 3.6625640476 -4.7019683168 -1.2015437911
H 2.534464445 -5.3061508995 0.9354487787
C 2.7221684553 1.0109022859 -0.0311263656
O 3.795882955 0.4789909085 -0.2758543657
O 2.5661890135 2.0399118067 0.8334568304
C 3.7773359577 2.5376442253 1.4829223322
H 4.235839671 1.7102610213 2.0360202611
H 4.475442484 2.8652299666 0.7042970361
C 3.3680587153 3.6767605886 2.3974992324
H 2.6635448441 3.3301953316 3.1624952468
H 2.9035995424 4.4892310046 1.8267107043
H 4.2607911731 4.06958986 2.8987998378

cocyclopentadieneIsoE

cocyclopentadieneIsoANMe2

C -0.021632548 1.1981492701 -0.6745899263
H -0.1521089561 2.2741679885 -0.6604768758
C -0.9779746299 0.2885499639 -0.9687361985
C 1.0021694005 0.8510273213 -0.4637027261

S 41
cocyclopentadieneIsoCNMe2

C 1.3064133856 -0.716942983 -0.4227552756
S 43

C 1.2650534629 0.6743419597 -0.4248519261
C -0.850829177 -0.2072951632 -1.0244163773
S -2.5199660848 -0.3530230586 -1.5062080379
O -2.7937100148 0.6456771753 -2.5367623311
O -2.8105638651 -1.7567993264 -1.7717892624
C 2.4813007162 -1.5991776873 -0.260481239
O 3.6460088979 -1.2872029254 -0.455529861
O 3.0916579445 -2.8553670853 0.0911139165
C 2.2535331516 1.6591495734 -0.0525570971
C 4.1458039501 3.6807201766 0.7126417968
C 2.1737649197 2.9829013284 -0.2072951632
C 3.2942601853 1.3923698487 0.8688110035
C 4.2042976646 2.3615776628 1.2498284531
C 3.0873470717 3.9615146951 -0.1982184496
C 4.9643472817 2.1029251257 1.978408683
C 2.9870963497 4.9500080569 -0.6319649861
C -3.423580876 0.1276625874 -0.029538069
C -4.7642520237 0.8728327047 2.289728653
C -3.6454757788 -0.8261541737 0.9714446001
C -3.8965776222 1.4488961333 0.115436798
C -4.534490118 1.8170771737 1.2833055749
C -4.3218259541 -0.446928352 2.1324783837
C -3.2991402875 -1.8467921808 0.838244337
C -3.6805761122 2.1704350001 -0.6755843944
C -4.8817870026 2.8401285067 1.4036820206
C -4.5045844921 -1.1811581018 2.912961587
C -5.2897937381 1.1635245514 3.1960212706
C -3.135874258 3.8638714321 0.2511588507
C -8.8852009975 -3.7287876799 -0.5351872771
C -6.1191827576 -4.8116128934 0.0989205868
C -3.7619573032 -3.7901221284 1.6372619492
H 4.2760471524 -2.8339429797 1.7793538805
H 4.4934867635 -4.6008350955 1.7452903815
C -2.9960874862 -3.9062380936 2.4130795132
C -0.00820175 -1.237094915 -0.7668455134
C -0.253329204 -2.2896065168 -0.837671093
C -0.1339394316 1.0965807703 -0.8395042225
C -0.5951637604 1.7315761807 -0.0688193899
C -0.1220804614 1.6898635285 -1.7622666166
N 5.0593912408 4.6346303932 1.0616247454
N 6.1193922921 4.3240732855 2.0173184177
H 5.7035396317 4.052323797 2.9987581646
H 6.7608258345 5.1989756973 2.1371464033
H 6.7315334446 3.4835523505 1.6624358819
C 4.9449931133 5.9908507998 0.5319468782
H 4.985372049 5.9867692216 -0.5662710331
H 5.7721864771 6.5942260606 0.910048352
H 3.9967475824 6.4577614479 0.8361928263

S43