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Abstract 

This paper describes a novel method of modelling an energy store used to match the 

power output from a wind turbine and a solar PV array to a varying electrical load. 

The model estimates the fraction of time that an energy store spends full or empty. It 

can also estimate the power curtailed when the store is full and the unsatisfied demand 

when the store is empty.  The new modelling method has been validated against time-

stepping methods and shows generally good agreement over a wide range of store 

power ratings, store efficiencies, wind turbine capacities and solar PV capacities. 

Example results are presented for a system with 1MW of wind power capacity, 2MW 

of photovoltaic capacity, an energy store of 75% efficiency and a range of loads from 

0 to 3MW average. 
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1. Introduction 

Wind power is currently the fastest growing renewable energy source worldwide 

                                                 
* Corresponding author.  Tel: 44 (0)1509 228140; email J.P.Barton@lboro.ac.uk 



with photovoltaics (PV) running a close second, albeit from a lower base.  Wind 

capacity, and to a lesser extent generation from PV pose challenges for grid 

connection and network operation. Wind turbine output depends directly on wind 

speed and varies across a wide range of time scales.  PV output is variable but to a 

greater extent predictable. 

The computational method developed relies upon spectral description of the wind 

speed and solar radiation together with a standard power curve for the wind turbines 

and well-defined PV array characteristics.  The electricity load, based on data from 

Leicester, is calculated as a function of hour of the day, type of day (working day or 

non-working day) and month of year. An example for a weekday in December is 

shown in Fig. 1, where it is compared with the National Grid typical winter demand 

profile measured on 3rd December 2002 and approximately scaled to the same average 

[1].   
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Fig. 1. December weekday electricity load profiles  

 



Understandably, the Leicester load data exhibits greater peaks in the morning and 

evening than the national average profile, reflecting reduced smoothing due to 

diversity and possibly a greater proportion of domestic consumers. Nevertheless, the 

profiles are similar. 

Conventional electricity systems can accommodate at least 5% of wind powered 

generation, and probably more, with few adaptations [2]. The variability of small 

amounts of wind or solar power can be accommodated in the same way as variations 

in electrical load: by varying the electrical generation from fossil fuel generators. 

However, if renewable sources are to play their part in a 60% reduction in carbon 

dioxide emissions, the fraction of intermittent renewable generation will increase well 

above 5%. This will require a radical new approach to electrical power system 

management and a potentially important role for energy storage. 

In the approach presented here the energy storage system is represented as a series 

of filters in the spectral domain applied to the solar and wind variation spectra. 

 

2. System Modelling 

 The energy rating of a store increases with the time-scale of charging and 

discharging cycles [3]. Energy storage options always become more expensive as the 

time scale (a typical charge-discharge cycle) of that storage increases. A cost-effective 

system may therefore have a small store size in energy capacity terms, but with a 

relatively large renewable energy power surplus and hence storage power rating (at 

least as far as charging goes).  Only a mathematical model of the system can 

determine the optimal design with any confidence.   

Energy systems including wind power, solar power, loads and energy storage can 

be extremely complex to model. Wind speed, solar irradiance and loads all vary on all 



time scales from seconds to years. The state-of-charge of an energy store depends on 

the history of energy supply and demand and its own operating characteristics.  

Earlier work [3] developed a novel method of calculating energy flows to and from an 

energy store, but made only a crude attempt to size the store.  

This paper extends the methodology presented in [3] to include an improved 

calculation of store size and a more sophisticated spectral analysis of the intermittency 

of renewable sources.  The method simulates electrical power systems with large 

fractions of intermittent renewable generation and energy storage. It does not require 

time series of weather data. Instead it uses spectral analysis of time series de-trended 

to account for deterministic cyclic variations (seasonal and diurnal) together with 

relevant probability distributions, 

Some loss of accuracy may be apparent because of the necessary simplifying 

assumptions, but it is expected that the probabilistic method will provide a fast and 

practical tool for feasibility studies, early system design, and investment decisions. 

Time-step simulation remains useful however, as a check that the design will 

perform as intended, to fine-tune the design, and to devise the control software of the 

energy management system. 

In this paper, the method has been developed for storage and delivery of energy 

over a period of 24 hours, reflecting the diurnal nature of wind, solar and load 

variations.  The approach can straightforwardly be extended to other time scales, for 

example an hour or a week, and this is the subject of ongoing research.  

 

2.1. Wind Turbine Modelling 

A generic power curve for a 1MW wind turbine has been used for the calculations 

presented here. This curve, Fig. 2, was constructed from data for commercially 



available wind turbines [4] and was previously used in [3] and [5]. The cut in speed is 

3m s-1 and the rated wind speed at 13m s-1 is typical of large modern turbines. 
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Fig. 2.  Composite 1MW turbine power curve from three commercial turbines 
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2.2. Wind Speed Variations 

The Van Der Hoven spectrum [6] describes wind speed variations up to 1000 

hours in duration. Corresponding spectra must be calculated from local wind speed 

data in order to predict accurately the character of wind power variations at a given 

location. Data has been analysed for a well-documented location, The Rutherford 

Appleton Laboratory (RAL) in Oxfordshire, UK,  

Fig. 3.  
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Fig. 3.  Wind speed variation spectra adjusted to 8m/s mean wind speed  

 

2.3. Solar Irradiance Variations 

A spectrum has been calculated in a similar way for solar irradiance, Fig. 4. 

Again, data from RAL has been used; the spectrum will be broadly applicable to 

central England. 
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Fig. 4.  Solar irradiance variation spectrum 

This spectrum for solar variation (not to be confused with the solar 

electromagnetic spectrum) is dominated by peaks reflecting seasonal variation, 

diurnal variation and harmonics of the diurnal variation. These peaks are so large that 

they are not shown in Fig. 4 in order to reveal the broad remaining structure.  The 

broadband spectrum from periods of months down to minutes represents a significant 

random variation in solar irradiance as big in percentage terms as that of the wind 

spectrum over the same range of frequencies. The broad hump of variation to the right 

of the diurnal peak represents variation due to passing clouds, while the tapered 

spectrum to the left of the diurnal peak represents weather systems.  

 

2.4. Solar Power Modelling 

The solar power output in kW was assumed to be equal to the global horizontal 

irradiance in kW m-2 multiplied by the peak PV efficiency and the array area. In a real 

system, adjustments should be made for the inclination and azimuthal angles of the 

PV panel; the effect of beam radiation should be considered separately from that of 

diffuse radiation; temperature and spectral (wavelength) effects should be taken into 



account; the characteristics of a maximum power point tracker and power converter 

should also be included. However, all these effects are of secondary magnitude and 

outside the scope of this paper. The method presented here would be suitable for a 

feasibility study where the approximate results are sufficient for system sizing. 

 

2.5. Energy Store Modelling 

The charging and discharging power ratings of the store are unrestricted for the 

purposes of this model. The energy rating of the store, and its behaviour are calculated 

using the equations given in [5] and repeated below. 

Filter functions have been applied to the spectra of wind speed variations of Fig. 

3, and of solar irradiance variations as in Fig. 4, in order to calculate the probability 

distributions of period-average wind speed and irradiance, the distributions of wind 

speed and irradiance within each period, and the size (energy capacity) of the required 

store. For a given spectral frequency component, i with amplitude, A and phase 

angle i , the instantaneous component is:  sini i i iU A t   .  Averaging this 

quantity over the store period, T gives the contribution from this frequency to the 

period-average wind speed or irradiance: 

 cos cosi
i i i i

i

A
U T

T
  


     . 

This average is then squared and integrated over all i from 0 to 2 to give the 

contribution to the variance in the period average wind speed or irradiance. The 

resulting integral is: 

 
2

1 1 cosi
i i

i

A
V T

T



 

     
 

 . 



This formula is the same as the low pass filter used by Infield [7] for storage 

modelling, but without the 2.4 empirical scaling factor. The filter for a 24-hour store 

is shown Fig. 5. Low frequency components (small ) have a relatively large effect 

on the period average wind speed or irradiance whereas high frequency components 

(large ) have a small effect on the period average.  Low frequency components 

remain nearly constant throughout a time period, T . High frequency components of 

wind or solar variation complete many cycles during the time, T , and time spent 

above the long-term mean is approximately balanced by time spent below. 

The variance of wind speeds or irradiance within a period,T is calculated in a 

similar way, but this time, the important quantity is the difference between the 

instantaneous value, iU  and the period-average, iU : 

   sin cos cosi
i i i i i i i i

i

A
U U A t T

T
    


         If this quantity is squared, 

integrated over time, T  and averaged over all possible values of i , then the 

component of variance within period T  results: 
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This integral represents a high pass filter, previously derived by Bossanyi [8] and also 

shown in Fig. 5. It is actually the complement of the low pass filter function in the 

sense that summing the two time series resulting from application of the two filters to 

a given time series results in the original series. 

A third filter function is used to calculate the variance in state-of-charge of a store 

associated with a particular frequency component, i . The accumulated energy added 

to or subtracted from a store during period, T  is the calculated from the integral of the 

difference between the instantaneous value, iU  and the period average, iU . But this 



time, the instantaneous accumulated energy is squared and integrated again with 

respect to both time and phase angle to give the average variance in the excursion of 

state-of-charge from its value at the start of period, T : 
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This third equation is applied to the original spectral density functions.  Integration of 

the resulting filtered spectrum gives the variance of wind speed x time or irradiance x 

time.  Low frequency components have little effect on the store, since their magnitude 

varies so little during period, T . High frequency components also have little effect on 

the store, since they complete many cycles during period, T , so each cycle 

accumulates and discharges very little energy.  Only frequency components close to 

the period of the store have a significant effect on the state-of-charge, Fig. 5. 

The wind speed x time is square-rooted and multiplied by the average gradient 

from the turbine power curve to produce a standard deviation of state-of-charge due to 

wind speed variation. The irradiance x time is square-rooted and multiplied by the 

solar PV peak capacity to produce another standard deviation of state-of-charge due to 

solar irradiance variations. A third, diurnal standard deviation of state-of-charge 

results from the average daily profiles of load, wind speed and solar irradiance. All 

three components of state-of-charge standard deviation are added in quadrature to 

give the total standard deviation in state-of-charge. 

The effective energy capacity of the store is approximately given by twice the 

standard deviation of state-of-charge.  The factor of 2 is empirical (rather like the 

factor of 2.4 used by Infield) but is intuitively the result of the symmetry about the 

mean value mentioned above.   
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Fig. 5. Spectrum filter functions for a 24-hour store 

 

3. Model Validation 

All the cases modelled using the probabilistic methods have been validated by a 

time-step method with the same numerical inputs. The time-step method uses the 

same wind speed time series and solar irradiance time series from which the variation 

spectra were calculated. The time step method also uses the same time series of load 

data from which the daily load profiles were prepared. 

All wind speed distributions have been corrected to a long-term mean wind speed 

of 8m/s. The model is applied here to a storage time scale of 24 hours. This means 

that variations in power flows within one day are accommodated by the store, whereas 

longer-term variations are not. Stored energy cannot be transferred from one day to 

the next. 

 



4. Example Results 

The results presented here are for a stand-alone electricity system supplying a 

time-varying load typical of a single 11kV feeder in a UK Midlands town. The 

assumed electricity system comprises 1MW of wind power capacity, 2MW of solar 

PV capacity and an energy store of 75% efficiency capable of smoothing out energy 

surpluses and deficits over a maximum period of 24 hours.  

The novel probabilistic method predicts the fraction of time that the store spends 

empty, full, emptying or filling. It also predicts the energy lost when the store is full, 

the unsatisfied demand when the store is empty, and the energy capacity of the store 

required. To illustrate the versatility of the probabilistic method, the load has been 

scaled between 0 and 3.25MW, and the results plotted in the following graphs. A low 

load represents an over-supply of renewable energy and a high load represents an 

under-supply of renewable energy. 

 The energy capacity of the store is calculated on days in which average supply is 

equal to, or closest to the average load (with an adjustment for the efficiency of the 

store), as these are the days when the store does the most ‘work’ of emptying and 

filling. A small load, for example 0.25MW is matched by renewable energy on 

relatively calm or dull days and requires only a small store, Fig. 6. Conversely, a large 

load, for example 1.75MW, is only matched by renewable energy on very windy and 

sunny days. These are also the days in which wind power and solar power are most 

variable. Therefore, a large load requires a large store size, Fig. 6. If the average load 

is greater than 2MW, it is never matched by renewable energy, and the store size is 

again calculated on the most windy and sunny days, when renewable energy is 

greatest and therefore comes closest to satisfying the load. Since the wind and solar 

power variations have greater percentage variability than the load, and since the solar 



and wind power variances are already at their maximum values, the store size does not 

significantly increase, if at all, with increasing load, Fig. 6. 
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Fig. 6 Calculated store sizes for 24-hour storage periods 

 

The probabilistic method predicts the excess load, the curtailed power and power 

flows to and from the store very well, as validated by time-step methods, Figs. 7 to 9: 
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Fig. 7. Load unsatisfied by renewable energy due to the store being empty 
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Fig. 8. Renewable power curtailed due to the store being full 
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Fig. 9. Average power flows to and from the store (neglecting full and empty effects) 
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Fig. 10. Average power lost in charging and discharging the store 

 



The above graphs show that there is a critical average load, between 0.5MW and 

0.75MW at which entering the store is matched by power leaving the store. This is the 

load at which the store is doing most work and the load at which the store loses most 

power due to its finite efficiency of 75%, Fig. 10.  

This critical average load is close to the average supply of renewable energy. The 

average measured solar irradiance at RAL is 118.8W m-2, giving a solar capacity 

factor of 11.88% and an average solar power of 237.6kW from the 2kW of solar 

capacity. The scaled average wind speed is 8m s-1, which together with the turbine 

power curve produces a wind capacity factor of 39% and an average power from a 

1MW turbine of 390kW. The long-term average renewable power is therefore about 

630kW.  Fig. 9 shows the power that would enter or leave the store if it is assumed to 

be never full or empty (i.e. assumed to be of infinite size); the intersection of the two 

curves indicates the point where the average power entering the store is exactly equal 

to average power leaving the store, and that this is indeed at a load of about 630kW.  

The probabilistic method also calculates the fractions of time that the store is full, 

empty, filling or emptying. It does so by making simple assumptions about the 

cyclical nature of charging and discharging, the probability distributions of net power 

to and from the store. It also makes use of the fact that (excluding large power 

excursions) renewable power is only curtailed when the store is full and load is only 

unsatisfied when the store is empty, Figs. 11 to 14. 
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Fig. 11. Fraction of time that the store is empty 
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Fig. 12. Fraction of time that the store is full 
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Fig. 13. Fraction of time that the store is emptying 
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Fig. 14. Fraction of time that the store is filling 



In reality, the power flows to and from the store are limited by the finite energy 

capacity of the store. The predicted powers supplied to the load, in total and via the 

store, compare well with the time-step predictions, Fig. 15. 
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Fig. 15. Load supplied by renewables, total and via the store.  

 

5. Conclusions 

It is clear from the graphs that the results of the new probabilistic method are in 

excellent agreement with the time step model.   No significant power is lost for 

average loads above 1 MW, despite the 3MW of total renewable capacity.  This 

reflects the fact that the renewable sources are rarely producing their combined rated 

output and that the bulk of the time-varying surplus is made useful by the storage 

system.  There is however a need for an “auxiliary supply” for all but the lowest 

loads, but this is easily accommodated by the existing electricity distribution system; 

indeed it is the normal state of affairs.  It is not the intention here to make the local 



load completely independent of external supply, but rather to make better use of the 

distributed generation. 
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