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Abstract 26 

Real-time risk assessment of autonomous driving at tactical and operational levels is extremely 27 

challenging since both contextual and circumferential factors should concurrently be considered. Recent 28 

methods have started to simultaneously treat the context of the traffic environment along with vehicle 29 

dynamics. In particular, interaction-aware motion models that take inter-vehicle dependencies into 30 

account by utilizing the Bayesian interference are employed to mutually control multiple factors. 31 

However, communications between vehicles are often assumed and the developed models are required 32 

many parameters to be tuned. Consequently, they are computationally very demanding. Even in the 33 

cases where these desiderata are fulfilled, current approaches cannot cope with a large volume of 34 

sequential data from organically changing traffic scenarios, especially in highly complex operational 35 

environments such as dense urban areas with heterogeneous road users. To overcome these limitations, 36 

this paper develops a new risk assessment methodology that integrates a network-level collision estimate 37 

with a vehicle-based risk estimate in real-time under the joint framework of interaction-aware motion 38 

models and Dynamic Bayesian Networks (DBN). Following the formulation and explanation of the 39 

required functions, machine learning classifiers were utilized for the real-time network-level collision 40 

prediction and the results were then incorporated into the integrated DBN model for predicting collision 41 

probabilities in real-time. Results indicated an enhancement of the interaction-aware model by up to 42 

9%, when traffic conditions are deemed as collision-prone. Hence, it was concluded that a well-43 

calibrated collision prediction classifier provides a crucial hint for better risk perception by autonomous 44 

vehicles.  45 

  46 
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1. Introduction 47 

Existing transport systems are not as economically efficient, as environmentally benign, nor as safe as 48 

they should be, and one key cause of this is due to the ‘human element’. Human drivers are responsible 49 

for a 94% of the critical pre-collision events according to a recent survey from the National Highway 50 

and Traffic Safety Administration (Singh, 2015). Recent advancements in artificial intelligence, sensor 51 

fusion, vehicle technology and software algorithms have brought about the introduction of semi- or 52 

fully-autonomous vehicles closer to reality, especially in commercial fleets. Autonomous Vehicles 53 

(AVs) can learn, adapt, take decisions and act independently of human control and are, therefore, 54 

envisaged to make a profound impact on the economy, safety, mobility and society as a whole.  55 

Nonetheless, the most important advantage offered by AVs relates to improved road safety that is 56 

promised by researchers and manufacturers worldwide (Campbell et al., 2010).. A large number of 57 

traffic collisions and the related casualties could, therefore, potentially be reduced by removing the 58 

human involvement from the task of driving through the rapid uptake and penetration of AVs. Although 59 

AV technologies could deliver a step change in safety and mobility, they create new translational 60 

research challenges 61 

 62 

In order to ensure the safety of its occupants and other traffic co-participants, an AV has to perform the 63 

sense-plan-act methodology in which sensing relates to understanding the surrounding environment, 64 

planning is the decision making and acting is actually moving the vehicle according to the planning 65 

(Katrakazas et al, 2015). Possibly, ensuring safety in the planning module is the most complex in which 66 

a motion model generates a trajectory in the face of uncertainties at all levels. Two major challenges of 67 

the planning module prevail: (1) sensors may fail to detect what is happening around the vehicle and 68 

this may have a serious impact on the planning module and (2) vehicle software cannot plan for all the 69 

situations that the vehicle will possibly encounter. Consequently, addressing safety remains a pivotal 70 

challenge for AVs for both academia and industry worldwide. This is confirmed by recent incidents 71 

that resulted in three fatal collisions in the US and 60 collisions in the State of California according 72 

to their Department of Motor Vehicles as of April 2018. Examining their casual factors reveals that 73 
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AVs should be taught to understand not only what the surroundings are but also the context in order 74 

to enrich their situational awareness and decision making. Therefore, a planning module will take 75 

the circumstances or context into account rather than consider a vehicle as an independent entity, 76 

especially during the transition period from the fully manual to the fully autonomous driving era. Cases 77 

of contextual and circumferential aspects include: AVs drive through dense urban traffic, complex road 78 

settings, construction zones, residential streets where children suddenly appear and disappear by 79 

filtering through parked vehicles, segments with unstable traffic dynamics and hard-to-predict traffic 80 

co-participants, roads with traffic incidents such as vehicle breakdowns, traffic bottlenecks, network 81 

deficiencies and collision hot-spots. Even when AVs are doing everything they are supposed to, the 82 

underlying safety challenge would be how these factors could be taken into account in the collision-risk 83 

assessment of AVs.  84 

 85 

Currently, a motion model is used to predict the intended trajectories of other vehicles and surrounding 86 

objects in a specific traffic environment and compare them with the trajectory of the interested AV in 87 

order to estimate the collision risk.  Computational complexity, however, emerges when searching for 88 

an efficient trajectory representation in which vehicles are assumed to move independently 89 

(Agamennoni et al., 2012; Lefèvre et al., 2014). Recent approaches (e.g. Agamennoni et al., 2012; 90 

Gindele et al., 2015; Lefèvre, 2012) try to address the problem of risk assessment of AVs by taking into 91 

account contextual information (i.e. information on the traffic scene and the motion of other vehicles) 92 

as well as human-like reasoning about vehicles’ interaction without predicting the trajectories of all 93 

other vehicles. The main method for making such predictions is the use of probabilistic models, 94 

especially Dynamic Bayesian Networks (DBNs) which are a robust framework for drawing an inference 95 

from the vehicle dynamics and the contextual information and can handle missing or erroneous data 96 

while maintaining real-time tractability (e.g. Murphy, 2012;  Lefèvre et al., 2014). Nonetheless, perfect 97 

sensing or communications between vehicles are often assumed (Katrakazas et al., 2015; Paden et al., 98 

2016).  99 

 100 
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The inherent limitations of robotics-based approaches on risk assessment in the context of organically 101 

changing dynamic road environments indicate that alternative methods should be sought as supplements 102 

for building a robust and comprehensive risk assessment module for an AV.   103 

 104 

Over the past years, the estimation of the probability of a traffic collision occurring in real-time has also 105 

been studied by many researchers working in the traffic safety and traffic engineering perspective of 106 

Intelligent Transportation Systems (ITS). Real-time collision prediction for ITS  is formulated on the 107 

basis that the probability of a collision’s occurrence could be estimated from traffic dynamics during a 108 

short-time prediction horizon from data retrieved online (Abdel-Aty and Pande, 2005). The 109 

predominant technique of evaluating collision risk relates to comparing traffic measurements (e.g. 110 

speed, flow, occupancy) on a specific road segment just before a reported collision with traffic 111 

measurements from the same segment and time at normal situations (Pande et al., 2011). It can be 112 

understood that the traffic engineering perspective addresses the macroscopic problem of identifying a 113 

location with high-risk collision occurrence. This spatio-temporal risk could potentially provide a 114 

broader picture of the road network in terms of hazardous traffic conditions as an additional safety layer 115 

to AVs. An approach to bridge vehicle-level and network-level risk assessment is yet to be fully 116 

understood and utilised. 117 

 118 

In order to realise the full benefits of AVs and to ensure that society is satisfied with this disruptive 119 

vehicular technology, its underlying safety challenge needs to be properly addressed. This paper directly 120 

tackles this challenge through a unique world-leading activity that incorporates fundamental concepts 121 

from the two schools of thought - robotics (vehicle-based) and traffic engineering (segment-based).  122 

The incorporation of this macroscopic spatio-temporal collision risk (henceforth termed as “network-123 

level risk”) into microscopic vehicle-level risk, therefore, forms the motivation of this current paper. 124 

This study offers a methodological expansion to existing DBN-based risk assessment of AVs with the 125 

aim of   increasing their perception of the environment and easing online computations by exploiting 126 

real-time safety information for the road segment on which the ego-AV travels on. Such a risk 127 
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assessment module can be embedded in the path or manoeuvre planning routines of autonomous 128 

vehicles, assuring a safe navigation of the ego-vehicle. 129 

The rest of the paper is organised as follows: first, the existing literature and its main findings are 130 

synthesised. An analytic description of the proposed DBN for collision risk estimation in real-time is 131 

described next. This is followed by a presentation of the data needed for such an analysis and the 132 

methods used to estimate the risk of a collision. Results from machine learning classifiers (i.e. k-Nearest 133 

Neighbours, Neural Networks, Support Vector Machines, Gaussian Processes), used for network-level 134 

collision prediction and integrated with simulated and real-world vehicle-level data, are then presented. 135 

Finally, scenarios where the proposed model and network-level information in general could assist the 136 

safe navigation of AVs are given.    137 

 138 

2. Literature Review 139 

Risk assessment of AVs has been primarily addressed in the literature by utilizing different motion 140 

models (i.e. models that describe the movement of vehicles with regards to their surroundings). Lefèvre 141 

et al. (2014) presented a detailed survey to compare and contrast recent research on traffic environment 142 

modelling and prediction and introduced several risk estimators for intelligent vehicles. According to 143 

their work, motion models are classified into: (i) physics-based, (ii) manoeuvre-based and (iii) 144 

interaction-aware models. The first category of the motion models describes according to the laws of 145 

physics while the second one relies on estimating the intentions of the other traffic participants based 146 

on either clustered trajectories or manoeuvre estimation and execution.  These two categories of motion 147 

models do not take the environment into account but rather consider vehicles as independent entities. 148 

Interaction-aware motion models exploit inter-vehicle relationships as to easily identify any dangerous 149 

situations in real-time.   150 

 151 

Because of the incorporation of contextual information when modelling the motion of the vehicles in a 152 

traffic scene, interaction-aware models with regards to risk assessment is the focus of this literature 153 

review. It should, however, be noted that there is a dearth of research that integrate vehicle-level risk 154 
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assessment with the context-aware risk assessment in order to derive a more comprehensive risk 155 

assessment of AVs (Agamennoni et al., 2012).  156 

As noted in the survey of Lefèvre et al. (2014), the vast majority of interaction-aware motion models 157 

are built using DBN models due to their capability of handling missing data efficiently, the simplistic 158 

representation of the relationship between the variables and the real-time tractability of the model for 159 

drawing an online inference. 160 

 161 

Lefèvre (2012) pointed out that if an ego-vehicle has to predict all the future trajectories of the vehicles 162 

in its vicinity and to analyse them for any potential collisions, the whole process would become 163 

intractable for real-time applications. Her work exploited the power of interaction-aware models by the 164 

application of DBNs for the purpose of risk assessment at road intersections. Elegantly, instead of 165 

predicting the trajectories of all nearby vehicles, only vehicles which were found to disobey traffic rules 166 

or gap acceptance models were analysed for any potential collisions. It was however assumed that 167 

vehicular communications were enabled so as for the vehicles to exchange their spatial, speed and 168 

turning measurements through appropriate message delivery protocols. Nevertheless, an important 169 

observation was that collision risk does not only need intersecting trajectories but also behavioural or 170 

infrastructural information in order to enhance risk estimation for AVs. In the same principle, Worrall 171 

et al., (2012) showed the real-time efficiency of an interaction-aware model with the aid of DBNs. They 172 

constructed a fully probabilistic model based on a DBN using an improved calculation of the Time-to-173 

Collision (TTC) variable for risk assessment. Their approach was, however, failed to handle complex 174 

traffic scenarios; for instance, “give-way” at non-signalised junctions.  Moreover, communications were 175 

again assumed to be available and the approach was actually tested on mining facilities which could not 176 

efficiently represent traffic dynamics on real-world road networks.  177 

 178 

Recent approaches were formulated to better describe the traffic environment by including network-179 

related information. Gindele et al. (2015), for instance, included information on car-following models 180 

and the interactions among the vehicles in the adjacent lanes so as to faster recognise the intention of 181 

each vehicle and assessed risk using the TTC metric. Their DBN approach requires many variables 182 
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which consequently need to be trained to efficiently describe, for example, the relationship between 183 

traffic participants, the influence of traffic rules to traffic participants, the influence of the geometry of 184 

the road on the actions. In order to address some of these issues, Kuhnt et al. (2015) proposed to use a 185 

static street model in order to provide an extra hint to a motion model. Their approach, however, fails 186 

to provide an efficient description of the inter-vehicle dependencies. Recently, Bahram et al. (2016) 187 

showed that even without vehicular communications, if the knowledge of the road geometry and traffic 188 

rules is available, the prediction time for anticipating the manoeuvres of other vehicles can be 189 

significantly improved. Nevertheless, network-level knowledge was limited to train classifiers that have 190 

the capability of detecting any manoeuvre associated with the acceleration and deceleration of vehicles 191 

as well as lateral offsets in relation to the centre-line of a lane. 192 

 193 

It can be concluded from the literature that interaction-aware motion models have gained attention in 194 

modelling the inter-relationship between the participants of a traffic scene explicitly. However, complex 195 

traffic scenarios are difficult to tackle and learning specific manoeuvres of the drivers and classifying 196 

them as safe or dangerous are time-consuming due to the massive datasets needed. In order to address 197 

these challenges, traffic–related information is starting to become part of these models but their 198 

complexity and assumptions may hinder a comprehensive but simple representation of the traffic 199 

environment. Last but not the least, although network-level collision prediction has been researched 200 

over the years, an approach to bridge vehicle-level and network-level risk assessment is yet to be fully 201 

understood and utilised. 202 

 203 

The overriding objective of this paper is, therefore, to address this methodological gap by extending 204 

typical DBN-formulations based on the principles of interaction-aware motion models aided by 205 

network-level collision risk prediction as an additional safety layer. The purpose is to enhance the 206 

overall risk assessment method of AVs with a particular focus on faster predictions and more 207 

comprehensive reasoning. The work builds on previous research (i.e. Lefèvre, 2012 and Worrall et al. 208 

2012) which showed that such methods can be efficiently implemented in real-time while keeping the 209 

complexity of the DBN motion model as low as reasonably practicable. 210 
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 211 

3. Methodological background 212 

The focus of this study is to integrate network-level collision prediction with interaction-aware motion 213 

models under a Bayesian framework for risk assessment of AVs. Time-varying traffic scenes have to 214 

be modelled appropriately allowing an ego-AV to reliably estimate the collision risk from the presence 215 

of surrounding vehicles as well as the interactions between these vehicles that are deemed to pose the 216 

greatest threat. Therefore, an appropriate framework for modelling dynamic systems must be applied. 217 

Data acquisition for AVs is dependent on the temporal frequency of their built-in sensor unit. As a 218 

result, input data to the risk assessment algorithm are inherently sequential.  219 

Murphy (2002) indicated that state-space models such as Hidden Markov Models (HMMs) and Kalman 220 

Filter Models (KFMs) perform better in sequential data problems associated with finite-time windows, 221 

discrete and multivariate inputs or outputs and they can be easily extended. A known drawback of 222 

HMMs is that they suffer from high sample and high computational complexity. This means that 223 

learning the structure of the model and inferring the required probability may take longer to accomplish. 224 

Furthermore, simple HMMs require a single discrete random variable which cannot cope with the 225 

description of a constantly changing environment such as a traffic scene. Factorial HMMs and coupled 226 

HMMs enable the use of multiple data streams but the former has problems related to the correlation 227 

between the hidden variables and the latter needs the specification of many parameters in order to 228 

perform an inference (Murphy, 2012). KFMs rely on the assumption that the system is jointly Gaussian 229 

which makes it inappropriate to jointly accommodate both discrete and continuous variables (Murphy, 230 

2002).  231 

In order to overcome the above limitations in handling sequential data, Murphy (Murphy, 2002) 232 

proposed the use of DBNs. DBNs are an extension of Bayesian networks which is a graphical 233 

representation of a joint probability distribution of random variables  to handle temporal sequential data 234 

(e.g. Koller and Friedman, 2009). DBN representation of the probabilistic state-space is straightforward 235 

and requires the specification of the first time slice, the structure between two time slices and the form 236 
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of the Conditional Probability Distribution (CPDs). A crucial part in defining a DBN is the declaration 237 

of hidden (i.e. latent) and observed variables.  238 

When applied for the anticipation of the motion of the vehicles and risk assessment for automated 239 

driving, a typical DBN layout that takes the inter-vehicle dependencies into account is shown in Figure 240 

1 (Lefèvre, 2012). The DBN requires the definition of three layers:  241 

Layer 1: the highest level corresponds to the context of the vehicle’s motion. It can be seen as a symbolic 242 

representation of the state of the vehicle (Agamennoni et al., 2012). It can contain information about 243 

the manoeuvre that the vehicle performs (as seen in Lefèvre, 2012)  or the geometric and dynamic 244 

relationships between vehicles (as seen in Agamennoni et al., 2012). The variables contained in this 245 

level are usually ‘discrete’ and ‘hidden’ (e.g. manoeuvre undertaken or compliance with traffic rules). 246 

Layer 2: this level corresponds to vehicle’s physical state such as kinematics and dynamics of the 247 

vehicle. It usually includes information about the position, the speed and the heading of the vehicle but 248 

can also accommodate information coming from a dynamic model for the motion of the vehicle (e.g. 249 

the bicycle model). The variables contained in this level are usually ‘continuous’ and ‘hidden’ (e.g. 250 

speed, position, acceleration) 251 

Level 3: the lowest level corresponds to the sensor measurements that are accessible (e.g. measured 252 

speed of the ego-vehicle). The measurements are processed in order to remove noise and create the 253 

physical state subset.  The variables at this level are always ‘observable’. 254 
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Figure 1: Graphical representation of a typical DBN-based interaction aware  256 

In Figure 1, it is noticeable that for every time moment the specific context of each vehicle influences 257 

the physical state of the vehicle and consequently the physical state is depicted on the observations from 258 

the sensors. Accordingly, it is apparent from the thick solid arrows that the context of each vehicle at a 259 

specific time slice is dependent on the context and the physical state of every vehicle in the traffic scene 260 

at the previous time slice. This means that the probability of a vehicle belonging to a specific context 261 

in the next time slice requires the estimation of the union of probabilities which describe the context for 262 

each of the vehicles in the scene along with the probability distributions of variables related to their 263 

physical states. For more clarity, assume that an ego-vehicle is travelling in the middle lane of a 264 

motorway and senses that a lead vehicle on the left lane intending to change its lane. Based on the traffic 265 

rules, it is logical to assume that the ego-vehicle would slow down or change its lane to the right. If 266 

there is a vehicle in the right lane, then the context of “slowing-down” would have a higher probability 267 

than the context of “change its lane to the right” or “change its lane to the left” and the differences in 268 

the context would depend on the physical measurements of all vehicles in the scene (i.e. the position 269 

and speed of the ego-vehicle and the other two vehicles). 270 
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To enhance risk assessment for automated driving without increasing the complexity of such DBN-271 

based interaction-aware motion models, a new structure is developed in this paper by incorporating an 272 

additional layer that deals with network-level collision risk. 273 

 274 

4. Developed DBN model for motion prediction and risk assessment 275 

In order to include the network-level collision prediction in the motion prediction and risk assessment 276 

routine, a new layer along with its relationship with other layers are introduced as depicted in Figure 2. 277 
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Figure 2: Developed DBN Network 279 

Comparing Figures 1 and 2, it can be observed that the context layer is broken into two interacting 280 

safety-related domains: (i) network-level collision risk and (ii) vehicle-level risk. The topology of the 281 

DBN is designed in such a way that it accurately represents the dependencies between the layers: i) if 282 

any safety risk is identified at a network-level, it should be depicted in the vehicle-level; ii) the vehicle-283 
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level safety risk is depicted on the motion of the vehicles, and iii) the motion of the vehicles is depicted 284 

on the observations from the sensors. The model presented above could, in theory, be applied to any 285 

traffic situation by defining the variables CRN, CRV, K, and Z accordingly.  286 

 287 

4.1. Variable definitions 288 

Network-level real-time collision risk (CRN): Represents the safety context of the road segment on 289 

which the ego-vehicle is travelling on (i.e. whether the traffic conditions on the road segment are 290 

collision-prone or safe). The variable in this layer is ‘discrete’ taking only two values: 291 

1. Safe traffic conditions 292 

2. Collision-prone traffic conditions  293 

As a result, (CRNn
t ) indicates the probability that the traffic conditions on the road segment  (with 294 

lengths 300-500m as indicated by Pande et al., 2011) on which a vehicle n travels at time t are “collision-295 

prone” or “safe” based on traffic dynamics. The input variables for estimating network-level collision 296 

risk consist of aggregated traffic conditions data (e.g. the mean speed of the vehicles, the mean number 297 

of the vehicles, the mean occupancy). Because many vehicles are travelling on a road segment, it is 298 

assumed that once the network-level collision risk is estimated for the segment, then its value is the 299 

same for all the vehicles in this specific segment. 300 

Vehicle-level risk (CRV): Represents the safety context of one vehicle in a traffic scene (i.e. whether a 301 

vehicle can potentially cause a collision with the ego-vehicle). The variable in this layer is also ‘discrete’ 302 

but takes four values describing the safety context of each vehicle depending on the network-level safety 303 

context:  304 

1. Safe driving on a road segment having safe traffic conditions 305 

2. Safe driving on a road segment having collision-prone traffic conditions  306 

3. Dangerous driving on a road segment having safe traffic conditions  307 

4. Dangerous driving on a road segment having collision-prone conditions 308 
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 “Safe” and “Dangerous” driving can be a user-defined function and indicate the characterization of the 309 

manoeuvres undertaken by the vehicles in the traffic scene. Safe driving does not pose a threat to another 310 

vehicle, while dangerous driving indicates that the motion of one vehicle could be considered unsafe 311 

by another vehicle in the traffic. 312 

From Figure 2 it can also be observed that the estimation of the vehicle-level safety context depends on 313 

the network-level safety context as well as the union of safety contexts and kinematics of all the vehicles 314 

in the vicinity of the ego-vehicle. Consequently, network-level collision prediction provides a hint to 315 

the estimation of vehicle-level collision probabilities in which the multi-vehicle dependencies are taken 316 

into account.  317 

Sensor measurements (Z): Represents the available observations from the sensors of the ego-vehicle. 318 

𝑍𝑍𝑛𝑛𝑡𝑡  denotes the available measurements that describe the state of the vehicle n at time t.  The variables 319 

in this layer are ‘continuous’. 320 

The measurements for each vehicle are assumed to include: 321 

Pmn
t = (Xn

t Yn
t , θn

t )  ∈ ℝ3: the measured lateral and longitudinal position (𝑋𝑋𝑛𝑛
𝑡𝑡 ,𝑌𝑌𝑛𝑛𝑡𝑡 )  and heading of the 322 

vehicle (𝜃𝜃𝑛𝑛
𝑡𝑡 ) 323 

Vmn
t ∈ ℝ: the measured speed of the vehicle 324 

Kinematics of the vehicles (K): Represents the physical state of a vehicle. 𝑲𝑲𝒏𝒏
𝒕𝒕  denotes the conjunction 325 

of all the variables that describe the physical state of the vehicle n at time t. The variables in this layer 326 

are continuous as they are referring to continuously measured quantities such as position and speed. 327 

Based on the available measurements described previously, the following variables are selected to 328 

represent the physical state of a vehicle: 329 

Pn
t = (𝑋𝑋𝑛𝑛𝑡𝑡 𝑌𝑌𝑛𝑛𝑡𝑡 , 𝜃𝜃𝑛𝑛𝑡𝑡 )  ∈ ℝ3: the real values of the position and heading of the vehicle 330 

𝑉𝑉𝑛𝑛𝑡𝑡  ∈ ℝ: the real value of the speed of the vehicle  331 
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4.2. Joint Distribution 332 

For the proposed DBN depicted in Figure 2  the joint distribution of all the vehicles is estimated as 333 

(Bessiere et al., 2013):  334 

𝑷𝑷�𝑪𝑪𝑪𝑪𝑪𝑪𝟎𝟎:𝑻𝑻,𝑪𝑪𝑪𝑪𝑪𝑪𝟎𝟎:𝑻𝑻,𝑲𝑲𝟎𝟎:𝑻𝑻,𝒁𝒁𝟎𝟎:𝑻𝑻�335 

= 𝑷𝑷�𝑪𝑪𝑪𝑪𝑪𝑪𝟎𝟎,𝑪𝑪𝑪𝑪𝑪𝑪𝟎𝟎,𝑲𝑲𝟎𝟎,𝒁𝒁𝟎𝟎� ��𝑃𝑃(𝐂𝐂𝐂𝐂𝐂𝐂𝒏𝒏𝒕𝒕 ) × 𝑃𝑃(CRV𝒏𝒏𝒕𝒕|𝐂𝐂𝐂𝐂𝐂𝐂𝑵𝑵𝒕𝒕−𝟏𝟏𝐊𝐊𝑵𝑵
𝒕𝒕−𝟏𝟏CRN𝑛𝑛

𝑡𝑡 )
𝑵𝑵

𝒏𝒏

𝑻𝑻

𝒕𝒕=𝟏𝟏

336 

× 𝑃𝑃(K𝒏𝒏
𝒕𝒕 |CRV𝑛𝑛𝑡𝑡−1 K𝑛𝑛

𝑡𝑡−1CRV𝑛𝑛𝑡𝑡) × 𝑃𝑃(Z𝑛𝑛𝑡𝑡 |K𝑛𝑛
𝑡𝑡 )                                                                         (1) 337 

where n is the vehicle ID number in the vicinity of the ego-vehicle, t is the time moment, T is the total 338 

time duration of the measurements and N is the total number of vehicles that are observed in the traffic 339 

scene. Bold letters indicate that the indicated layers are calculated for all the vehicles. For example, 340 

𝐂𝐂𝐂𝐂𝐂𝐂𝑵𝑵𝒕𝒕−𝟏𝟏 indicates the vehicle-level risk context for time t-1 for all the vehicles in the traffic scene.  341 

 342 

4.3.  Estimating the risk of collision by using a hint from network-level risk prediction  343 

Modelling the motion of the vehicles with regards to network- and vehicle-level risks requires a new 344 

estimation framework to be developed. In order to quantify the influence that network-level risk 345 

estimation has on estimating vehicle-level collision risk, it is essential to infer the probability that there 346 

is a vehicle-level “unsafe” situation, given the hint from the network and the measurements from the 347 

sensors.  348 

In the majority of recent studies on network-level collision prediction (e.g. Sun and Sun, 2015), traffic 349 

conditions at 5-10 minutes before the collision are deemed to be the most suitable to identify collision 350 

events timely and initiate an intervention by the responsible traffic agencies. However, 5 to 10-minute 351 

aggregation may not suitable for the real-time safety assessment of AVs where sensor information is 352 

available at a higher sampling frequency (e.g. 1 Hz, 0.1 Hz). It is, however, a reality that traffic agencies 353 

aggregate traffic data at pre-defined time intervals (e.g. 30-second or 1-minute, 5-minute and 15-354 

minute). Because of the difference at the temporal horizon between network-level collision prediction 355 
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and vehicle-level measurements, it is assumed that the CRN layer is an observable layer. CRV and K 356 

are hidden layers because the variables in these layers are inferred through the vehicle’s sensor 357 

measurements. The sensor measurements layer (Z) is obviously an observable layer. 358 

Exact inference in such non-linear and non-Gaussian models is not tractable. Therefore, in order to 359 

estimate the probability of a “dangerous” vehicle-level context given the traffic situation and the sensor 360 

measurements the use of particle filters (Merwe et al., 2000) is proposed as they have been proven to 361 

work well in similar situations (Lefèvre, 2012; Murphy, 2002). 362 

If an inference algorithm is chosen, then the probability to be inferred is:  363 

𝑃𝑃�[𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛
𝑡𝑡 ∈ {𝑑𝑑𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑𝑑𝑑}]|𝐶𝐶𝑅𝑅𝑁𝑁𝑡𝑡 ,𝑍𝑍0:𝑡𝑡�  > 𝜆𝜆   (2) 364 

where:  365 

• 𝑪𝑪𝑪𝑪𝑪𝑪𝒏𝒏𝒕𝒕 denotes the vehicle-level safety context of vehicle n at time t; 366 

• 𝒅𝒅𝒅𝒅𝒅𝒅,𝒅𝒅𝒅𝒅𝒅𝒅 denote a “dangerous” vehicle travelling on a road segment with Collision-Prone 367 

traffic conditions and a “dangerous” vehicle travelling on a road segment with SAfe traffic 368 

conditions respectively; 369 

• 𝑪𝑪𝑪𝑪𝑪𝑪𝒕𝒕 denotes the network-level collision risk for all the vehicles on a specific road segment; 370 

• 𝒁𝒁𝟎𝟎:𝒕𝒕 denote the sensor measurements until time moment t; 371 

• 𝝀𝝀 is a threshold to identify “dangerous” encounters between the surrounding traffic participants 372 

and the ego-vehicle.  373 

Equation 2 indicates that given a hint for the safety assessment of a road segment, the motion of the 374 

vehicles in that specific segment is affected. This resembles the fact that human drivers are also affected 375 

when the information of traffic incidents such as a broken-down vehicle on the roadway or a queue 376 

formation in the downstream is displayed via Variable Message Signs.   377 

4.4. Note on the similarities and differences with other probabilistic models 378 

The model depicted in Figure 2 bears resemblance to a Switching State Space Model (SSSM) with 379 

regard to explaining the dynamics of the traffic scene by switching between a discrete numbers of 380 
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contexts. In SSSMs the switching process is regulated by a discrete Markov process which indicates 381 

which context is active at every time step. However, in the proposed model, this switching process is 382 

conditionally Markov, because the context variable in the vehicle level (CRV) depends not only on the 383 

discrete variable of the previous time step but on the continuous kinematics of the vehicles of the 384 

previous time step. 385 

 386 

The structure of the proposed model also resembles a Coupled Hidden Markov Model (CHMM) (Brand 387 

et al., 1997) because of the way the different time slices connect. In CHMMs the current hidden layer 388 

depends on the hidden layer in the previous time step as well as the hidden layer of a neighbouring 389 

Markov Chain.  However, CHMMs are usually intended for maximum likelihood estimation, while this 390 

work emphasizes on prediction.  The obvious difference with CHMMs is that the proposed model 391 

accommodates continuous nodes, whereas CHMMs only work with discrete-valued variables. 392 

Furthermore, the use of CHMMs for solving the problem this work tackles introduces computational 393 

complex, as a different CHMM should be constructed for each interaction between two vehicles. 394 

 395 

4.5. Parametric forms 396 

In order to estimate the joint distribution of the network for inference, the functions that calculate each 397 

of the probabilistic distributions of each layer need to be defined. since the focus of the approach is the 398 

incorporation and enhancement of network-level collision prediction into existing motion models for 399 

automated driving a brief description of the parametric forms for vehicle-level risk and there are a large 400 

number of variables for the problem, kinematics and sensor measurements are presented.  401 

 402 

4.5.1. Vehicle-level risk 𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛
𝑡𝑡) 403 

The content of vehicle-level risk is derived from the previous vehicle-level risk context and kinematics 404 

of all the vehicles on the scene, and is influenced by the current network-level collision prediction. The 405 

estimation of the probability that the motion of one vehicle is considered “dangerous” or “safe” is 406 
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derived through a feature function that takes as inputs the current network-level risk, the previous 407 

vehicle-level risk context of the vehicle and the previous vehicle kinematics: 408 

 409 

𝑃𝑃�CRV𝒏𝒏𝒕𝒕�𝐂𝐂𝐂𝐂𝐂𝐂𝑵𝑵𝒕𝒕−𝟏𝟏𝐊𝐊𝑵𝑵
𝒕𝒕−𝟏𝟏CRN𝑛𝑛

𝑡𝑡 � = 𝒇𝒇(𝐂𝐂𝐂𝐂𝐂𝐂𝒏𝒏𝒕𝒕−𝟏𝟏,𝐊𝐊𝒏𝒏
𝒕𝒕−𝟏𝟏, CRN𝑛𝑛

𝑡𝑡 )  (3) 410 

 411 

In order for this feature function to be defined, three steps need to be considered: 412 

 413 

a) Using a Kalman Filter (Murphy, 2012), the physical state of the vehicles in the traffic scene is 414 

estimated. For example, after applying a Kalman filter algorithm, the elements 415 

{𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 ,𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 ,𝜃𝜃𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 , 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 } and {𝑋𝑋𝑛𝑛𝑡𝑡 ,𝑌𝑌𝑛𝑛𝑡𝑡 ,𝜃𝜃𝑛𝑛𝑡𝑡 ,𝑣𝑣𝑛𝑛𝑡𝑡} will be known. 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡  𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑛𝑛𝑡𝑡 denote the speeds of 416 

ego-vehicle and vehicle-n respectively. 417 

 418 

If  𝛥𝛥𝑝𝑝𝑡𝑡 denotes the relative position between ego-vehicle and vehicle-n, and 𝛥𝛥𝑣𝑣𝑡𝑡 denotes the 419 

relative speed between ego-vehicle and vehicle n then the time-to-collision (TTC) and the 420 

distance-to-collision (δ) between the ego-vehicle and vehicle-n are expressed as follows 421 

(Agamennoni et al., 2012): 422 

Time to collision: TTCnt = ∆𝑝𝑝𝑡𝑡𝑇𝑇∆𝑣𝑣𝑡𝑡
∆𝑣𝑣𝑡𝑡𝑇𝑇∆𝑣𝑣𝑡𝑡

        (4) 423 

Distance to collision: δnt = �∆𝑝𝑝𝑡𝑡𝑇𝑇∆𝑝𝑝𝑡𝑡 − TTCnt ∆𝑝𝑝𝑡𝑡𝑇𝑇Δvt      (5) 424 

 425 

If  𝑃𝑃𝑛𝑛𝑡𝑡 = (𝑋𝑋𝑛𝑛𝑡𝑡 ,𝑌𝑌𝑛𝑛𝑡𝑡 ,𝜃𝜃𝑛𝑛𝑡𝑡) denote the position and heading of vehicle n at time moment t and  426 

𝑣𝑣𝑛𝑛𝑡𝑡  denotes the speed of the vehicle, an indicator function (𝑓𝑓𝐾𝐾) can indicate if vehicle-n brakes 427 

dangerously, changes lane dangerously or drives safely with regard to the ego-vehicle. For rear-428 

end collisions  TTC-based thresholds could be of use (e.g. Toledo et al., 2003): 429 

 430 

𝑓𝑓𝐾𝐾 = 𝑓𝑓(TTCnt−1) = �1: dangerous 𝑖𝑖𝑖𝑖 TTCnt < 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑇𝑇𝑇𝑇𝑇𝑇
0: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠; 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒      (6) 431 

 432 
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b) If a vehicle in the previous time epoch was indicated as “dangerous” in the road segment that 433 

the ego-vehicle is driving on, then it is assumed that the CRV context was “dangerous”. 434 

Otherwise, it is assumed that the motion of all the vehicles was “safe”. Thus, another indicator 435 

function to take the previous vehicle-level risk of all vehicles into account can be defined as: 436 

𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁 = �1 𝑖𝑖𝑖𝑖 ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑡𝑡−1𝑁𝑁
𝑛𝑛=1 > 0

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
       (7) 437 

 438 

where N is the total number of vehicles that the ego-vehicle can sense. 439 

 440 

c) In order to take network-level collision risk into consideration and easily identify dangerous 441 

traffic participants, the network-level classification metrics are considered as a coefficient: 442 

 443 

d) 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 =

⎩
⎪
⎨

⎪
⎧

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2

 𝑖𝑖𝑖𝑖 CRN𝑁𝑁
𝑡𝑡 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁

𝑡𝑡−1 = 1 

1 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴+𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
2

 𝑖𝑖𝑖𝑖 CRN𝑁𝑁
𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁

𝑡𝑡−1 = 0

1 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 CRN𝑁𝑁
𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁

𝑡𝑡−1 = 1
1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑓𝑓 CRN𝑁𝑁

𝑡𝑡 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁
𝑡𝑡−1 = 0

   (8) 444 

 445 

By that definition, if a vehicle is detected to pose a threat (i.e. dangerous) and the traffic 446 

conditions are collision-prone, a compromise between the accuracy of the classifier and its 447 

recall is boosting the identification of a hazardous road user. If traffic conditions are indicated 448 

as safe, then the compromise is made between the accuracy and the specificity of the classifier 449 

which shows its ability to correctly classify safe traffic conditions. Afterwards, this compromise 450 

is subtracted from 1 to indicate the probability of a vehicle being dangerous. When the network-451 

level classifier indicates safe traffic but a vehicle is sensed to be posing a “threat” to the ego-452 

vehicle, then the prediction is boosted by the false negative rate (given by the formula: 1 −453 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟). Lastly, when traffic conditions are indicated as dangerous but there is no vehicle posing 454 

a threat, then the vehicle-level risk is boosted by the false alarm rate (i.e. 1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). 455 

 456 
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Having all three indicative functions, the probability of the current vehicle-level collision risk context 457 

could be calculated as shown in the following example: 458 

 459 

𝑃𝑃(CRV𝒏𝒏𝒕𝒕 = "𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑"�CRV𝑁𝑁𝑡𝑡−1K𝑁𝑁
𝑡𝑡−1CRN𝑛𝑛

𝑡𝑡 ) =
∑ (𝑓𝑓𝐾𝐾𝑛𝑛=1)+∑ (𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛=1)𝑁𝑁

𝑛𝑛=1 +𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁
𝑁𝑁
𝑛𝑛=1

3𝑁𝑁
  (9) 460 

 461 

where N is the total number of vehicles that the ego-vehicle can sense. 3N is chosen as a normalising 462 

factor in order for the probability to be within [0,1] even when one vehicle is posing a threat (i.e. 463 

∑ (𝑓𝑓𝐾𝐾𝑛𝑛) = 1,∑ (𝑓𝑓𝐶𝐶𝑅𝑅𝑅𝑅𝑛𝑛)𝑁𝑁
𝑛𝑛=1 = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁

𝑁𝑁
𝑛𝑛=1 = 1). It is assumed that the sampling and risk estimation 464 

frequencies will be adjusted as soon as a risk is estimated. 465 

 466 

4.5.2. Kinematics 𝑃𝑃(𝐾𝐾𝑛𝑛𝑡𝑡|𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑡𝑡−1 𝐾𝐾𝑛𝑛𝑡𝑡−1𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑡𝑡) 467 

The variables describing the kinematics layer must contain all the information needed in order to 468 

characterise the contexts. In this work, it was explained that the physical state vector will contain 469 

information on the position of a vehicle (in an absolute reference system, its heading and its speed). It 470 

is assumed that vehicles move according to the bicycle model as shown in Figure 3 (Snider, 2009). The 471 

kinematic bicycle model merges the left and right wheels of the car into a pair of single wheels at the 472 

centre of the front and rear axles as seen in Figure 3. It is assumed that wheels have no lateral slip and 473 

only the front wheel is steerable. 474 

Figure 3: Bicycle model kinematics 475 
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The equations of motion for all vehicles in the traffic scene can be integrated over a time interval Δt 476 

using a simple forward Euler integration method (Press et al., 1993) in order to acquire the evolution of 477 

kinematics over time.  478 

 479 

In the proposed model in Figure 3 and in its joint distribution as shown in Equation (1), it is observed 480 

that the current kinematics depend on the previous and current vehicle-level risk context as well as on 481 

the current kinematics of the vehicle. It is assumed that vehicles moving in a specific context will follow 482 

kinematics according to that context. As a result, the parametric forms of the position, heading, and 483 

speed of each of the vehicles should be defined according to the current vehicle context and the previous 484 

kinematics only.  For example: 485 

 486 

P(P𝑛𝑛𝑡𝑡|CRV𝑛𝑛𝑡𝑡−1 K𝑛𝑛
𝑡𝑡−1CRV𝑛𝑛𝑡𝑡) = 𝑃𝑃(P𝑛𝑛𝑡𝑡|CRV𝑛𝑛𝑡𝑡K𝑛𝑛

𝑡𝑡−1)  (10) 487 

 488 

In order to expose the dependency of current kinematic measurements on the previous vehicle-level 489 

safety context, context-specific constraints (e.g. constraints on the TTC between ego-vehicle and 490 

another vehicle) should be defined to distinguish between contexts. For example, if the derived TTC is 491 

below 1 second, this could indicate a “dangerous driving” in a road segment with safe or collision-prone 492 

traffic conditions. The parametric forms of the probability distribution of position and speed of the 493 

vehicles can be assumed to follow normal distributions (Lefèvre, 2012).  494 

 495 

For example, the likelihood of the position and heading of a vehicle is defined as a tri-variate normal 496 

distribution with no correlation between x, y, and θ  497 

 498 

𝑃𝑃(P𝑛𝑛𝑡𝑡|[CRV𝑛𝑛𝑡𝑡−1 = 𝐶𝐶𝑖𝑖][P𝑛𝑛𝑡𝑡−1 = 𝑋𝑋𝑛𝑛𝑡𝑡−1𝑌𝑌𝑛𝑛𝑡𝑡−1,𝜃𝜃𝑛𝑛𝑡𝑡−1][V𝑛𝑛𝑡𝑡−1 = 𝑣𝑣𝑛𝑛𝑡𝑡−1]) = 𝑁𝑁�𝝁𝝁𝒙𝒙𝒙𝒙𝜽𝜽(𝑋𝑋𝑛𝑛𝑡𝑡−1𝑌𝑌𝑛𝑛𝑡𝑡−1,𝜃𝜃𝑛𝑛𝑡𝑡−1,𝐶𝐶𝑛𝑛),𝝈𝝈𝒙𝒙𝒙𝒙𝜽𝜽�499 

                      (11) 500 

 501 
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where 𝝁𝝁𝒙𝒙𝒙𝒙𝜽𝜽(𝑋𝑋𝑛𝑛𝑡𝑡−1𝑌𝑌𝑛𝑛𝑡𝑡−1,𝜃𝜃𝑛𝑛𝑡𝑡−1,𝐶𝐶𝑛𝑛) is a function which computes the mean position and heading of the 502 

vehicle (𝜇𝜇𝑥𝑥 ,𝜇𝜇𝑦𝑦, 𝜇𝜇𝜃𝜃)  according to the bicycle model and the context-specific constraints, 𝐶𝐶𝑛𝑛denotes the 503 

context of vehicle-n  and 𝝈𝝈𝒙𝒙𝒙𝒙𝜽𝜽 = (𝜎𝜎𝑥𝑥,𝜎𝜎𝑦𝑦,𝜎𝜎𝜃𝜃) is the standard deviation which can be acquired from the 504 

covariance matrix of the Kalman Filter algorithm. 505 

 506 

4.5.3. Sensor measurements (𝑍𝑍𝑛𝑛𝑡𝑡 |𝐾𝐾𝑛𝑛𝑡𝑡) 507 

The sensor model used is adopted from (Agamennoni et al., 2012) because of the use of the Student t- 508 

distribution which performs better with outlier data. The sensor model can be defined as: 509 

 510 

𝑃𝑃(𝑍𝑍𝑛𝑛𝑡𝑡 𝐾𝐾𝑛𝑛𝑡𝑡⁄ )~ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐶𝐶𝑇𝑇𝐾𝐾𝑛𝑛𝑡𝑡 ,𝜎𝜎2𝛪𝛪, 𝜈𝜈)         (12) 511 

where C is a rectangular matrix that selects entries from the kinematic (physical state), ν are the degrees 512 

of freedom, Ι is the identity matrix and  𝜎𝜎 is related to the accuracy of the sensor system.  513 

 514 

4.5.4. Network-level collision risk 𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛
𝑡𝑡) 515 

In theory, every technique which can be utilised for real-time collision prediction can be applied to 516 

estimate the probability of a road segment having collision-prone traffic conditions in the proposed 517 

DBN. As the problem of identifying if the traffic conditions at a specific road segment are collision-518 

prone or note is a binary classification problem, the outcome of every technique would be a binary 519 

indication (e.g. 1 for collision-prone conditions and 0 for safe traffic). 520 

Binary classifiers are usually evaluated through the following performance metrics: 521 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = Tconflict+Tsafe
Tconflict+Tsafe+Fsafe+Fconflict

; 522 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
Tconflict

Tconflict + Fsafe
; 523 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
Tsafe

Tsafe + Fconflict
  524 
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where 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 represents a correct detection of conflict-prone traffic conditions identified as conflict-525 

prone, 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 represents an incorrect detection of conflict-prone traffic conditions identified as safe, 526 

Tsafe is a safe traffic condition instance correctly identified as safe, and Fsafe is a safe traffic condition 527 

instance falsely identified as conflict-prone. 528 

In order to transform the classification result, a probability of a road segment having collision-prone 529 

traffic conditions can be estimated as: 530 

𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛
𝑡𝑡 = "𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑") = (𝐴𝐴𝐴𝐴𝐴𝐴+𝑅𝑅𝑅𝑅𝑅𝑅

2
), if CR = 1                         (13) 531 

where CR is the classification result for the aggregated traffic conditions in real-time (i.e. 0 or 1), Acc 532 

and Rec are accuracy and recall of the calibrated classifier. It can be observed that if the classifier 533 

indicates a collision-prone situation then the probability of the road segment being “dangerous” is 534 

estimated by taking into account the overall accuracy of the classifier and its performance in identifying 535 

conflict-prone conditions (i.e. recall). It goes without saying that when CR=1 the probability of the road 536 

segment being safe is: 537 

𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛
𝑡𝑡 = "𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠") = 1 − 𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛

𝑡𝑡 = "𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑")              (14) 538 

Accordingly, for CR=0: 𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛
𝑡𝑡 = "𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠") = (𝐴𝐴𝐴𝐴𝐴𝐴+𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

2
)      (15) 539 

𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛
𝑡𝑡 = "𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑") = 1 − 𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛

𝑡𝑡 = "𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠")                         (16) 540 

where Spec is the specificity of the classifier (i.e. the classifier’s performance in identifying safe traffic 541 

conditions). 542 

From equations (13) - (16), the importance of building robust classifiers with less false alarms and solid 543 

identification of both normal and collision-prone traffic is observable.  544 

5. Data Description 545 

In order to demonstrate how a network-level hint on collision risk can be employed in real-time risk 546 

assessment for autonomous driving, the necessary network and vehicle-level data need to be acquired.  547 
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As disaggregated traffic data are more useful for the purposes of this study, traffic microsimulation 548 

software -  PTV VISSIM (PTV, 2013) is used along with the Surrogate Safety Assessment Model 549 

(SSAM) (Pu and Joshi, 2008) which extracts conflicts using the simulated vehicle trajectories from 550 

VISSIM. A 4.52-km section of motorway M62 between junction 25 and 26 in England was used as the 551 

study area. 15-minute traffic data obtained from the UK Highways Agency Journey Time Database 552 

(JTDB) corresponding to every day of the years 2012 and 2013 were used as input to the 553 

microsimulation software. For the simulated network the vehicle composition is given in Table 1. 554 

Table 1: Vehicle composition for the studied link segment (M62 motorway, junctions 555 
25-26) 556 

Year 2012 2013 
Vehicle 
category 

Number of 
vehicles Ratio Number of 

vehicles Ratio 

Cars and 
LGV 57136 0.84100209 62591 0.85727 

HGV 10643 0.156657541 10238 0.140224 
Buses 159 0.002340369 183 0.002506 
Total 67938 1 73012 1 

  557 

Four simulation runs (i.e. one for identifying conflicts and three for the identification of normal traffic 558 

conditions) were utilized. The number of additional runs was chosen in order to cope with the imbalance 559 

between conflict and safe conditions which can prove essential for classification purposes (He and 560 

Garcia, 2009). The simulations were calibrated using the  GEH statistic (Transport For London, 2010)  561 

and travel-time measurements. The conflicts were identified in SSAM if the TTC between two vehicles 562 

was below 1.3 seconds and Post-Encroachment Time (PET) was below 1 second. That is because TTC 563 

below 1.3 seconds is lower than the average human reaction time (Triggs and Harris, 1982) and PET 564 

values close to zero show imminent collisions (Pu and Joshi, 2008).  For every conflict, the nearest 565 

upstream detector on the road segment was identified by comparing the time of the conflict with the 566 

time the vehicles passed from every detector. This specific detector was marked as “conflict detector”. 567 

Traffic data aggregated at 30-seconds intervals were extracted for every conflict detector, the 568 

corresponding upstream and downstream detectors on the same lane and the detector in the adjacent 569 

lane. In order to obtain the non-collision cases for every conflict detector, the conflicts for the other 570 
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three simulation runs were assessed to see if any conflicts occurred in their vicinity. If there was no 571 

conflict, the traffic measurements obtained from that detector represented ‘safe’ conditions. Otherwise, 572 

the detector was discarded. As four simulations were run, having used one simulation for the extraction 573 

of conflict-prone conditions and the three other simulations for the extraction of collision-free 574 

conditions, the procedure was repeated an additional three times so that every simulation run was used 575 

for the extraction of both ‘conflict-prone’ and ‘safe’ conditions. In total the final simulated dataset 576 

consisted of 7,800 conflict events and 23,400 non-conflict cases.  577 

According to the guidelines from the Federal Highway Administration (FHWA) (Dowling et al., 2004),   578 

the GEH-statistic (Transport For London, 2010) and the link travel time were used. The GEH statistic 579 

correlates the observed traffic volumes with the simulated volumes as shown below: 580 

𝐺𝐺𝐺𝐺𝐺𝐺 =  �
(𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠−𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜)2
𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠+𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜

2

   581 

where 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 is the simulated traffic volume and 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 is the observed traffic volume. 582 

After a number of trial simulations, the best GEH values were obtained by using the following 583 

parameters for the Wiedemann 99 car following model: 584 

• Standstill distance: 1.5 m 585 

• Headway time: 0.9 sec 586 

• Following variation: 4 m 587 

For the simulation to efficiently resemble real-world traffic it is essential that (Dowling et al., 2004): 588 

1. GEH statistic < 5 for more than the 85% of the cases  589 

2. The differences between observed and simulated travel times is equal or below 15% for more 590 

than 85% of the simulated cases.  591 

The validation results are summarized in Fig. 4 and 5, and the comparison between traffic flow and 592 

travel time in simulation and reality are depicted in Fig. 6 and 7. The calibration was performed using 593 

Mohammed Quddus
For what?
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the entire simulated dataset (from all four periods) and the observed traffic conditions and conflicts so 594 

as to have a unified dataset. 595 

 596 

Fig. 4.  GEH statistic and Travel time validation for each time interval and year. 597 

 598 

Fig. 5.  Percentage of unaccepted cases for each year regarding the GEH statistic and travel time. 599 

 600 

 601 

Fig. 6.  Observed vs Simulated Traffic flow for each year 602 
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 603 

Fig. 7.  Observed vs Simulated travel time for each year 604 

In the simulations that were undertaken, the GEH values for most of the time intervals were found to 605 

be less than five. However, there were intervals where GEH values were found to be between 5 and 10. 606 

These values indicated either a calibration problem or a data problem. Because of the large number of 607 

simulations undertaken (~1000 for every scenario) it was assumed that the bad GEH values related to 608 

the highly aggregated traffic data (i.e. 15-minute by road-level). Therefore, it was decided to keep the 609 

simulation results for the intervals with GEH values between 5 and 10 610 

 611 

In order for the conflicts to be validated, the Crash Potential Index (CPI) was used as suggested by 612 

Flavio (Cunto, 2008). CPI is calculated through the following equation: 613 

 614 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 =
∑ (𝑃𝑃(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑎𝑎1,𝑎𝑎2,…,𝑎𝑎𝑛𝑛)≤𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑡𝑡)𝑡𝑡𝑓𝑓𝑖𝑖
𝑡𝑡=𝑡𝑡𝑖𝑖𝑖𝑖

∙𝛥𝛥t∙𝑏𝑏 

𝑇𝑇𝑖𝑖
  (17) 615 

where  𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  is the CPI for vehicle i, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑡𝑡  is the deceleration rate to avoid the crash (m/s2), 616 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑎𝑎1,𝑎𝑎2,…,𝑎𝑎𝑛𝑛) is a random variable following normal distribution for a given set of environmental 617 

attributes, 𝑡𝑡𝑖𝑖𝑖𝑖 and 𝑡𝑡𝑓𝑓𝑖𝑖are the initial and final simulated time intervals for vehicle i, 𝛥𝛥t is the simulation 618 

time interval (sec), 𝑇𝑇𝑖𝑖 is the total travel time for vehicle i and b is a binary state variable denoting a 619 

vehicle interaction.  For MADR according to (Cunto, 2008) a normal distribution with average of 8.45 620 

for cars and 5.01 for HGVs with a standard deviation of 1.4 was assumed  for daylight and dry 621 

pavements.  The results for the calibration of the conflicts are shown in Fig.8 622 
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 623 

Fig. 8.  Conflicts validation 624 

In Fig. 8 it is shown that for the majority of the time intervals, CPI is similar to the simulated CPI of 625 

the NGSIM dataset and close to the values of the observed NGSIM CPI. Therefore, it can be concluded 626 

that the simulated conflicts resembled realistic hazardous scenarios 627 

It should be noted here, that the sole purpose of the simulation, was to extract highly disaggregated 628 

traffic data and corresponding conflicts between vehicles, in order to be used for the proposed DBN 629 

model. The simulated dataset does not contain any AVs and therefore the Wiedemann motorway model 630 

was used, to replicate car-following behavior. The DBN model was not run within the simulation 631 

environment, but the traffic data created from simulation were used to test the proposed AV real-time 632 

safety assessment model. 633 

In addition to the simulated traffic data, 5-minute aggregated traffic and the corresponding accident data 634 

were provided by the Department of Transportation planning and Engineering of the National Technical 635 

University of Athens. The data contained traffic and collision information during a 6-year period (2006-636 

2011). Collision and traffic data concerned two major roads of the metropolitan area of Athens (i.e. 637 

Mesogeion and Kifissias avenues). In total the Athens dataset contained 472 collision cases and 917 638 

non-collision cases. 639 

  640 

The collision database that was provided included the following variables:   641 
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• Collision: 0 for non-collision cases and 1 for collision cases  642 

• Average of speed, occupancy and volume upstream and downstream of the accident location 643 

(3 * 2 locations= 6 traffic variables) in 5-minute intervals for 1-hour before the accident time  644 

 645 

It should be noted that the 5-minute average correspond to the closest upstream detection from the 646 

location of the accident. As disaggregated traffic data are within the scope of this paper, only the 5-647 

minute prior to the accident were extracted and used for the development of the models. For more 648 

information on the Athens dataset the reader is prompted to  Theofilatos, (2015).  649 

  650 

For the estimation of the vehicle-level risk, data were collected using the instrumented vehicle of the 651 

School of Civil and Building Engineering of Loughborough University. The vehicle is equipped with 652 

the following sensors: 653 

 654 

• a Near InfraRed (NIR) Camera 655 

• a short and long-range automotive radar 656 

• a GNSS and 3D Dead Reckoning system 657 

• a lane-departure and forward collision warning camera system 658 

All the sensors are aligned along the centre of the longitudinal axis of the car. The position of the sensors 659 

and the experimental vehicle are depicted in Figure 9. 660 

 661 

  662 

Figure 9: The experimental vehicle along with its sensors 663 
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For the purposes of this paper, only data from the GNSS system and the automotive radar have been 664 

used. The vehicle data were collected on April 23rd 2017, between 10:53 am and 11:51 am on the M1 665 

motorway (J23-J18) from Loughborough to the Watford Gap service station. Regarding the radar 666 

sensor, it identifies targets and objects with a sensor cycle of 15.15 Hz. A target can be anything which 667 

reflects radar waves, whereas an object is a target which has been traced by the software used by the 668 

radar sensor over a few measurements. Only the object measurements have been used, as they are more 669 

representative of the vehicles and obstacles surrounding the ego-vehicle. The speed of the ego-vehicle 670 

as measured by the GNSS module during the driving trip and the total number of vehicles sensed by 671 

the ego-one during the driving trip are depicted in Figure 10. For each of the vehicles sensed and 672 

according to the GNSS ego-vehicle position as well as the radar object readings, a TTC metric was 673 

derived in order to identify dangerous traffic participants. 674 

 675 

Figure 10: Ego-vehicle speed during the driving trip 676 

6. The impact of network-level collision prediction on vehicle-level risk assessment 677 

The developed DBN network which integrates network-level and vehicle-level collision prediction was 678 

given in Figure 2. The part that is of interest for this work is the top part of the graph as shown in Figure 679 

11. More specifically, the estimation will be related on how a good prediction by a network-level 680 

classifier enhances or decreases the identification of a dangerous road user given that the measurements 681 

about vehicle-level and kinematics in a previous time epoch are known. 682 
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 683 

Figure 11: Variables of interest in the developed DBN 684 

In this section, the vehicle-level risk is estimated with and without the network-level risk. For that 685 

purpose, the results from two machine learning classifiers are going to be initially utilized for the 686 

estimation of vehicle-level risk. These are: 687 

• The k-Nearest Neighbour (kNN) classifier using the imbalanced learning technique of 688 

Synthetic Minority Oversampling Technique (SMOTE) along with Edited Nearest Neighbours 689 

(ENN) utilized with the 30-second simulated data. 690 

• A Gaussian Processes (GP) classifier using traffic data aggregated at 5-minute intervals from 691 

Athens, Greece, which are classified using the imbalanced learning technique of 692 

Neighbourhood Clearing (NC).  693 

 694 

These classifiers were chosen in order to estimate vehicle-level risk with as little prediction horizon as 695 

possible using disaggregated traffic data after a comparison with other classifiers such as support vector 696 
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machines, neural networks and k-nearest neighbours. Imbalanced learning (He and Garcia, 2009) was 697 

chosen to assist with classification results because of the difference in the proportion between collision 698 

and non-collision cases which is a known problem of real-time collision prediction datasets(Xu et al., 699 

2016).  700 

 701 

6.1. Estimation of vehicle-level risk using simulated data 702 

Assuming that vehicle-level measurements were not available, the following artificial scenarios are 703 

formulated for the estimation of the vehicle-level risk: 704 

 705 

6.1.1. Traffic data aggregated at 30-second intervals 706 

It is assumed that once traffic conditions are classified, the prediction is broadcasted for a time interval 707 

equal to the traffic data aggregation. Therefore, if the traffic data aggregation is 30-seconds, every CRN 708 

prediction lasts for 30 seconds. In this scenario, it is assumed that traffic conditions are classified as 709 

conflict-prone and, at time 𝑡𝑡1=10 seconds after the beginning of the CRN prediction, there is a traffic 710 

participant that poses a threat to the ego-vehicle. Furthermore, it is assumed that this “dangerous” 711 

vehicle has kinematics that indicate an imminent danger for the ego-vehicle. Hence, according to 712 

equations (6) and (7): 𝑓𝑓𝐾𝐾𝑁𝑁
𝑡𝑡=10 = 1 and 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁

𝑡𝑡=10=1. It should be noted here that 10 indicates the time 713 

moment occurring ten seconds after the network-level prediction and hence 20 seconds remain for the 714 

end of the temporal aggregation interval. 715 

 716 

The kNN classifier under SMOTE-ENN with 30-seconds temporal aggregation resulted in 77.56% 717 

accuracy, 77.14% recall and 77.71% specificity.  718 

Scenario 1: Traffic conditions are predicted as conflict-prone 719 

According to equation (13): 720 

𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛
𝑡𝑡 = "𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑") = (𝐴𝐴𝐴𝐴𝐴𝐴+𝑅𝑅𝑅𝑅𝑅𝑅

2
) = 0.7756+0.7714

2
= 0.7735=77.35% 721 
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Furthermore, as the traffic conditions are estimated as dangerous and 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁
𝑡𝑡=10=1, the boosting 722 

parameter for the vehicle-level safety context 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁  is equal to 𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛
𝑡𝑡 = "𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑") . 723 

Consequently, 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁
𝑡𝑡=10 = 0.7735. 724 

 725 

Figure 12 illustrates the estimation of vehicle-level risk context when the ego-vehicle is sensing 1, 3, 5 726 

and 10 vehicles in its vicinity, with and without the network-level hint. 727 

  728 

 729 

Figure 12: Estimation of P(CRV=dangerous|CRN=dangerous) for a multiple vehicle scenario  730 

From Figure 12, the potential enhancement of the vehicle-level safety context could be observed. First 731 

of all, if network-level safety information is available, the probability of a vehicle being considered as 732 

a threat is higher, which may be conservative as an approach but induces a hint to the ego-vehicle that 733 

a danger is imminent. Moreover, it is shown that this extra hint results in a faster increase of probability 734 

when a vehicle is sensed to be performing a dangerous manoeuvre, which could lead to the faster 735 

identification of a dangerous road user and an earlier initiation of the manoeuvre to avoid the danger. 736 

If, for example, a threshold is defined (e.g. if probability is over 65%) in order to raise a warning to the 737 
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risk assessment module of the AV, then Figure 12 demonstrates that the threshold is raised faster if 738 

network-level information is available.  739 

 740 

To further demonstrate how vehicle-level safety is affected, a second artificial scenario was 741 

investigated. This relates to the probability of a vehicle driving dangerously, given that the network-742 

level collision risk is predicted as safe.  743 

 744 

Scenario 2: Traffic conditions are predicted to be “safe” 745 

 746 

According to equation (15): 747 

𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛
𝑡𝑡 = "𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠") = (

𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
2

) =
0.7756 + 0.7771

2
= 0.77635 748 

Because in this scenario the traffic conditions are estimated as safe and 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁
𝑡𝑡=10=1, the boosting 749 

parameter for the vehicle-level safety context 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁  is equal to 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁 = 1 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  in order to 750 

represent the false negative rate i.e. the probability that the traffic conditions are falsely identified as 751 

safe.  752 

 753 

Hence, 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁
𝑡𝑡=10 = 1 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 1 − 0.7714 = 0.2286%=22.86%. 754 

 755 

Figure 13 illustrates the estimation of the probability of the vehicle-level risk context being dangerous 756 

when the ego-vehicle is sensing 1, 3, 5 and 10 vehicles in its vicinity with and without the network-757 

level hint. 758 

 759 
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 760 

Figure 13: Estimation of P(CRV=dangerous|CRN=safe) for a multiple vehicle scenario  761 

From Figure 13, it is shown that the estimation of the probabilities without the network-level hint results 762 

in higher rates and a faster identification of the dangerous road user. Only when just one vehicle is in 763 

the vicinity of the ego-one and the dangerous road user is obvious, the two approaches (i.e. with and 764 

without network-level information) yield similar results. This indicates that when NLCP indicates safe 765 

traffic conditions, more trust should be given to the vehicle measurements rather than the network traffic 766 

information. 767 

6.1.2. Traffic data aggregated at 5-minute intervals 768 

In order to further test the impact of network-level collision information on vehicle-level collision risk, 769 

the classifier developed on the 5-minute aggregated data from Athens was utilized. The classifier 770 

achieved 83.95% accuracy, 91.71% specificity and 68.86% recall. For this scenario, the number of 771 

vehicles was randomly sampled for each time moment. It was also assumed that a vehicle performs 772 

dangerous manoeuvres starting from t=180 before the end of the temporal aggregation to t=100 seconds 773 

before the end of the temporal aggregation interval. Hence, 𝑓𝑓𝐾𝐾𝑁𝑁
𝑡𝑡=180:100 = 1 and 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁

𝑡𝑡=180:100=1.  774 

Scenario 1: Traffic conditions are predicted as collision-prone 775 

According to equation 13: 776 

 777 

𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛
𝑡𝑡 = "𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑") = (𝐴𝐴𝐴𝐴𝐴𝐴+𝑅𝑅𝑅𝑅𝑅𝑅

2
) = 0.8395+0.6886

2
= 0.7641=76.41% 778 
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Furthermore, for the time intervals t=300:180 and t=100:0, the traffic conditions are estimated as 779 

dangerous but there is no vehicle performing dangerous manoeuvres. Therefore, the boosting parameter 780 

for the vehicle-level safety context during these intervals is: 781 

 782 

𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁
𝑡𝑡=300:180 & 𝑡𝑡=100:0 = 1 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦+𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

2
=0.1217 783 

 784 

For the time interval t=180:100, traffic conditions are estimated as collision-prone and there is only one 785 

vehicle performing a hazardous manoeuvre. Therefore, the boosting parameter for the vehicle-level 786 

safety context during these intervals is: 787 

 788 

𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁
𝑡𝑡=180∶100 =

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2

= 76.41% 789 

 790 

Figure 14 illustrates the estimation of the probability of a vehicle being dangerous during the 5-minute 791 

traffic data temporal aggregation interval in a multiple vehicle scenario.  792 

 793 
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Figure 14: Estimation of P(CRV=dangerous|CRN=dangerous) for a 5-minute traffic data 794 

aggregation interval 795 

 796 

From Figure 14, it is further justified that the use of CRN estimation enhances the probability of 797 

identifying whether another vehicle driving dangerously with respect to the ego-vehicle. From t=180 798 

seconds until t=100, when a nearby vehicle is assumed to perform dangerous manoeuvres, the 799 

probability of the vehicle being dangerous given the network-level hint is relatively higher than the 800 

corresponding probability without the network-level information. Moreover, it is demonstrated that the 801 

lower the number of vehicles, the more obvious it is to recognize the vehicle which is driving 802 

“dangerously”. This is normal because with fewer vehicles, the one responsible for triggering a collision 803 

is easier to detect. Nevertheless, it is advantageous that the line representing the probability 804 

P(CRV|CRN) is above the corresponding probability graph which does not take into account network-805 

level collision information. It is also observed that at a time moment when a danger is not imminent the 806 

probability is increased, which is a potential drawback. However, this can be utilized as an extra caution 807 

by an AV’s planning module.  808 

Scenario 2: Traffic conditions are predicted as safe 809 

Given that the traffic conditions are predicted to be safe, the network-level collision risk can be 810 

estimated by using equation 15: 811 

𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛
𝑡𝑡 = "𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑") = 1 − (𝐴𝐴𝐴𝐴𝐴𝐴+𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

2
) = 1 − 0.8395+0.9171

2
= 0.1217=12.17% 812 

 813 

Furthermore, for the time intervals t=300:180 and t=100:0, the traffic conditions are estimated as safe 814 

without a vehicle perceived as a threat. Therefore, during these intervals: 815 

𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁
𝑡𝑡=300:180 & 𝑡𝑡=100:0 = 𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛

𝑡𝑡 = "𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑") =0.1217 816 

 817 

For the time interval t=180:100 traffic conditions are estimated as safe but there is one vehicle 818 

performing hazardous manoeuvres. Therefore, the boosting parameter for the vehicle-level safety 819 

context during these intervals is: 820 
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𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁
𝑡𝑡=180∶100 = 1 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 1 − 0.6886 = 0.3114 821 

Figure 15 illustrates the estimation of the probability of the vehicle-level risk context being dangerous 822 

during the traffic data temporal aggregation interval and according to the vehicles sensed. 823 

   824 

 825 

Figure 15: Estimation of P(CRV=dangerous|CRN=safe) for a 5-minute traffic data aggregation 826 

interval  827 

Like the case when traffic data were aggregated in 30-seconds intervals and the traffic conditions were 828 

assumed to be safe, Figure 15 illustrates that, when a danger is sensed by the ego-AV, network-level 829 

information does not contribute to the enhancement of the corresponding probability.  830 

 831 

6.2. Estimation of vehicle-level risk using real-world data 832 

It is common knowledge that traffic data are mostly available for motorways where magnetic loop 833 

detectors and automatic vehicle identification devices exist. Therefore, the developed method is 834 

demonstrated for the case of motorway driving. Risk assessment of AVs at junctions is not considered 835 

as an example because it has been the focus of previous research (Agamennoni et al., 2012; Lefèvre, 836 

2012). 837 

 838 
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In order to validate the credibility that network-level information has on the estimation of vehicle-level 839 

collision prediction, the vehicle-level data as described in Section 5 were utilized. 840 

 841 

More specifically, the available TTC measurements were filtered in order to identify hazardous road 842 

users. According to the same principle as the one used in SSAM to derive conflicts, TTC values below 843 

1.5 seconds were flagged as “hazardous” because 1.5 is the average human reaction time (Triggs and 844 

Harris, 1982). The number of hazardous vehicles during the trip is given in Figure 16. 845 

 846 

Figure 16: Number of dangerous vehicles with respect to the ego-vehicle 847 

The time interval from 11:05:37 to 11:06:25 was used in the analysis as the highest number of 848 

“hazardous” road users was observed during that one minute. The analysis took place only during this 849 

interval so as to imitate “dangerous” driving behaviour from other traffic participants. 850 

 851 

The classifiers that were tested for the estimation of CRV based on the network-level information and 852 

their characteristics are described in Table 2. More specifically, a kNN classifier along the imbalanced 853 

technique of SMOTE-ENN was utilized for classifying traffic data aggregated at 30-seconds intervals, 854 

a Support Vector Machine (SVM) classifier along with the imbalanced technique of Repeated Edited 855 

Nearest Neighbours (RENN) was utilized for classifying 1-minute and 3-minute traffic and conflict data 856 

and a Neural Network (NN) classifier along with SMOTE-ENN was utilized for classifying 5-minute 857 

traffic and conflict data. These are the classifiers that yielded the best classification result for every 858 
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temporal aggregation interval, after a comparison of different classification and imbalanced learning 859 

techniques. For each of the classifiers the probability that a vehicle drives dangerously was estimated 860 

given that the CRN points towards collision-prone and safe traffic. For the estimation of vehicle-level 861 

risk context the formulas (13) -(16) were used. For every vehicle with TTC<1.5 seconds, it was assumed 862 

that the vehicle’s kinematics were also dangerous so as to have 𝑓𝑓𝐾𝐾𝑁𝑁=1.  863 

 864 

Table 2: CRN classifiers used for vehicle-level risk estimation 865 

Traffic data 
aggregation Classifier Accuracy Recall Specificity 

False 
Alarm 
Rate 

30-seconds kNN with SMOTE-ENN 0.7756 0.7714 0.9171 0.2229 
1-minute SVM with RENN 0.9219 0.6886 0.9996 0.0004 
3-minute SVM with RENN 0.9222 0.6891 0.9999 0.00001 
5-minute NN with SMOTE-ENN 0.8006 0.8285 0.7913 0.2087 

 866 

6.2.1. Estimation of vehicle-level risk given traffic conditions are collision-prone 867 

Figures 17-20 illustrate the results for the probability that a vehicle poses a threat to the ego-vehicle, 868 

given the available network-level information and the vehicle-level data.  869 

 870 

Figure 17: Estimation of vehicle-level risk using 30-seconds network-level information  871 

for conflict-prone traffic conditions 872 

 873 
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 874 

Figure 18: Estimation of vehicle-level risk using 1-minute network-level information  875 

for conflict-prone traffic conditions 876 

 877 

Figure 19: Estimation of vehicle-level risk using 3-minute network-level information  878 

for conflict-prone traffic conditions 879 
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 880 

Figure 20: Estimation of vehicle-level risk using 5-minute network-level information for conflict-881 

prone traffic conditions 882 

After observing Figures 17-20, it is further validated that, when traffic conditions are predicted as 883 

conflict-prone, it is easier to identify if there is an imminent danger for the ego-vehicle. Even when 884 

highly disaggregated traffic data are utilized, the probability of a dangerous vehicle being dangerous is 885 

enhanced when compared to the probability obtained only from vehicle-level measurements. When the 886 

number of vehicles sensed is high, the enhancement in the probability is lower. However, the plot of 887 

CRV|CRN is always higher than the one of CRV without network-level information, assuring a greater 888 

level of safety for the ego-vehicle.  889 

 890 

To illustrate the effect of network-level information on vehicle-level risk estimation, Figure 21 presents 891 

a plot of the percentage difference between the estimation of the probability that a vehicle drives in a 892 

“hazardous” way with regards to the ego-vehicle with and without CRN.   893 
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 894 

Figure 21: Difference (%) between vehicle-level risk estimation with and without network-level 895 

information for conflict-prone traffic conditions 896 

 897 

From Figure 21 it can be concluded that the greater influence came from the 5-minute classifier. This 898 

is probably due to the ability of the classifier to better detect conflict-prone and safe traffic efficiently 899 

as observed from its recall and sensitivity statistics. When there is at least one dangerous vehicle, the 900 

estimation of a dangerous vehicle-level safety context is enhanced by up to 9%, ensuring safer 901 

navigation. When no dangerous vehicles are detected, the difference can reach up to 14%. This shows 902 

that, when traffic conditions are predicted as dangerous, the ego-vehicle can adjust to a more cautious 903 

behaviour as a conflict or collision might occur.  904 

 905 

Overall, when traffic conditions are predicted as hazardous, the ego-vehicle can better estimate if a 906 

vehicle is driving dangerously, even when highly disaggregated traffic data information is available. 907 

Furthermore, the fact that, a small probability of a dangerous vehicle is assigned even when no 908 

dangerous vehicles are around, can be exploited in an AV risk assessment module. 909 
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 910 

6.2.2. Estimation of vehicle-level risk given traffic conditions are safe 911 

Figures 22-25 illustrate the results for the probability that a road user is driving dangerously towards 912 

the ego-vehicle, given the available network-level information and the vehicle-level data if the traffic 913 

conditions are indicated as safe.  914 

  915 
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 916 

Figure 22: Estimation of vehicle-level risk using 30-seconds network-level information for safe 917 

conditions 918 

 919 

 920 

Figure 23: Estimation of vehicle-level risk using 1-minute network-level information for safe 921 

conditions 922 
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 923 

Figure 24: Estimation of vehicle-level risk using 3-minute network-level information for safe 924 

conditions 925 

 926 

Figure 25: Estimation of vehicle-level risk using 5-minute network-level information for safe 927 

conditions 928 
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Similar to the case of simulated data, Figures 22-25 demonstrate that, if real-time network-level 929 

information points towards safe traffic conditions, then the measurements from the sensors of the ego-930 

vehicle are more reliable to detect dangerous traffic participants. The differences between the two 931 

different ways to estimate the vehicle-level safety context probabilities are more obvious when better 932 

CRN classifiers are used, such as the 5-minute classifier demonstrated in this paper. Even when no 933 

dangerous vehicles are detected and traffic conditions are predicted as safe, the probability that a vehicle 934 

could be dangerous is elevated due to the possibility that the network-level information is falsely 935 

classified. 936 

 937 

As with the conflict-prone conditions, Figure 26 demonstrated the percent difference between the two 938 

different approaches to estimate the probability that a vehicle is driving dangerously towards the ego-939 

one.  940 

 941 

 942 

Figure 26: Difference between vehicle-level risk probability with and without network-level 943 

information for safe conditions 944 

 945 
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From Figure 26 it is noticeable that network-level information does not enhance AV risk assessment 946 

when traffic conditions are predicted as conflict-prone. As mentioned before, network-level information 947 

induces a slight probability that the network-level prediction is wrong when no vehicle is detected as 948 

dangerous. On the other hand, in cases when there is an imminent danger, utilizing vehicle-level 949 

information only, results in a better hazard recognition than the proposed methodology, reaching up to 950 

8% more confidence in estimating a dangerous traffic participant.  951 

 952 

It should be noted that the extracted probabilities for all the scenarios are not high enough. The scenarios 953 

developed in this paper were built on some assumptions and without highly detailed vehicle-level data. 954 

For the scenarios where traffic conditions were indicated as collision- or conflict-prone, the probability 955 

of another vehicle being dangerous was higher when CRN was available, however, further work is 956 

needed to calibrate the proposed DBN model in the cases when CRN indicates safe traffic. Nevertheless, 957 

the enhanced probability for the dangerous road user when collision-prone traffic was predicted shows 958 

that the method has potential for utilization in AV risk assessment. 959 

 960 

7. Implementation challenges and recommendations 961 

AVs require  a plethora of data from multiple sensor platforms to generate a collision-free trajectory 962 

(Huang et al., 2013; Polychronopoulos et al., 2007). Most of  AVs utilize cameras (Bertozzi et al., 2000) 963 

and laser scanners (Jiménez et al., 2012; Mertz et al., 2013) to scan the surroundings and estimate a safe 964 

path for the vehicle. However, it is still unknown how AVs  would identify the optimal course of action 965 

in the face of a system failure (Dixit et al., 2016; Koopman and Wagner, 2016). In that perspective, the 966 

integrated modelling framework developed in this paper could address this challenge. As network-level 967 

collision prediction utilizes more macroscopic data compared to the data received by the sensor systems 968 

of AVs which have high frequency, the network-level prediction would act as a-priori for specific time 969 

periods. Consequently, if the majority of the sensing systems fail, then according to the network-level 970 

information, the AV can resolute the problem by slowing down as in the case of collision-prone traffic 971 

conditions, until it reaches a safe point or the system error is fixed. This also applies to cases where the 972 
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sensor system, especially the vision-based systems, become obstructed (e.g. due to the presence of a 973 

big truck in front of the ego-vehicle or due to adverse weather conditions). Consequently, network-level 974 

collision information could assist not only the identification of “dangerous” road users but could act as 975 

a safety net for all the motion planning levels, i.e. from routing to manoeuvre planning. Finally, if traffic 976 

conditions are classified as collision-prone, then warning messages could be presented through VMS 977 

or broadcasted to the AVs communication system by traffic management agencies, prompting the 978 

passenger to take control until safety is ensured. Obviously, the proposed model is not limited to AVs 979 

only but could also be applied for Connected and Autonomous Vehicles (CAVs). 980 

8. Conclusion 981 

This paper developed a new methodology for the integration of two interacting domains (i.e. network-982 

level and vehicle-level collision prediction) to enhance the risk assessment of AVs. An interaction-983 

aware model based on Dynamic Bayesian Networks was developed to take into account not only the 984 

dependencies between the vehicles in a traffic scene but also a hint from network-level collision risk 985 

(CRN) so as to increase comprehensive reasoning about unsafe behaviour during automated driving on 986 

a road segment. Results from machine learning classifiers (i.e. kNN, Neural Networks, Support Vector 987 

Machines, Gaussian processes) were presented with regards to network-level collision prediction and 988 

were used as an example to show the influence of this prediction on vehicle-level risk estimation.  The 989 

potential impact that network-level classifiers would have on the identification of the presence of 990 

“dangerous” road users was estimated using both artificial and real-world data collected from an 991 

instrumented vehicle. Both the artificial dataset and the real-world dataset revealed that the probability 992 

of identifying whether another vehicle poses a threat to an AV was increased by up to 9% if CRN 993 

indicated conflict-prone traffic. On the other hand, when traffic conditions were indicated as safe, the 994 

prediction did not enhance the probability that a road user was a “threat” for the ego-vehicle. This 995 

enhancement is greater when 5-minute traffic data are utilized for predicting network-level collisions. 996 

Nevertheless, even when highly disaggregated traffic data (i.e. 30-seconds) were used, the probability 997 

of a traffic participant posing a threat to the ego-vehicle was enhanced by approximately 6%. Since 998 

network-level predictions utilize data at a higher temporal interval than the sampling frequency of the 999 
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sensors of an AV in order to provide a broader perception horizon, the developed method would allow 1000 

AVs to reduce speeds, change their trajectory or prompt a passenger to take the control in order to 1001 

ensure a safe journey, even when other sensor systems fail. The algorithms and techniques developed 1002 

in this paper will set the “rules of the game” in advance and will significantly contribute to the ambition 1003 

that self-driving vehicles should never cause any traffic collisions. 1004 
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