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Abstract 

A space-time finite element discretization method for unsteady transport phenomena is 

formulated using a variational multiscale finite element scheme. The described 

discretization is based on the utilization of bubble function enriched finite elements. The 

scheme is applied to model unsteady diffusion and convection-diffusion equations. It is 

shown that any temporal and spatial instabilities can be removed by appropriate 

enrichment of  linear Lagrangian finite element approximations in the context of the 

standard Galerkin method. The proposed scheme is compared with widely used θ  time 

stepping method. Numerical results generated by the proposed scheme are validated via 

their comparison with the analytical solution of a bench mark problem. 

 

Keywords: Space-time discretization; Bubble functions; Multiscale finite element; 

unsteady problems, Transport phenomena. 

 

1. Introduction    

Stable and accurate numerical solution of transient transport problems has been the 

subject of numerous investigations. In particular, a large variety of time-stepping 

methods have been used to approximate transient models in conjunction with finite 

element method [1]. The basic issue in dealing with transient problems is to construct an 

optimum temporal discretizations  in conjunction with a spatial discretization which is 

guaranteed to remain stable and accurate  [2,3]. Generally finite element techniques for 

unsteady problems can be categorized as either decoupled formulations for space and 

time discretizations or coupled space-time formulations. In decoupled formulations, 
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normally, a spatial finite element discretization is performed separately and temporal 

approximation is applied to the resulting equations. In contrast, in coupled procedures 

space-time discretization are carried out conjunctively [4]. Studies related to coupled 

space-time finite element discretizations can be trace for more than three decades. The 

works presented in [5-13] provide some of the notable example of such schemes. 

Hughes and Stewart [14] proposed a space-time formulation for multiscale problems 

which is based on identical spatial and temporal discretizations. They extended the 

developed multiscale variational scheme originally proposed by Hughes [15] for steady 

problems, to time dependent situations. The main point of this scheme is that it yields a 

multiscale temporal approximation which can be used with larger time steps and hence is 

computationally cost effective.  

In this paper, the scheme proposed by Hughes and Stewart [14] is extended to include 

bubble function enriched identical spatial and temporal Lagrangian approximations 

utilized in standard Galerkin finite element schemes. Multiscale variational approach is 

generally used to take into account the variations of field unknown ranging over different 

physical scales without using excessively refined computational girds [16]. Normally, in 

this approach the field unknown (T) is divided into two parts as bTTT += 1 , where bT  is 

called fine, subgrid or unresolved scale while 1T  is called coarse or unresolved scale 

represented by standard polynomial finite element approximations. A possible way for 

generating subgrid scale model is based on the use of bubble functions. Bubble functions 

are, generally, high order polynomials which are zero on the element boundaries [17-24]. 

These functions can be used to enrich ordinary linear Lagrangian elements to generate 

higher order approximations without increasing the order of the elements in the nominal 

sense.  

In the present study the global domain geometry is assumed to be constant and hence the  

finite element discretization is carried out  over the entire space-time domain instead of  

each space-time intervals. Bench mark problems based on transport processes 

representing transient diffusion and transient convection-diffusion are solved and the 

numerical results are compared with their corresponding analytical solutions. The 

described comparison show that the proposed scheme is capable of yielding accurate and 

stable results. In addition, the results of the proposed method are compared with 
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comparable values obtained by the widely used theta time stepping method to further 

validate the performance of the proposed scheme. 

 

2. Governing equations and boundary conditions 

 

Transient diffusion and convection-diffusion equations are considered. The transient 

convection-diffusion equation is written and for diffusion equation it is supposed that the 

convection coefficient is zero.  

 

fTkTu
t
Tc =∇∇∇+
∂
∂ .-).(ρ                                                                                              (1) 

 

Where T is independent variable u is the velocity vector, k is diffusivity, ρ  is density, c 

is heat capacity and f is a source term. ∇  denotes the spatial gradient operator. Using the 

below mentioned dimensionless parameter:  
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where T0 and T1  are reference values for independent variable (e.g. temperature), t0 is a 

characteristic time interval and h is a characteristic length ( e.g width of the domain) 

dimensionless governing equation becomes: 
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in which C and D are dimensionless convection and diffusion coefficients respectively: 
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Considering that in this work the same finite element discretization is used for both time 

and spatial dimensions, therefore we solve a two dimensional problem as follows: 
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Corresponding dimensionless boundary conditions for the rectangular domain are ( see 

Fig.1): 
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3. Standard Galerkin finite element scheme 

After the discretization of the solution domain into a computational mesh (Fig.2), 

consisting of predetermined geometrical shapes, the prime unknowns in the governing 

equations are replaced by approximate forms defined within the selected finite elements.  

In the weighted residual finite element scheme, used in the present work, these unknowns 

are replaced by trial function representations, which in the context of a discretized 

domain are given by low order interpolation polynomials, Nj  [1]: 
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where n is total number of nodes in an element and, *
jT  is the nodal values of unknown at 

the nodes (i.e. sampling points) of an element. Therefore, the above equation provides 

approximate values for unknown within an element via interpolation using its nodal 

values. Substitution of approximate values for the unknown from Eq. (7) into the 

governing Eq. (5), leads to the appearance of residual statements. These statements are 

then multiplied by appropriate weight functions ( iw ) and integrated over an element 

domain. Following the described step we obtain: 
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The second order differentials in Eq. (8) are reduced by the application of Green’s 

theorem (i.e. generalised form of integration by parts). This leads to the appearance of 

boundary integral (flux) terms along the exterior boundaries of finite elements.  For each 

interpolation function a weight function can be used to generate weighted residual 

equations such as Eq. (8). Therefore corresponding to a total of n  interpolation functions, 

n  equations are generated and a system of nn×  equations is constructed. Using matrix 

notation this system is written as [25]:  
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A system of weighted residual equations should be derived for each element in the 

domain. This is obviously not convenient. However, by using an elemental coordinate 

system rather than the global coordinates the uniformity of the matrix Eq. (9) can be 

preserved. This is achieved using isoparametric mapping of elements of the global mesh 

into a master element where all the calculations are carried out [1]. In addition, a natural 

coordinate system such as 1,1 +≤≤− τξ  can be used within the master element to enable 

the evaluation of all integrals within its domain by Gauss quadrature method [26]. 

 

4. The θ  time stepping method 

In this method, initially, any time derivatives in the governing equations are kept 

unchanged whilst the spatial discretization is carried out. At the end of this process a 

system of ordinary differential equations in terms of time derivatives is generated. The 

following time stepping is then applied to this system.  

For a class of single step theta methods )10( ≤≤ θ  this system can be written in matrix 

form as [25]: 
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Where the subscript θ indicates that the weighted residual statement is derived at time 

level θ  and M is mass matrix. If time derivative is written as: 
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Using above equations and after some algebraic manipulation we have [25]: 
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5. Multiscale finite element modelling 

In dealing with transient transport problems formulated in terms of previously described 

governing equations multiscale behaviour with respect to both space and time variables 
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can be expected. The following approach which is the extension of the method developed 

by Parvazinia et al. [16] for steady state problems yields stable solutions.  

5.1 variational multiscale method using bubble functions 

Let us consider a problem defined in   Ω⊂R2 as    

  
    on               0

in            )(
ΓT
ΩfTL

=
=

                                                                                                 (13) 

where L is  differential operator, which includes both temporal and spatial components, 

and f is a given source function defined in Ω  [14]. Here the time dependent convection-

diffusion operator can be written as:  

Δ−∇+
∂
∂

= DC
t

L *  

The standard Galerkin method is formulated in a subspace Vh⊂V, where V is the space of 

functions for which a solution of the continuous problem is sought. The Galerkin method 

aims to find  Th∈Vh such that 

                                (f,v)   ,v)(LT,v)a(T hh ==                                                                 (14) 

where a( . , . ) is a bilinear form and ( . , . ) representing the  scalar product of its 

arguments. In a two-scale method, the unknowns are divided into two parts 
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bh
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where Tb is the fine scale  and 1T  represents a standard finite element approximation 

polynomial (interpolation function). The fact that bubble functions disappear on element 

boundaries[17-24] makes it possible to remove the equations that correspond to these 

functions from the set of elemental equations. This procedure is called static 

condensation [27]. In the static condensation procedure we set bvv =  in  Eq. (14) to 

obtain: 

The variational formulation may be written as [14,15]: 

),(),( fvTva hhh =  or  ),(),( 111 fvvTTvva bbb +=++                                                  (16) 
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it can be written as two sub-problems 

),(),(),( 1 fvTvaTva bbbb =+                                                                                           (17) 

),(),(),( 1111 fvTvaTva b =+ .                                                                                           (18) 

Under a steady state condition the transport field behaviour is the same in all directions 

and a general elemental bubble function can have the same coefficient in all directions.  

In a transient problem where the spatial and temporal behaviours are different using a 

general elemental bubble function may become impractical. This problems can be 

resolved  by separating spatial bubble functions from temporal bubble functions as 
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Therefore Eq. (18) can be rewritten as: 

),(),(),( 1 fvvTTvvaTvva btbsbtbsbtbsbtbs +=++++                                                       (20) 

The above equation can be written as two sub-problems 

),(),(),(),( 1 fvTvaTvaTva bsbtbsbsbsbs =++                                                                  (21) 

),(),(),(),( 1 fvTvaTvaTva btbtbtbsbtbt =++                                                                   (22) 

The above equations imply that for spatial and temporal directions static condensation is 

done separately. 

Using bubble functions in x and t directions the bubble enriched Lagrangian shape 

functions in local coordinate system )1,1(),1,1( +−+− τξ can be written as: 
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Where τφ and ξφ are the temporal and spatial bubble functions, respectively, (i.e.  the 

functions that are used to enrich the normal Lagrangian shape functions) and b is an 

adjustable parameter called the bubble coefficient. The methods used for the 

determination coefficient b, via the static condensation, and the spatial bubble function 

ξφ have been published previously and will not be discussed here [16]. In the present 

work the effects of bubble coefficient adjustment on the overall results are studied and 

shown in the results section. The following two types of bubble functions for temporal 

discretization are used: 
qn

q
∑
=

−=
1

2 )1( τφτ                                                                                                            (24) 

∑
=
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n

q

q

1

2 )1( τφτ                                                                                                            (25) 

For q=1 the bubble is 2nd order, q=2 implies that the bubble is 4th order and so on. 

 

5.2 Elimination of the boundary integrals 

In discretizations involving bubble functions we can not assume that  inter-element 

boundary integrals will be automatically eliminated during the assembly of elemental 

equations. This problem does not become apparent in the one dimensional case as the 

boundary integrals are reduced to simple nodal flux terms. The variational formulation 

for the transient convection-diffusion equation, after application of Green’s theorem is  

),(),(),(),( vfvTDvTCv
t

T
hh

h =∇∇+∇+
∂
∂

                                                                    (26) 

Substitution from Eq. (19) gives: 

),(),(),(),(),( 1 vfvTDvTDvTCv
t

T
bh

h =∇∇+∇∇+∇+
∂
∂

                                              (27) 

If v is a linear test function (weight function) according to Green’s theorem [28] we have: 

0),(),(),( =∇+Δ−=∇∇ ΓΩΩ eee
vvv φφφ                                                                         (28) 

where φ  is  bubble function. Therefore the last term in RHS of Eq. (27) can be written as: 
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0),(),(),( =∇+Δ−=∇∇ ΓΩΩ eee bbb DTvDTvTDv  

Hence Eq. (27) is reduced to: 

),(),(),(),( 1 vfvTDvTCv
t

T
h

h =∇∇+∇+
∂
∂

                                                                     (29) 

As can be seen the bubble function does not affect the Laplacian term and therefore no 

boundary integral due to the bubble function exists.  

6. Analytical solution of the governing equations 

To validate the numerical solutions, the following analytical solutions of the 

dimensionless equations are used presented. These solutions are found via the Laplace 

transform method.  

Transient diffusion problem: 
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Transient convection-diffusion problem for D=1 (in all simulations D=1 and C is 

adjusted): 
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where l is the domain length in x direction. For dimensionless problem l=1.  

 
7. Results and discussion 

The main objective of the present work has been the construction of a new scheme for the 

space-time approximation of field unknowns in Galerkin finite element method. 

Analytical solutions are obtained for bench mark problems to validate the numerical 

results. In this section the two sets of results are compared to evaluate the ability of the 

scheme to generate theoretically expected simulations. In addition numerical results 

obtained using the theta time stepping method are also compared with proposed model 
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results. An in house developed computer code has been used to solve the transient 

diffusion and convection-diffusion problems via the present scheme. In all of the figures 

shown in this section b and bt represent the bubble coefficients and lx and lt indicate the 

element length in x and t directions, respectively. 

Figs.1 and 2 show the solution domain, its boundaries and the finite element meshes used 

to obtain the numerical results of the benchmark problems. As stated previously identical 

temporal and spatial discretizations are used to construct the required finite element 

approximations. Three different mesh schemes are used. In all of the numerical 

experiments carried out the coarse scale variations are approximated by linear Lagrangian 

shape functions in the Galerkin finite element scheme. It is shown that despite using a 

coarse mesh, bubble enriched shape functions can provide stable-accurate solutions for 

multiscale problems. 

Figs 3-13 show the results for the transient diffusion problem. For D=1 and lt =0.1 and 

0.02 the transient solution is unstable while with lt =0.002 the accurate-stable solution can 

be obtained. The instability shown in Fig. 3 demonstrates the multiscale nature of the 

problems in this case. However, the solution is stabilised after the utilization of the 

bubble function based scheme. Fig.7 shows that at D=5 although multiscale behaviour 

increases using lt =0.002 (i.e. very refined mesh) an accurate and stable solution can be 

generated. To avoid excessive mesh refinement for lt =0.1 and 0.02 bubble functions are 

applied. Figs 8 and 9 show the results obtained using two types of bubble functions based 

on the Eqs.24 and 25, respectively. Fig.9 indicates that the bubble represented in the Eq. 

25 has a better performance under a range of conditions ( here the 4th order bubble 

function of this type is used). The theta method based on identical time step also yields an 

accurate solution at *tΔ =0.002 (Fig.10). Although by increasing diffusion coefficient to 

D=10 the multiscale behaviour increases the bubble functions can still generate stable 

solution. For mesh scheme 2 (lt =0.02), as Fig. 12 shows, a stable solution can also be 

obtained at bt=2. It must be noted that while the problem does not demonstrate any 

spatial multiscale behaviour in this case, the temporal behaviour is strongly multiscale in 

nature.  
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Figs. 14-23 show the results for the transient convection-diffusion equation. In this case 

in both temporal and spatial dimensions multiscale behaviour may be observed. At C=5 

using the refined mesh scheme 3 (lt =0.002) a stable solution is obtained (Fig. 14) which 

is similar to the results generated by the theta method with *tΔ =0.002 (Fig. 15). At C=10, 

as Fig. 17 shows, mesh schemes 1and 2 can yield stable solutions only with bubble 

enriched elements while the more refined mesh scheme 3 gives stable-accurate results 

with ordinary elements. This shows that the temporal disretization used in mesh scheme 3 

is fine enough to over come the multiscale behaviour. Fig. 18 shows the corresponding 

results generated by the theta method. Although the stable solution can be achieved by 

theta method at C=10 the solution is slightly underestimated in comparison to the exact 

solution. At C=50, as Fig. 19 shows, even using the mesh scheme 3 the solution is 

slightly unstable and over shoots the analytical result. In this case using bubble function 

approach stable solutions are obtained (Figs. 19 and 20). As Fig. 20 shows with theta 

method the solution is slightly under estimated. Therefore at higher convection 

coefficients of C=10 and 50 the theta method generates stable results but they are not 

very accurate. It must be noted that since at C=50 the exact solution at x*=0.9 is nearly 

zero (the cross section x*=0.9 is used in all numerical experiments to show the solution in 

temporal direction) an over-diffusive multiscale solution is intentionally used to show the 

results in t* direction (see Fig. 21). 

Considering Figs. 22 and 23, different temporal and spatial multiscale behaviour can be 

observed. As Fig. 22 shows at C=10 and lx=0.1 in the spatial dimension the solution is 

stable and very close to the exact solution, however, it is distinctly unstable in temporal 

dimension (mesh scheme 1). As Fig. 23 shows even with lx=0.02 ( mesh scheme 2) the 

solution still remains unstable. These results confirm that the behaviour in the temporal 

dimension is extremely multiscale. Comparison of Figs. 17 and 19 shows that when the 

convection coefficient is increased from C=10 to C=50 a corresponding increase in the 

bubble coefficient stabilizes the solution. Therefore, if the bubble coefficient is treated as 

a measure of the level of multiscale behaviour it is seen that at C=50 this coefficient in x 

direction is b=0.45 (Fig. 21) whilst in t direction (using the same level of discretization as 

mesh scheme 1) it is bt=20 (Fig. 20). This clearly shows the difference in the level of 

multiscale behaviour in spatial and temporal dimensions.  
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The causes of highly multiscale behaviour with respect to the time variable can be found 

in the analytical solution. In the pure diffusion problems if no spatial multiscale 

behaviour exists, the transient response is determined by )exp(
*22

l
Dtn π− . The 

exponential argument becomes large for small values of D thus becoming a source of 

strong multiscale behaviour and temporal instability. A similar situation arises in 

convection-diffusion problems. The spatial behaviour is affected by 

))(5.0exp( * lx
D
C

− and while the temporal behaviour is affected by 

)
)25.0(

exp(

*
2

22

l

t
D
Cn ⎟
⎠
⎞

⎜
⎝
⎛+− π

 in which (C/D)2 become large at smaller values of (C/D) and 

therefore, strong temporal multiscale behaviour is observed.  In both cases, however, 

when l is small the exponential arguments are large. In finite element disretization  l=lx 

using finer meshes with respect to x the solution shows temporal instability (stronger 

temporal multiscale behaviour). As Fig. 25 shows using mesh scheme 2 (lx=0.1, lt=0.02) 

the solution with bt=2.5 is unstable while for mesh scheme 4 (lx=0.2, lt=0.02) with the 

same temporal discretization the solution remains stable. This is why the standard 

Galerkin finite element solution of transient convection-diffusion equation with 

traditional time stepping methods can only have conditional stability [29]. Such stability 

conditions can be derived by relating 
*

*

t
x

Δ
Δ  to the eigen values of the stiffness matrix.  

 

8. Conclusion  

A series of numerical experiments validated through comparison with their corresponding 

analytical solutions are used to evaluate the performance and efficiency of a proposed 

space-time bubble enriched discretization scheme. The numerical results are also 

compared with the conventional data obtained via theta time stepping method. The 

proposed bubble enriched variational multiscale method is shown to be capable of 

generating stable accurate results for transient diffusion and convection-diffusion 

equations. Although the theta time stepping method gives stable solutions but, by 
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increasing the transport coefficients (D or C) the time intervals must be decreased and 

computational cost increases dramatically. In the proposed multiscale method since the 

scheme uses the same discretization in both temporal and spatial dimensions, the 

unsteady problem is solved similar to a steady problem making the method particularly 

cost effective.  
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Fig.1. Domain ant its boundaries. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Finite element mesh schemes. 
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D=1 at x*=0.9 
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Fig. 3. Transient response of diffusion equation at D=1 and x*=0.9. Mesh scheme 1with and without 
temporal bubble function.. 
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Fig. 4. Transient response of diffusion equation at D=1 and x*=0.9. Mesh schemes 2 and 3. 
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D=1 at x*=0.9
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Fig. 5. Transient response of diffusion equation using theta method at D=1 and x*=0.9. 
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Fig. 6. Response of diffusion equation at different time sections for  D=1 and x*=0.9. mesh scheme 3. 
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D=5 at x*=0.9, standard Galerkin
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Fig. 7. Transient response of diffusion equation at D=5 and x*=0.9 for all mesh schemes. 
 
 

D=5 at x*=0.9, mesh scheme 2
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Fig. 8. Transient response of diffusion equation at D=5 and x*=0.9 using different orders of the temporal 
bubble functions of Eq.24. 
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D=5 at x*=0.9, mesh scheme 2
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Fig. 9. Transient response of diffusion equation at D=5 and x*=0.9 using different orders of the temporal 
bubble functions of Eq.25. 
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Fig. 10. Transient response of diffusion equation using theta method at D=5 and x*=0.9. 
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D=10 at x*=0.9, mesh scheme 1
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Fig. 11. Transient response of diffusion equation at D=10 and x*=0.9. Mesh scheme 1 with and without 
temporal bubble function. 
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Fig. 12. Transient response of diffusion equation at D=10 and x*=0.9. Mesh scheme 2 with and without 
temporal bubble. 
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D=10 at x*=0.9
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Fig. 13. Transient response of diffusion equation using theta method at D=10 and x*=0.9. 
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Fig. 14. Transient response of convection-diffusion equation at D=1, C=5 and x*=0.9 for all mesh scheme. 
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D=1, C=5 at x*=0.9
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Fig. 15. Transient response of convection-diffusion equation using theta method at D=1, C=5 and x*=0.9. 
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Fig. 16. Steady solution of the convection-diffusion equation at D=1, C=10 using mesh scheme 3 with 
spatial bubble. 
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D=1, C=10 at x*=0.9
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Fig. 17. Transient response of convection-diffusion equation at D=1, C=10 and x*=0.9. Mesh schemes 1 
and 2 with temporal and spatial bubbles and mesh scheme 3 with just spatial bubble function.. 
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Fig. 18. Transient response of convection-diffusion equation using theta method at D=1, C=10 and x*=0.9 
with spatial bubble function.. 
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D=1, C=50 at x*=0.9
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Fig. 19. Transient response of convection-diffusion equation at D=1, C=50 and x*=0.9 for all mesh 
schemes with spatial and temporal meshes.. 
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Fig. 20. Comparison of transient response of convection-diffusion equation using theta method at D=1, 
C=50 and x*=0.9 with the multiscale method using mesh scheme 3 with both spatial and temporal bubbles. 
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Fig. 21. Steady solution of the convection-diffusion equation at D=1, C=50 using mesh scheme 1 with and 
without spatial bubble. 
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Fig. 22. Steady solution of the convection-diffusion equation at D=1, C=10. No multiscale behaviour in x 
direction is observed. 
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D=1, C=10 at x*=0.9
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Fig. 23. Transient response of convection-diffusion equation at D=1, C=10 and x*=0.9 with temporal 
multiscale behaviour. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 24. Mesh scheme 4. 
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D=1, D=50 at x*=0.8
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Fig. 25. Transient response of convection-diffusion equation at D=1, C=50 and x*=0.8 using different x 
refinement of mesh schemes 2 and 4 with both spatial and temporal bubble functions.. 
 
 
 


