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A Hybrid Approach of Learning and Model-Based
Channel Prediction for Communication Relay UAVs

in Dynamic Urban Environments
Pawel Ladosz1, Hyondong Oh2, Gan Zheng3 and Wen-Hua Chen1

Abstract—This paper presents the trajectory planning of small
UAVs for a communication relay mission in an urban environ-
ment. In particular, we focus on predicting the communication
strength between air and ground nodes accurately to allow relay
UAVs to maximise the communication performance improvement
of networked nodes. In urban environments, this prediction is
not easily achievable even with good mathematical models as
each model is characterized by a series of parameters which are
not trivial to obtain or estimate apriori and can vary during the
mission. To address the difficulty, this work proposes to integrate
a learning-based measurement technique with a probabilistic
communication channel model. This hybrid approach is able
to predict communication model parameters based on signal
strength data which UAVs observe during the mission online, thus
achieving better performance compared with the model-based
approach in an urban environment. The predicted parameters
are based on four discrete urban environment types. Numerical
simulations validate the performance and benefit of the proposed
approach.

Index Terms—Aerial Systems: Applications, Learning and
Adaptive Systems, Motion and Path Planning

I. INTRODUCTION

ESTABLISHING wireless communication networks is vi-
tal in various circumstances such as rescue missions in

a natural disaster. In urban environments, wireless commu-
nication is limited by the short coverage range and small
bandwidth due to line-of-sight (LOS) obstruction by buildings.
The following technologies have been used as an attempt to
mitigate issues in urban environments: infrastructures (e.g. cell
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tower), ground-based radios and satellite communications. The
first is often unavailable due to the damage caused by the
natural disaster. Besides, in an emergency situation, there is
little time to put a temporary infrastructure in place. While
the other two do not rely on existing infrastructure, neither
of them can solve the issue of obstruction by buildings fully.
Furthermore, satellites are limited by the nature of their pre-
planned orbits. A group of low flying (below 500 meters) and
small (less than 7 kg) unmanned aerial vehicles (UAVs) can
be used as a promising alternative solution since they can be
deployed rapidly to the mission area and relocate swiftly to
avoid the effect of obstruction by buildings.

Using a group of UAVs for communication relay nodes has
its own challenges such as choosing the optimal number of
UAVs to cover a given area, developing appropriate commu-
nication protocols and planning optimal trajectories consider-
ing the dynamic environments. In particular, to plan optimal
trajectories, information or prediction on the communication
strength between arbitrary points in the air and on the ground
becomes quite important. There are several methods to obtain
the communication strength between two nodes, which can be
generally divided into model-based and measurement-based
approaches [1].

Model-based approaches can be subdivided into the range,
channel model and probabilistic model-based ones. The range-
based approach such as [2], [3] defines a radius within which
communication is assumed to be possible. In the channel
model-based approach [4]–[7], the communication strength
usually depends on the distance and the existence of direct
LOS between nodes. The probabilistic model-based approach,
termed as the low-altitude platform model proposed by [8],
approximates the probability of LOS occurrence depending
on the types of urban environments. The main limitation of
model-based approaches is that they need to know a large
number of parameters required to compute communication
quality between two nodes, which can be challenging to
estimate before the mission or online.

Measurement-based approaches were devised to cope with
the aforementioned challenge of estimating communication
parameters accurately and preferably online. For this, the
UAV collects the signal strength data from ground nodes and
uses this information to plan its path. They can be largely
subdivided into gradient following and learning approaches. In
gradient following methods such as [9], the UAV collects the
signal strength from ground nodes and calculates the gradient
to move towards the optimal position gradually. Gradient
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following methods are unable to cope with non-linearities
and discontinuities in the signal strength which are introduced
by buildings. Meanwhile, learning-based approaches such as
[10], [11] rely on collecting the signal strength data to update
a priori communication model using machine learning tech-
niques. Measurement-based approaches were used mainly for
stationary environments thus far as the amount of data required
for learning and prediction for mobile ground nodes was too
high.

To address limitations of aforementioned methods, this work
proposes the combination of a learning-based measurement
technique with the probabilistic low altitude platform (LAP)
model [8] to help plan the UAV relay trajectory. This hybrid
approach does not entirely depend on communication para-
meters known apriori but still can cope with mobile ground
nodes (i.e. dynamic environments). Instead of communication
parameter estimation, a neural network (NN) is used to predict
the discrete urban environment type based on the collected
signal strength and elevation angle between air and ground
nodes. This predicted discrete urban environment type is used
in the LAP model which provides approximated communic-
ation quality between any two nodes rapidly. Then, receding
horizon-based online trajectory planning is performed to de-
termine optimal control commands for relay UAVs in dynamic
environments. To the best of our knowledge, measurement-
based approaches (both gradient and learning methods) have
rarely been dealt with for dynamic environments due to the
amount of data required for learning the entire communication
environment or difficulty in computing the smooth gradient.
However, in our work, by using the signal strength and
elevation angle data to predict the urban type to be used in the
LAP model, we are readily able to apply the measurement-
based technique (with much reduced data for learning) to
dynamic scenarios where ground nodes are moving.

The rest of the paper is organised as follows. The overview
of the algorithm and scenarios are presented in Section II.
In Section III, the communication channel model and neural
network-based channel prediction is described. The receding
horizon-based trajectory planner is formulated in Section IV.
Section V shows numerical simulation results to demonstrate
the performance of the proposed method, and Section VI
presents conclusions and future work.

II. PROBLEM OVERVIEW

A. Assumptions

A sample scenario considered in this work is illustrated in
Fig. 1. In this scenario, there are a number of mobile ground
nodes in an urban environment. UAVs fly in a way to assist
ground nodes with their wireless communication equipment
for better communication performance.

The assumptions made in this work are stated as follows:
i) an urban environment can be modelled as either of the
four types: suburban, urban, dense urban and high-rise urban
depending on the density and height of buildings; ii) the com-
munication channel model consisting of path loss, transmitted
power and shadow fading components is known empirically
for each discrete urban environment type, however the discrete

Figure 1. Illustration of the communication relay scenario.

urban environment type for a given scenario is unknown; iii)
ground nodes are able to share their current positions with
UAVs, but their future paths are unknown to the UAV; and iv)
the position and the shape of buildings are unknown.

B. Overview of the Proposed Hybrid Channel Prediction

Figure 2 shows the overview of the optimal trajectory
planning process with the hybrid channel prediction approach.
To plan the trajectory of communication relay UAVs, first
a cross entropy optimiser (CEO) [12] randomly generates
a set of possible trajectories. For each trajectory, the LAP
model is used to compute the communication quality of the
networked team. To use the correct LAP model, UAVs collect
a pair of signal strength and elevation angle between the
UAV and ground nodes (hereafter such a pair is called signal
strength-angle pairs). With this data, the NN predictor is
used to predict the current discrete urban environment type.
Until convergence is reached, the CEO algorithm changes the
candidate trajectories and once the convergence criterion is
satisfied, the best trajectory is sent to UAVs for execution.
Note that, this entire process is periodically performed to cope
with the dynamic environment.

III. LEARNING-BASED COMMUNICATION CHANNEL
PREDICTION

A. Air-to-Ground Channel Modelling

The communication channel model used in this work is
based on the multiple ray tracing simulation with four different
types of urban environments: i) Suburban, ii) Urban, iii)
Dense urban and iv) High-rise urban [13], [14]. Discrete urban
environment types are defined by three layout parameters: α0,
β0 and γ0 and six wireless communication parameters: k1,
k2, g1, g2, µLOS and µNLOS . Layout parameters are used
to establish position, size and height of the buildings, while
wireless communication parameters are used to compute the
wireless communication strength between arbitrary points in
the air and on the ground. Wireless communication parameters
for each of the four environment were established in [14]
through extensive ray tracing simulations. The parameters for
four urban environments are summarised in Table I. Detailed
explanations on each parameter group are presented below.

The layout parameters are defined as: α0 is the ratio of
the built-up land area to the total land area, β0 is the mean
number of buildings per unit area (buildings/km2) and γ0 is a
height parameter defining the scale parameter of the Rayleigh
distribution so that the k-th building has a height of hk ∼
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Figure 2. Overview of the optimal trajectory planning process for communication relay UAVs.

R
(
γ0), where k ∈ (1, 2...nz) and nz is the total number of

buildings per scenario. In this study, a standard city layout
[14] is used as shown in Fig. 3. The benefit of using this
city model is easy generation of multiple cities with different
heights for Monte Carlo simulations. With the above city

Table I
DIFFERENT CITY ENVIRONMENT LAYOUT AND COMMUNICATION

PARAMETERS

Environment (α0, β0, γ0) (k1,k2) (g1,g2) (µLOS , µNLOS)

Suburban (0.1, 750, 8) (11.25, 0.06) (32.17, 0.03) (0.1, 21)
Urban (0.3, 500, 15) (10.39, 0.05) (29.6, 0.03) (1, 20)
Dense Urban (1, 300, 20) (8.96, 0.04) (35.97, 0.04) (1.6, 23)
High-rise Urban (1, 300, 50) (7.37, 0.03) (37.08, 0.03) (2.3, 34)

Figure 3. A sample city generated with parameters: α0 = 0.1, β0 = 750
and γ0 = 8.

model, the communication channel model can be defined as
[15]:

Pr,ij = Pt,j − LdB,ij −Ψij (1)

where Pr,ij (dBm) is the received signal power strength of
node i from node j. Pt,j (dBm) is the transmitted power by
node j, LdB,ij represents the free space path loss between
nodes i and j, and Ψij is the shadow fading component
accounting for diffraction and multipath fading. Note that, for
simplicity, Pt,j is assumed to be the same for all nodes in
this work. Ψij is assumed to be a Gaussian random variable

defined as Ψij ∼ N
(
µij , σ

2
ij), where µij and σ2

ij are the mean
and variance parameters. LdB,ij can be represented as:

LdB,ij = 10α log10

(
4πfcdij

c

)
, (2)

where fc is the central frequency, α is the path loss exponent,
dij is the distance between nodes i and j, and c is the speed
of light. Note that Pr,ij follows the Gaussian distribution and
can be expressed as:

Pr,ij ∼ N
(
Pt,j − LdB,ij − µij , σ2

ij). (3)

To be more specific, the shadow fading Ψij can take either
of two distributions: ΨLOS,ij ∼ N

(
µLOS,ij , σ

2
LOS,ij) and

ΨNLOS,ij ∼ N
(
µNLOS,ij , σ

2
NLOS,ij) for cases of line-of-

sight (LOS) and non-LOS (NLOS), respectively. In this work,
µLOS,ij and µNLOS,ij are assumed to be known and constant
for a given discrete urban environment type, whereas σ2

LOS,ij

and σ2
NLOS,ij can be modelled as:

σ2
LOS = k1 exp(k2θij), and (4)

σ2
NLOS = g1 exp(g2θij), (5)

where θij is the elevation angle of the UAV with respect
to the ground. Communication parameters k1, k2, g1, g2,
µLOS and µNLOS are summarised in Table I. It is worthwhile
noting that for more realistic urban environments other than a
standard city layout with a squared area for all the buildings
as shown in Fig. 3, further studies would be required in
the field of communication modelling; however, the general
trend for the probability of LOS and NLOS occurrence and
corresponding communication quality would still be similar
as α, β and γ contains the necessary information of a certain
urban environment.

B. LAP Communication Model

To allow the UAV to predict the communication strength of
ground nodes during trajectory planning, the choice between
ΨLOS,ij and ΨNLOS,ij needs to be made. For this purpose, we
use the method from [8], [13], which predicts the probability
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of LOS (or NLOS) occurrence based on the elevation angle
and discrete urban environment type specified by α0, β0 and
γ0. In this approach, the LOS probability between two nodes
can be determined as:

P (LOS, θij) =
1

1 + a exp(−b[θij − a])
, (6)

where θij is the elevation angle between the air and ground
nodes and a and b are parameters of the S-curve dependent
on α0, β0 and γ0 [8]. Then, the prediction of Ψ can be made
by defining the LOS probability threshold Pt as:

Ψij =

{
ΨLOS,ij , if P (LOS, θij) > Pt,
ΨNLOS,ij , otherwise. (7)

C. Learning-Based Channel Prediction

The signal strength of ground nodes with P (LOS, θij)
in Eq. (6) obtained from the UAV depends on the urban
environment parameters. When the urban parameters are un-
known, the learning-based approach could be utilised with the
collected signal strength data to predict the urban environment
parameters. To this end, this study adopts a feedforward neural
network (NN) classifier with two hidden layers and 10 neurons
in first hidden layer as depicted in Fig. 4. Classification is
necessary as communication parameters are defined for four
environments listed in Table I. The input consists of 16 pairs
of signal strength and elevation angles and the output is a
vector O ∈ R1×4 where each element is responsible for the
probability of being in one of four environments which lies
between 0 and 1. To be more specific, the output is defined
as [0 0 0 1] for the suburban environment, [0 1 0 0]
for the urban environment, [0 0 1 0] for the dense urban
environment and [0 0 0 1] for the high-rise urban envir-
onment. Note that, during the trajectory planning process, the
urban-type prediction by the NN is periodically performed
with the most recently collected data for a certain period of
time. In case of multiple UAVs, each UAV is assumed to be
able to make its own prediction based on the signal data it
has obtained and then shares its prediction with the rest of the
group for improving the prediction accuracy.

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Hidden Layer 1 Hidden Layer 2
Input: 32x1 vector 

of angles and RSSI 

(16 signal strength 

and angle 

pairs)

Output: 4x1 

vector indicating 

environment

Figure 4. The neural network schematic showing parts of the used network.
Sigmoid is used as the output activation function.

The NN was trained using the scaled conjugate back-
propagation algorithm with a cross-entropy error function on
12 randomly-generated scenarios (3 scenarios per each urban
environment) with 12 stationary ground vehicles. The UAV

performed the back and forth search pattern and collected
26,064 signal strength and elevation angle pairs overall.

Before considering other aspects of the NN, it is important
to address the appropriate number of inputs to the NN. In
general, the more pairs are used for prediction, the better the
output is. However, more data will require longer collection
time, which increases time of initial prediction and the fre-
quency of consecutive predictions. To determine how many
signal strength-angle pairs are sufficient, we tested 4, 8, 16,
32 and 64 pairs and compared the prediction accuracy and
computation time averaged over a hundred runs. Results of
these tests are summarised in Table II. It can be seen that from
4 to 16 signal strength-angle pairs, the urban type prediction
accuracy increases steadily by about 10% for each increase
in data points, while between 32 and 64 pairs the increase is
much smaller (by 3% only). Thus, 16 is chosen as a tradeoff
between the accuracy and the prediction speed.

Table II
PREDICTION QUALITY WITH DIFFERENT SIGNAL STRENGTH-ANGLE PAIR

Number of angle-
RSSI pairs

Accuracy Computation time (s) averaged
over 3000 predictions

4 50.1% 3.6 × 10−5

8 60.8% 3.9 × 10−5

16 70.9% 9.5 × 10−5

32 73% 2.6 × 10−4

64 76% 3.6 × 10−4

To investigate the quality of the NN training, a confusion
matrix is used (Fig. 5). In the matrix, diagonal terms (in
green) are the number of the correctly classified discrete
urban environment type along with the percentage of total
sample. The red off diagonal elements are the number of target
environments incorrectly classified. The edges of the matrix in
grey are the total percentage of the correctly classified (green)
and incorrectly classified (red) discrete urban environment
type. This figure shows that majority of errors occur between
neighbouring classes which are next to each other.

The proposed NN is compared against other machine
learning techniques: k-nearest neighbour (with the Minkowski
distance metric and equal distance weight), support vector ma-
chine (with a linear kernal function, automatic scale mode and
one-vs-one multiclass method) and decision trees (with 100
maximum splits and Gini’s diversity index for split criterion).
All approaches are trained on the same data set. Table III
indicates that the NN is at least about 9% more accurate than
other learning methods with less computational burden. More
advanced deep learning techniques (e.g. convolutional NN or
recurrent NN) could readily be applied to improve the accuracy
further.

Currently, the NN is limited to predicting one of the
four discrete urban environment types. This is because, in
the current LAP communication model [8], only four urban
environments were considered. Subsequently, communication
parameters are available only for four discrete urban envir-
onment types. To compute communication parameter values
for arbitrary environments, more fundamental studies would
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Figure 5. Confusion matrices for the Neural Network with 16 angle-strength
pairs. Overall accuracy for test cases is 70.9%.

Table III
ACCURACY OF DIFFERENT LEARNING METHODS

Method Accuracy Computation time (s) averaged
over 3000 predictions

NN 70.9% 9.5 × 10−5

support vector
machine

62.2 % 6.2 × 10−3

k-nearest neigh-
bours

61.9 % 6.9 × 10−3

Decision tree 46 % 3.6 × 10−4

need to be performed in the level of communication modelling,
which is beyond the scope of this work.

D. Communication Performance Metrics

To define the performance metric to plan an optimal traject-
ory for the relay UAV, two steps are performed: i) conversion
of Pr,ij to the probability of successful communication and
ii) computation of the global message connectivity (GMC) [5]
to represent how much the UAV improves the communication
performance of the networked group.

To define the probability of successful communication, the
signal to noise ratio (SNR) are defined by subtracting the noise
power Pn,ij from the mean received power strength Pr,ij in
Eq. (3) as:

Γij ∼ N
(
µγ,ij , σ

2
ij), (8)

where µγ,ij = Pt,ij−LdB,ij−µij−Pn,ij and Pn,ij is a noise
power (dBm) calculated as:

Pn,ij = 10 log10(KTBij) + 30, (9)

where K is the Boltzman constant, T is ambient temperature,
and Bij is the bandwidth. Following steps from [16], the
probability of successful communication is then expressed as:

Ps,ij(Γij ≥ γ) = Q

(
µγ,ij − γ
σij

)
, (10)

where γ is the required minimum SNR defined by the user
and Q is the complementary error function.

To measure improvement of communication among a group
of ground nodes, the concept of the GMC is used. Before form-
ally defining the GMC, the minimum spanning tree (MST)
needs to be introduced. The MST is defined as a subset of a
graph where all nodes are connected to each other but there
are no loops, having a minimum (or at least the same as the
minimum, as there can be several minimum spanning trees in
a single graph) sum of edge weights [17]. In this work, the
MST is calculated among the UAV and ground nodes using
the Kruskal algorithm [18]. The MST allows us to cope with
a large group of air and ground nodes, where the number
of direct connection increases significantly, as it reduces the
number of connections significantly. With the MST defined,
the GMC can be formally defined as the probability of a
message being successfully transmitted to all nodes within the
MST [5].

With the knowledge of the positions of UAVs and ground
nodes, the GMC can be computed as follows. Let us define
A

′ ∈ R(n+m)×(n+m) as an adjacency matrix, where n is the
number of UAVs and m is the number of ground vehicles.
The adjacency matrix defines which connections are within
the MST, and thus, A

′

ij = 1 if the link from node i to node
j is the part of the MST, and A

′

ij = 0, otherwise. With
the adjacency matrix, the GMC communication performance
JGMC can be calculated as the sum of the probability of
successful communication of all connections within the MST
as:

JGMC(x̄pos, x̄g,pos) =

∑n+m
i=1

∑n+m
j=1 A

′

ijPs,ij

m+ n
(11)

where x̄pos ∈ R3×n and x̄g,pos ∈ R3×m represent the position
of UAVs and ground nodes, respectively.

It is worth noting that some other performance metrics could
also be used such as the worst case connectivity or modified
GMC [6].

IV. RECEDING HORIZON-BASED ONLINE TRAJECTORY
PLANNING

Receding horizon-based trajectory planning is used to de-
termine the optimal path for the relay UAV considering the
situation where ground nodes move. The receding horizon
technique is based on the concept of the time horizon and
prediction based on the known dynamic/kinematic model. The
time horizon is used to determine how far into the future the
prediction of the UAV path is made. To reduce the compu-
tational burden, the time horizon is discretised into N steps,
each with a pre-specified length. At each step, improvement
in communication and corresponding UAV control commands
are computed. The best path is determined by the most optimal
combination of control inputs. To account for situation changes
through the scenario, only control input from the first horizon
step is taken, and the procedure is repeated.
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A. UAV Model

To use the receding horizon-based planner, the UAV dy-
namics is modelled. In this work, a simple dynamic model is
used, which can be represented as [19]:

ẋ
ẏ

ψ̇
v̇
ω̇

 = f(x,u) =


v cosψ
v sinψ
ω

− 1
τv
v + 1

τv
uv

− 1
τω
ω + 1

τω
uω

 (12)

where x =
(
x y ψ v ω

)T
are the inertial position,

heading, speed and yaw rate of the UAV, respectively. τv and
τω are time constants accounting for the actuator response
delay, which can be determined experimentally for a given
UAV model. uω and uv are command inputs in the form of
the turning rate and velocity, respectively. v is constrained by
the maximum and minimum velocity vmin and vmax, and ω is
constrained by the maximum and minimum heading rate ωmin
and ωmax due to physical limitations of the fixed-wing UAV.
To be able to use the UAV model in the receding horizon-based
framework, Eq. (12) is discretised using Euler integration as:

xk+1 = fd(xk,uk) = xk + Tsf(xk,uk) (13)

where xk =
(
xk yk ψk vk ωk

)T
and Ts is a sampling

time.
For the UAV to be able to predict the communication

performance at each possible position in the receding horizon
length, it needs to predict where ground nodes will be at that
time the UAV reaches that position. Generally, current ground
vehicles positions are known, but their future paths and plans
need to be predicted. For this prediction, the Kalman filter
from [6], [20] is employed in this work.

B. Receding Horizon-Based Planning Formulation

Receding horizon-based trajectory planning is formu-
lated to find the optimal set of command inputs U i =(
U iv, U

i
ω

)T
where U iv =

(
uiv,0, u

i
v,1, . . . , u

i
v,N−1

)
, U iω =(

uiω,0, u
i
ω,1, . . . , u

i
ω,N−1

)
for i-th UAV, which minimizes the

following performance index J :

J , Φ(x̄N , x̄
g
N ) +

N−1∑
k=0

L(x̄k, x̄
g
k, u

i
ω,k, u

i
v,k) (14)

s.t. xik+1 = fd(x
i
k, u

i
ω,k, u

i
v,k), (15)

ωmin ≤ uiω,k ≤ ωmax, (16)

|uiω,k − uiω,k−1| ∈ {0,∆uω} (17)

vmin ≤ uiv,k ≤ vmax, (18)

|uiv,k − uiv,k−1| ∈ {0,∆uv}, (19)

where:
Φ(x̄N , x̄

g
N ) , pc

1

JGMC(x̄posN , x̄g,posN )
, (20)

L(x̄N , x̄
g
N , u

i
ω,k, u

i
v,k) ,

1

2

[
qc

1

JGMC(x̄posk , x̄g,posk )
+

+rω

(
uiω,k
ωmax

)
+ rv

(
uiv,k
vmax

)]2 (21)

where JGMC represents the GMC performance index as
defined in Eq. (11) and x̄posk and x̄g,posk are the position of
UAVs and ground nodes at the k-th time, respectively. pc, qc
and rω are constant weighting factors. The control sequence
U i which optimises the performance index is found by using
the CE optimisation algorithm [12]. The first term in Eq. (14),
Φ(x̄N , x̄

g
N ) is the communication improvement by the UAV at

the final position given the UAV follows the path defined by a

control sequence. The second term
N−1∑
k=0

L(x̄k, x̄
g
k, uω,k, uv,k)

is used to account for the communication performance im-
provement and the cost of moving from one position to the
other (i.e. related with control efforts or energy as shown
in Eq. (21)) in the receding horizon length. Eqs. (15)∼(19)
represent constraints of relay UAVs for this problem. The
first constraint is used to impose the UAV dynamic model
defined in Eq. (13) in finding the optimal control command.
The second one limits the maximum turning rate for the UAV,
and the third one discretises the problem by ensuring that the
next command is different from the previous one by {0,∆uω}.
The next two are similar but applied to the velocity command.
Note that, for multiple UAVs, the path is planned once at a
time for each UAV (i.e. sequentially and locally), while others
are kept fixed. Negotiation/cooperation of the optimal set of
command inputs between UAVs until converged to the global
optimal solution for the entire UAV group by considering the
effect of trajectory change of other UAVs would improve the
performance, but this issue remains as future work.

V. NUMERICAL SIMULATION RESULTS

In this section, the performance of the proposed approach
is investigated through a set of 48 Monte Carlo simulations.
Parameters of simulations and wireless communication are
given in Table V and IV, respectively. The proposed ap-
proach, receding horizon(RH)-based trajectory planning with
the hybrid channel prediction (termed as RH+NN with the
LAP model), is compared with three other approaches as
summarised below.

• RH with known map - an approach where building
sizes, positions and effects on the communication quality
are fully known. It allows the UAV to make the perfect
prediction of the communication performance between
arbitrary points. Such knowledge is unlikely to be avail-
able in a real world scenario, thus this approach serves
as a benchmark only. More details about this approach
can be found in [6].

• RH with known LAP - similar to the proposed approach
in that it uses Eq. (6) to predict the probability of being in
LOS, but α0, β0 and γ0 are assumed to be known a priori.
This approach is not expected to perform as well as RH
with the known map due to the probabilistic prediction of
LOS occurrence compared to the exact LOS computation
of RH with known map approach.

• RH with incorrect LAP - an approach where incorrect
α0, β0 and γ0 are used for RH with the known LAP.
This approach is intended to show what happens when
incorrect prediction about the urban environment type is
made.
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Note that for the MST construction during the prediction
stage, connections between ground nodes are assumed to be
in NLOS at all times, while connections between UAVs are
assumed to be in LOS at all times.

Table IV
COMMUNICATION PARAMETERS

Parameter Value Unit
Transmission power (Pt) 40 dBm
Frequency (fc) 2.0 GHz
Attenuation factor (α) 2.5 n/a
Communication Properties
(k1, k2, g1, g2)

(11.25, 0.06, 32.17, 0.03) n/a

mean LOS fading (µLOS ) 0.1 n/a
mean NLOS fading
(µNLOS )

21 n/a

Bandwidth (Bij ) 5 MHz

Table V
SIMULATION PARAMETERS

Parameter Value Unit
Actuator delay (τω , τv) (1/3,1/3) sec
speed constraints (vmin, vmax) (10, 30) m/s
Heading rate constraint (ωmin, ωmax) (−0.4, 0.4) rad/s
Receding horizon step (N) 5 N/A
Horizon steps (0.5, 4.5, 5, 5, 5) sec
Maximum heading rate change (∆uω) 0.1 rad/s
Maximum velocity change (∆uv) 5 m/s
Weighting factors (pc, qc, rω) (−1000, pc/N, 1) N/A
Urban Environment Parameters (α0,
β0, γ0)

(0.1, 750, 8) N/A

Urban Environment Parameters (α0,
β0, γ0) for RH with incorrect LAP
model

(1 , 300, 20) N/A

Ambient temperature (T ) 293 K
Number of UAVs (n) 2 N/A
number of ground nodes (m) 6 N/A

Figure 6 shows a sample scenario from Monte Carlo simu-
lations with trajectories using aforementioned four methods.
In this scenario, issues with RH with the incorrect LAP
model (i.e. using incorrectly-guessed parameters) approach are
apparent. Within the time frame of the scenario, other three
approaches send one UAV to around (x, y) = (1400, 500) and
the other to (x, y) = (400, 700) to serve as relay nodes there.
However, RH with the incorrect LAP model makes both UAVs
to stay around the (x, y) = (400, 700) where they can only
help three ground nodes. It is likely that RH with the incorrect
LAP computed that there is no viable position where the relay
UAV could help by flying to other position. Such an erroneous
decision is made as RH with the incorrect LAP uses a city with
buildings which are much higher and bigger than they actually
are.

Figure 7 shows the comparison of the performance among
four approaches with parameters from Table V. It can be
seen that RH with the known map has the best performance.
Notably, the RH+NN approach has the probability of success-
ful communication not much worse than RH with the known
LAP model. The proposed approach is significantly better than
RH with the incorrect LAP model by about 10% increased
probability of achieving the desired communication strength.

(a) RH with the known map

(b) RH+NN with LAP model
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(c) RH with the known LAP model

(d) RH with the incorrect LAP model

Figure 6. Simulation results using different approaches. The red lines repres-
ent the MST with the corresponding probability of successful communication.

It is worth noting that the probability shown here is averaged
over all connections within the MST.

The quality of the discrete urban environment type predic-
tion using the NN is summarised as follows. 41 times out of
48 cases, the NN made the correct prediction of the discrete
urban environment type at the end of the simulations, while 7
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Figure 7. Performance comparison of the proposed method with others,
averaged over 48 Monte Carlo simulations.

cases were incorrectly predicted. It took 44.5 seconds (of the
scenario time) for the NN to converge to the constant value on
average (i.e. after 44.5 seconds, the NN would rarely change
its prediction) while the minimum convergence time was 3.5
seconds. The incorrect predictions result from the difference
between RH+NN with LAP model and RH with known LAP
model. Even with the slightly wrong prediction, the trajectory
planner is still able to provide a reasonably good performance
as shown in Fig. 7.

Finally, the performance with the increasing number of
UAVs is investigated in Fig. 8 where the results are obtained
by averaging from the final 20 seconds of 48 Monte Carlo
simulations. Each of the 48 simulations was performed with
the different number of UAVs and parameters from Table V.
No UAV case indicates the scenario with just ground nodes for
the comparison purpose. With no communication relay UAV in
the area, there is a very low probability of establishing a suc-
cessful communication for the networked nodes of only 30%.
As the number of UAVs increases, the probability of successful
communication increases.
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Figure 8. The averaged performance over 48 scenarios for the final 20 seconds
of the flight with the different number of UAVs.

VI. CONCLUSIONS AND FUTURE WORK

In this work, a hybrid channel modelling approach in
support of the trajectory planning for communication relay
UAVs was studied. It was shown that the proposed NN-based
approach can predict the right discrete urban environment
type that provides essential information to be used in the
LAP model. This approach is useful as it requires very little
knowledge about the mission area, yet it can be implemented
quickly with the improved performance. In the future, a

simple two-layer neural network could be replaced with a
deep learning technique such as the recurrent neural network
approach which efficiently deals with time series data. Besides,
experiments using ground robots and UAVs will be performed
to validate the benefit of the proposed approach.
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