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Abstract 16

This work investigates four methods of selecting variates from near-infrared (NIR) spectra for use 17

in partial least squares (PLS) regression models to predict biomass and chemical changes during 18

beer fermentation. The fermentation parameters studied were ethanol concentration, specific gravity 19

(SG), optical density (OD) and dry cell weight (DCW). The four selection methods investigated 20

were: Simple, where a fingerprint region is chosen manually; CovProc, a covariance procedure 21

where variates are introduced based on the magnitude of the 1st PLS vector coefficients; CovProc-22

SavGo, a modification to CovProc where the window size of a Savitzky-Golay filter applied to the 23

spectra is also optimised; and Genetic Algorithm (GA), where variates are selected based on the 24

frequency of appearance in 8-variate multiple linear regression models found from repeated 25

execution of the GA routine. The analysis found that all four methods produced good predictive 26

models. The GA approach produced the lowest standard error in prediction (SEP) based on leave-27

* Manuscript
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one-out cross validation (LOO-CV), although this advantage was not reflected in the standard error 1

in validation values, SEV, where all four models performed comparably. From this work, we would 2

recommend using the Simple approach if a suitable fingerprint region can be identified, and using 3

CovProc otherwise.4

5

1. Introduction6

This paper describes an investigation into the use of NIR spectroscopy for monitoring beer 7

fermentation. The data presented here are near-line measurements of the raw liquor. The near-line 8

approach avoids some of the technical challenges that would need to be met by an on-line sensor, 9

such as long-term stability and fouling, whilst allowing the potential of NIR for monitoring biomass 10

(optical density (OD) and dry cell weight (DCW)) and composition (ethanol concentration and 11

specific gravity (SG)) to be investigated. The aim is to establish the performance in terms of 12

predicting biomass and composition that could ultimately be obtained from an on-line probe.13

14

We present a comparison of four different methods of pre-selecting the variates for use in partial 15

least squares (PLS) regression models for predicting the biomass and compositional parameters. 16

The purpose of the analysis was to compare feature selection procedures that involved varying 17

degrees of complexity, and evaluate the impact of this on their predictive ability.18

19

1.1 Background20

Measurements relating to biomass production, substrate consumption, and ethanol accumulation are 21

not routinely carried out during the course of large-scale brewing fermentations. This is because 22

traditional analytical techniques such as measurement of DCW and substrates by GC or HPLC are 23

routinely performed off-line and require extensive sample preparation (Macaloney et al., 1996). 24

Results are obtained too late for any meaningful changes to be made to the process (Hewitt and 25

Nebe-Von-Caron, 2004), consequently brewers often control fermentations retrospectively, taking 26

action only after the quality of the final product has not met expectations. This management could 27
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be more proactive if the products of interest were more closely monitored and the smallest changes 1

could be instantaneously detected. 2

3

Near infrared spectroscopy (NIR) is now recognised as a rapid (analysis within minutes) and non-4

destructive technique for the analysis of a range of substrates during pharmaceutical fermentation 5

processes. A single spectral acquisition allows multiple component concentrations to be detected at 6

a single point in time (Arnold et al., 2002a). The weakly absorbing nature of NIR allows high 7

concentrations to be handled reproducibly with no sample preparation or dilution, making it a 8

favourable technique for both immediate near-line and on-line analysis (Bakeev, 2003). Indeed NIR 9

has been successfully used for the quantification of various substrates during bacterial fermentations 10

(Arnold et al., 2002b) as well as mammalian and insect cell cultures (Arnold et al., 2002a; Harthun 11

et al., 1998; Riley et al., 1997). However, these processes use defined well-mixed growth media, 12

being both spatially and temporally homogeneous in nature, providing an environment that is 13

relatively simple in spectroscopic terms and ideally suited to on-line NIR analysis. NIR has also 14

been applied to both fungal and filamentous bacterial fermentations, where in contrast the mycelial 15

broths are highly viscous, display non-newtonian behaviour and are chemically relatively undefined 16

(Arnold et al., 2000; Vaidyanathan et al., 2003). In these cases, the complex and heterogeneous 17

nature of the processes leads to probe fouling, and measurement at a single point is unrepresentative 18

of the bulk; off-line NIR analysis of a number of samples taken from various positions within the 19

fermentation vessel is more suitable. These more complex systems can also have a greater batch-to-20

batch variability, and therefore often require larger data sets (that is, more samples) to account for 21

this variation (Vaidyanathan et al., 2003).22

23

Similarly, there are three key problems associated with the successful NIR analysis of a typical 24

brewing fermentation. First, no mechanical agitation is provided for large brewing vessels, although 25

mechanical agitation is used in this study to improve mixing and reduce heterogeneity. Mixing 26

relies solely on the evolution of carbon dioxide by the yeast cells, which is itself dependent on 27
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metabolic activity. This creates spatial and temporal gradients with respect to cell and substrate 1

concentration (Boswell et al., 2003), so analysis at a single point is not suitable. Second, pH is 2

uncontrolled, and the natural decrease in pH that takes place during the brewing process leads to 3

spectral base-line drift that needs to be taken into account for accurate models to be constructed. 4

Third, brewing fermentations support relatively low cell concentrations (when compared to 5

pharmaceutical processes) making detection and quantification potentially quite difficult by NIR 6

(Arnold et al., 2000). In this work, we investigate the potential of NIR to be used as a quantitative 7

tool to characterise two very different brewing processes, at laboratory scale (5L), for the 8

production of two model beer types: Muntons pale ale and Grolsch lager. 9

10

2. Materials and methods11

A brewing strain of Saccharomyces cerevisiae (NCYC 1324) obtained from the national collection 12

of yeast cultures (Institute of Food Research, Norwich, UK) was maintained at 4°C and grown 13

aerobically at 25°C on yeast extract malt extract agar (YM) prepared as per the manufacturers 14

instructions (B.D. Ltd Oxford, UK). Inoculum for pitching was prepared by growing the culture 15

aerobically at 25°C with 50ml YM broth (B.D. Ltd., Oxford, UK) per 250ml Erlenmeyer shake 16

flask at 200 rpm on a rotary shaker for 13h. The pitching rate was 1.5×107 cells ml-1 wort. Two sets 17

of five fermentations were carried out, the first with Munton’s ‘Hopped Light’ pale ale wort (BRI, 18

Surrey, UK) and the second with Grolsch lager wort (Coors brewery Ltd, Burton-upon-Trent, UK ), 19

both with an initial SG of 1.060. Prior to pitching, the wort was agitated at 200 rpm and aerated at 1 20

vvm for 2h until the dissolved oxygen tension (DOT) reached the 100% saturation level. After 21

pitching no further agitation or aeration was carried out, except just before sampling, when the 22

culture was gently roused (lightly agitated) to create a homogeneous distribution of cells and 23

substrate within the bioreactor. The temperature was maintained at 12°C using an anti-freeze filled 24

jacket coupled with a recirculating chiller unit (LTD, Grant Instruments, Cambridge, UK). 25

Fermentations were operated in batch mode, for a duration of 168h, and samples were taken every 26

12h for measurement of biomass concentration, cell viability, ethanol concentration and SG. 27
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1

All fermentations were carried out in a 5L nominal cylindrical glass bioreactor (162 mm diameter ×2

300 mm total height), with a working volume of 4L. The vessel was fitted with two 82 mm, six-3

bladed radial flow paddle type impellers, 80 mm apart, with the lower impeller situated 80 mm 4

above the bottom of the vessel. The vessel was also fitted with three equally spaced baffles, width 5

15 mm and equipped for pH and DOT measurement, as well as temperature and impeller speed 6

control. DOT and pH were uncontrolled and allowed to decrease naturally, from 100% to 0% and 5 7

to 3 respectively, as the fermentation progressed. Samples were analysed for biomass concentration, 8

ethanol concentration and SG.  9

10

2.1 Conventional analyses11

Cell biomass was measured turbidimetrically by OD at 550 nm in a double beam spectrophotometer 12

and by measurement of DCW (g L-1). For the latter, cell samples were washed (centrifugation at 13

4500 rpm followed by resuspension in distilled water) then separated using 0.45m pore size 14

cellulose nitrate filters (Sartorius AG, Goettingen, Germany). Filters were dried at 105°C to 15

constant weight. The SG of the supernatant was measured to 5 decimal places using a 10ml density 16

bottle (VWR International Ltd) and standard laboratory scales. The concentration of ethanol was 17

determined by headspace gas chromatography (Perkin Elmer Autosystem XL with HS40 headspace 18

unit, Perkin Elmer, Beaconsfield, UK) using a ZB-wax column (30 m × 0.32 mm, 0.25m film 19

thickness, Phenomenex, USA), the output from which was fed to a flame ionisation detector 20

(250°C).  21

22

2.2 NIR spectroscopy 23

All spectral acquisition was conducted near-line, using a desktop FT-IR spectrometer (Perkin 24

Elmer, Beaconfield Bucks, UK) supplied by Specac (Orpington, Kent). A halogen light source was 25

used, which allowed spectra to be collected over the NIR region ranging from 10000 – 4000 cm-1. 26

NIR spectra were acquired from all samples in transmission mode, using an omni cell (Specac, 27
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Kent), with calcium fluoride windows and a 0.4 mm pathlength. 32 scans were co-added before 1

Fourier transformation, and spectral resolution was 4 cm-1. These acquisition parameters achieved a 2

data collection time of 2.1 minutes per spectrum. For the Grolsch samples only, an additional set of 3

spectra was collected using a 1 mm cuvette, 128 co-added scans and 16 cm-1 resolution. These 4

parameters resulted in a data collection time of 3 minutes per spectrum. For this measurement 5

protocol, the fourfold increase in co-averaging and accompanying four-fold reduction in resolution 6

was chosen to accommodate the decreased signal caused by the longer path-length without 7

excessively increasing the overall acquisition time. Prior to analysis, samples were degassed using 8

mild sonication and equilibrated to room temperature. All single-beam spectra were converted to 9

absorbance using a distilled water background, and truncated at 4124 cm-1.  Data interpolation 10

resulted in 3001 and 1501 variates for the 4 cm-1 and 16 cm-1 resolution spectra respectively. In the 11

following discussion, spectra collected on Grolsch samples using the 0.4 mm  and 1 mm resolution 12

protocols will be referred to as ‘short-path Grolsch’ and ‘long-path Grolsch’ respectively. 13

14

2.3 Chemometric analysis15

The data were analysed using Matlab (The Mathworks Inc., Cambridge, UK). Predictive models 16

were built using partial least square regression, PLS-R, (Martens and Naes, 1989). Each reference 17

parameter was modelled separately, an approach called PLS-1 regression. Each dataset was pre-18

treated with a Savitzky-Golay filter (Press et al., 1992). Four methods of selecting subsets of 19

variates to pass to the PLS-R procedure were then compared. All three datasets (Muntons, short-20

path Grolsch and long-path Grolsch) comprised measurements from five fermentation batches: data 21

from four of these were used to build the PLS-R models, and data from the fifth was used as an 22

independent test set. The model building step involved performing leave-one-out cross validation 23

(LOO-CV) on sub-models using increasing numbers of PLS factors, up to a maximum of 15 factors. 24

The optimum number of factors was determined using a modified Amemiya’s prediction criterion 25

APC (Norušis and SPSS Inc., 1990), given in Equation 1, where ns is the number of observations, np26

is the number of PLS factors, and Q the correlation between the actual reference values and the 27
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cross-validated predictions. The number of PLS factors that minimised the APC was chosen in the 1

final model.2

 21
)(

)(
Q

nn

nn
APC

ps

ps 



 (1)3

Savitzky-Golay filters are used to smooth and/or derivatise spectra using a local polynomial fit 4

controlled by three parameters [N P D], where N is the number of neighbouring points (total filter 5

window of 2N + 1 points), P is the order of the polynomial, and D is the derivative number (0 6

smoothed, 1 first derivative, etc). A preliminary examination of the spectra indicated that the 7

presence of bio-material introduces a sloping baseline to the spectra. The two measures of biomass 8

were therefore predicted using smoothed spectra only (D=0). The remaining two reference 9

measures were predicted from 1st derivative spectra (D=1, which essentially removes the sloping 10

baseline); the aim is that the subsequent predictive models should target chemical rather than 11

environmental effects. Although derivative spectra can be calculated using a simple difference 12

approach rather than a SavGo filter, in our present work, this would not lead to a fair comparison 13

between spectra collected at different resolutions (or equivalently, different numbers of co-14

additions, and hence levels of noise). A second order polynomial was used throughout (P=2). One 15

of the feature selection methods (CovProc-SavGo, described below) optimised N; the remaining 16

three used values for N chosen from inspection of the smoothed spectra: N=8 for Muntons and 17

short-path Grolsch, N=3 for long-path Grolsch. 18

19

The four selection methods will be referred to as: Simple, CovProc, CovProc-SavGo and GA, and 20

are detailed as follows: 21

Simple. This involved defining two regions from a combination of previous experience and 22

inspection of the raw spectra: a ‘biomass region’ to predict OD and DCW, and a ‘chemical region’ 23

to predict ethanol and SG. The chemical region was between 4700 and 4200 cm-1. The biomass 24

region for Muntons and short-path Grolsch was between 10000 and 5500 cm-1, and for long-path 25
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Grolsch between 6200 and 5600 cm-1. The reduction in this range was to avoid artefacts seen in the 1

1st derivative spectra. 2

CovProc. This involved evaluating many PLS-R models, each using increasing numbers of variates 3

(Höskuldsson, 2001; Reinikainen and Höskuldsson, 2003). For ethanol and SG, the variates were 4

chosen in descending order of the magnitude of their associated 1st PLS vector coefficients. For OD 5

and DCW, the variates were chosen in order of increasing wavelength (reducing frequency). This 6

was to encourage selection of variates associated with the sloping baseline shown in Figure 1. The 7

two procedures were essentially equivalent for the Muntons and short-path Grolsch datasets, as the 8

larger 1st PLS vector coefficients were associated with the shorter wavelengths. The subset of 9

variates associated with the model with the overall minimum APC was chosen as the final model. 10

CovProc-SavGo. This involved repeated applications of the CovProc procedure on Savitzky-Golay 11

filtered spectra that used different values for N. The variate subset and N value associated with the 12

model with the lowest APC was chosen as the final model. 13

GA. This involved three steps. First, a genetic algorithm GA (Goldberg, 1989; Kemsley et al., 14

2007; Mitchelle, 1998; Tapp et al 2003) was executed 1000 times. One execution of the GA is 15

termed an epoch. The GA used the following settings: population size of 600; a fixed subset size of 16

8 variates; the top 50% retained for breeding; a mutation rate of 0.04; a fitness score based on the 17

Q2 from block validated multiple linear regression (MLR), using 7 randomly assigned validation 18

blocks with new partitions in each epoch. Breeding likelihood was weighted strongly toward the 19

most successful subsets. For each epoch, the termination criterion was either reaching 100 20

generations, or 30 generations without improvement. The best subset from each generation was 21

retained in the following generation and each offspring within a generation had a unique subset of 22

variates. Second, the 1000 × 8 variate identifiers were pooled and a histogram of the frequency of 23

occurrence calculated. Starting with the most common variate, a peak picking procedure retained 24

variates that had the highest occurrence within a 2 point neighbourhood (5 point window). Third, 25

the best number of variates to be used was found by evaluating PLS models with increasing 26
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numbers of variates, introduced in order of the peak-list. The subset of variates associated with the 1

model with the overall minimum APC was chosen as the final model.2

3

In summarising the performance of the variate subset selection methods, the standard error in 4

prediction (SEP) and validation (SEV) were calculated as the root mean squared residuals from 5

LOO-CV predictions and from predictions of the test set respectively. Similarly, Q and R are 6

Pearson product moment correlation coefficients between actual reference values and LOO-CV 7

predictions (Q), and test set predictions (R) respectively. The bias is the mean residual (predicted -8

actual reference values).9

10

3. Results and discussion11

Table 1 show the correlations between the four brewing parameters in the training sets for both 12

Muntons and Grolsch experiments. As expected, the four parameters are highly correlated: OD and 13

DCW should be correlated, since both are measures of biomass. The difference between original 14

and present gravity is proportional to ethanol concentration, hence there should be a strong negative 15

correlation between SG and ethanol. Increases in biomass should also be closely linked to increases 16

in produced ethanol, and also to a reduction in SG due to the combined effect of increased lower-17

density ethanol and consumption of higher-density dissolved sugars. Table 1 also shows the mean 18

and standard deviations in the parameter for the two experiments. The ethanol and SG values are 19

similar in both experiments, and the biomass indicators slightly higher in the Grolsch experiment.20

21

Figure 1 show the raw spectra over the range studied (10000 cm-1 to 4124 cm-1) for the three 22

analysed datasets. The biomass and chemical regions used in the Simple selection method are 23

marked. Figure 1 also shows spectra collected at the longer path (1 mm path length, 16 cm-124

resolution, 128 co-added scans) on Grolsch supernatant. The presence of bio-matter causes an 25

environmental effect on the NIR spectra, resulting in offsets and sloping baselines. This can be 26

attributed to scattering. In contrast, ethanol and SG are related to specific chemical absorption peaks 27
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(e.g. ethanol and sugars to the region 4200 ~ 4500cm-1 (C-H combination bands, and O-H stretch 1

overtone); ethanol and water to the region 5100 ~ 5200 cm-1 (combination band of O-H stretch and 2

deformation)). The relationships are both direct and indirect: for instance, higher sugar levels mean 3

less water, and subsequently less absorption at the water peaks. A consequence of the strong water 4

absorption at around 5300 cm-1 is very low signal levels in both sample and background spectra. 5

Here, small differences are amplified during conversion to absorption units, making the data in this 6

region appear somewhat unstable. However, given the strong correlations between the four 7

parameters, and the indirect link with relative water absorption, this region may provide some 8

useful information despite the relatively high noise levels. NIR tend to have smooth broad spectral 9

features, which may be captured at lower spectral resolutions. An aim of the comparison between 10

different resolution and path length protocols with similar acquisition times was to determine if the 11

higher-resolution protocol would lead to any advantage in the predictive modelling.12

13

Figures 2 to 4 show the variates selected by CovProc, CovProc-SavGo and GA methods 14

respectively, superposed upon mean filtered spectra from the three datasets, offset for clarity. The 15

SavGo filter settings and corresponding number of variates used in each model are given in Table 2. 16

As a general observation, it can be seen that there is marked variation in the number of selected 17

variates, both between the same parameter from different datasets and between related parameters 18

(OD and DCW, ethanol and SG). 19

20

Figure 2 shows the CovProc results. Note first that here, as in all the selection methods, the data 21

was not explicitly variance scaled. This was to weight preferentially the larger spectral features in 22

an attempt to minimise the potential of incorporating coincidentally favourable noise into the 23

model. Although this deemphasised the biomass influence, Figure 2 shows that applying CovProc 24

to the derivatised spectra resulted in selection of the strong water absorption band around 5300 cm-25

1, rather than, as might have been expected, the 4200 ~ 4500cm-1 region. This water region would 26

normally be avoided; its selection is probably due to a combination of large noisy absorbance 27
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values and an indirect link with the parameters as described above. In terms of utility, CovProc was 1

considerably more laborious to implement than the Simple method, as it involved evaluating many 2

more models. Because of the considerable computation time, CovProc was implemented by first 3

introducing variates in coarse increment (around 25 variates) until all were included, and then 4

successively refining both the variate range and incremental step size, based on plots of the 5

variation in the minimum APC with number of variates used. 6

7

Figure 3 shows the results of the CovProc-SavGo selections. Compared to the CovProc results 8

shown in Figure 2, there is some degree of agreement, in for example the variates selected for OD 9

and DCW. There are also dramatic differences, such as between the variates used in predicting SG 10

in the two Grolsch datasets. Differences in the chosen and optimised N values are also apparent, 11

particularly in the long-path Grolsch dataset. In terms of utility, CovProc-SavGo was a step up in 12

complexity to implement compared with CovProc. Although the general method was the same, 13

there was the added step of searching and refining the N filter setting. Note also that CovProc-14

SavGo was implemented in a naïve manner, with the spectra filtered using N values determined in 15

an outer loop, combined with an inner loop to investigate varying numbers of variates. A careful 16

audit of the computational tasks may suggest opportunities for speeding up the process.17

18

Figure 4 shows the results of the GA selections. This method had the least constraints regarding 19

variate selection, although the choice of smoothed or derivatised spectra was predetermined. A 20

popular application of GA is in the exploration, through feature selection, of multivariate datasets 21

found in for example, metabolomics (Kemsley et al., 2007), and proteomics (Olias et al., 2006). In 22

this study, therefore, it was anticipated that for ethanol and SG, the GA would favour variates 23

associated with the chemical region used in the Simple method. However, this did not happen 24

consistently. Nor is there much commonality between the variates chosen across the beer qualities. 25

Despite the use of block validation in the GA selection process, which better guards against 26

overfitting than LOO-CV, it is likely that some variates with a favourable noise structure were able 27
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to out-compete generically useful features. Note also that in MLR, there is no issue of variance 1

scaling; differences in the range of the variates are absorbed into the values of the regression 2

coefficients. In terms of utility, GA was of comparable complexity to CovProc. The first stage in 3

using the GA, although computationally intensive, was also wholly automated. Implementing the 4

remaining two stages was comparatively straightforward.5

6

Table 2 summarises the performance of the PLS-R analyses for the four selection methods 7

investigated. They all performed reasonably well; compare the SEP and SEV values in Table 2 with 8

the corresponding standard deviations given in Table 1. This performance is as expected, given that 9

the feasibility of monitoring fermentation is well established.10

11

Consider the summary statistics associated with model development (SEP and Q). Comparing 12

Simple with CovProc, we find they performed similarly in terms of both Q and SEP. Comparing 13

CovProc with CovProc-SavGo, we find that in most (11 /12) cases, CovProc-SavGo was better 14

(larger Q, smaller SEP) than CovProc. This is to be expected considering the CovProc-SavGo 15

procedure is an extension of CovProc. However, the improvements in both Q and SEP are marginal, 16

and suggest the extra effort involved in the CovProc-SavGo procedure was not merited. With 17

respect to the GA procedure, this was found not only to be consistently better (both Q and SEP) 18

than the other three procedures, but often markedly so.19

20

Considering the summary statistics associated with the model validation (SEV and R) we find here 21

that all four procedures perform similarly well, although these figures are based on quite small 22

sample numbers (14 Muntons, 15 Grolsch). Comparing the correlation found during model 23

development and validation (Q vs. R), we find some indication that the GA performed worse in 24

validation than expected, which suggests some level of over-fitting at the model building stage. 25

Comparing SEP with SEV confirms the indication of over-fitting in the GA procedure; we find that 26
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the SEV values for all four Muntons ethanol models were poorer than expected from their SEP 1

values. This may be due to the relatively high bias values found here. 2

3

Finally, we find that for all the variate selection methods studied, the long-path Grolsch predictions 4

were in general poorer than might have been expected from their SEP values. This is also apparent 5

when comparing the performance of the short- and long- path models in development and 6

validation. In model development, the short- and long- path models performed comparably (both in 7

terms of Q and SEP). In model validation, we find the short-path models had consistently better 8

correlations and standard errors than their long-path counterparts did. 9

10

4. Conclusions11

From the results of the analysis presented, the main conclusion is that where a ‘fingerprint’ region 12

can be identified, then it advisable to use the Simple approach. There is a clear underlying 13

mechanism (expressed by the Beer-Lambert law) that justifies the use of linear modelling, and this 14

gives confidence behind the ability of models to generalise. An additional benefit of using a 15

continuous spectral region is that other pre-treatments, such baseline correction, can be used instead 16

of using derivatised spectra. In this study, the choice of the selection methods effectively imposed 17

the use of Savitzky-Golay filters: as three of the methods picked variates from the whole spectral 18

range, then the only remedy for suppressing the sloping background when analysing ethanol and SG 19

was to use derivative spectra. Although filtering the spectra can, in principle, improve the predictive 20

ability of the model, choosing the filter settings adds to the overall complexity of the modelling 21

process. Here, we found optimising the filter window width only marginally improved the SEP 22

values, and these improvements were not always transferred to the validation set.23

24

Where a fingerprint region is not known then this analysis suggests using CovProc. Here its 25

performance was found to be similar to the Simple approach, although the selected variates tended 26

to arise from indirect relationships between the modelled parameter and spectral variations. This 27
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would add doubt to the ability of the model to generalise. The method was found to be quite clumsy 1

to implement although this may be remedied with more efficient PLS (e.g. SIMPLS; de Jong, 1993) 2

and cross-validation routines. 3

4

We would not recommend using the CovProc-SavGo approach. This was considerably more 5

involved to use than CovProc, while gaining little improvement in model performance. The work 6

also demonstrates the benefit of setting aside data for validation. From the SEP values, the more 7

involved procedures appeared better. Only by applying them to independent test data was their 8

ability to generalize in a real-world situation revealed. 9

10

Finally, this work suggests that the short-path, high-resolution, low-averaging measurement 11

protocol can offer real benefits in predictive performance, without any additional cost in spectral 12

acquisition time. We conclude that it is comparatively better to collect data at a higher spectral 13

resolution and shorter sample path length, forgoing some amount of noise improvement through 14

signal-averaging.15

16
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1

Table Captions2

3

Table 1. Correlations between four brewing parameters and summary statistics for the Muntons pale 4

ale and Grolsch lager fermentation experiments.5

6

Table 2. Results of comparison between four variate selection methods prior to PLS regression: 7

ntrain, size of training set; ntest, size of test set; savgo, Savitzky-Golay filter settings; nvars, number 8

of variates used; npls, number of PLS factors used; Q, correlation with cross-validated predictions; 9

sep, standard error in prediction; R, correlation with test-set predictions; sev, standard error in 10

validation; bias, mean residual.11
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Figure Captions1

2

Figure 1. Raw spectra, with ‘chemical’ and ‘biomass’ regions marked, for the three datasets studied: 3

Muntons pale ale; Grolsch lager using 0.4 mm path length (short path); and Grolsch lager using 1 4

mm path length (long path). Also shown are spectra from Grolsch lager supernatant to demonstrate 5

the influence of biomaterial on the spectra.6

7

Figure 2. Variates selected by CovProc for the three datasets (Muntons, Grolsch short-path and 8

Grolsch long-path) and four components studied, ethanol, OD SG and DCW 9

10

Figure 3. Variates selected by SavGo-CovProc for the three datasets (Muntons, Grolsch short-path 11

and Grolsch long-path) and four components studied, ethanol, OD SG and DCW12

13

Figure 4. Variates selected by the GA for the (Muntons, Grolsch short-path and Grolsch long-path)14

and four components studied, ethanol, OD SG and DCW15



1

1

Tables2

Muntons Grolsch
Correlations Ethanol SG OD DCW Ethanol SG OD DCW
Ethanol 1.0000 -0.9071 0.8110 0.8339 1.0000 -0.9224 0.8278 0.7827
SG 1.0000 -0.8700 -0.9015 1.0000 -0.8448 -0.8085
OD 1.0000 0.9508 1.0000 0.8613
DCW 1.0000 1.0000

Mean 25.3 1.0236 14.70 2.79 25.3 1.0211 17.03 3.08
St. dev. 16.0 0.0190 7.35 1.41 16.4 0.0186 9.83 2.04

3

Table 1. Correlations between four brewing parameters and summary statistics for the Muntons pale 4

ale and Grolsch lager fermentation experiments.5

Table



2

1

Model Test
Dataset ntrain ntest Parameter savgo nvars npls Q sep R sev bias
Simple
Muntons 58 14 Ethanol 8 2 1 251 1 0.9730 3.59750 0.9631 6.0741 -3.7320

SG 8 2 1 251 2 0.9682 0.00466 0.9830 0.0044 -0.0026
OD 8 2 0 2251 3 0.9630 1.95160 0.9603 2.5536 -1.2805
DCW 8 2 0 2251 3 0.9473 0.45773 0.9528 0.5412 -0.3623

Grolsch short 52 15 Ethanol 8 2 1 251 1 0.9763 3.62579 0.9899 2.4215 -1.1396
SG 8 2 1 251 2 0.9732 0.00435 0.9865 0.0029 0.0002
OD 8 2 0 2251 3 0.9453 2.82014 0.9836 2.7170 1.3747
DCW 8 2 0 2251 4 0.9652 0.55195 0.9829 1.6225 1.3806

Grolsch long 52 15 Ethanol 3 2 1 126 8 0.9857 2.83197 0.9707 4.9569 0.8364
SG 3 2 1 126 2 0.9695 0.00463 0.9809 0.0114 0.0109
OD 3 2 0 151 6 0.9558 2.54779 0.9510 5.3305 3.1929
DCW 3 2 0 151 9 0.9733 0.48670 0.9683 2.8844 2.0577

CovProc
Muntons 58 14 Ethanol 8 2 1 15 3 0.9739 3.53900 0.9668 6.7907 -5.0432

SG 8 2 1 20 3 0.9667 0.00477 0.9858 0.0042 -0.0028
OD 8 2 0 1420 3 0.9664 1.86176 0.9743 2.1200 -1.1697
DCW 8 2 0 403 7 0.9609 0.40157 0.9466 0.4348 -0.0947

Grolsch short 52 15 Ethanol 8 2 1 21 3 0.9727 3.89356 0.9902 2.2656 -0.7497
SG 8 2 1 267 3 0.9678 0.00476 0.9796 0.0039 -0.0017
OD 8 2 0 594 4 0.9583 2.46987 0.9743 3.2708 -0.7529
DCW 8 2 0 1025 8 0.9762 0.46012 0.9791 1.5157 1.1538

Grolsch long 52 15 Ethanol 3 2 1 96 15 0.9688 4.37192 0.8521 12.9233 2.6519
SG 3 2 1 1470 13 0.8825 0.00944 0.9713 0.0049 0.0024
OD 3 2 0 41 3 0.9537 2.60012 0.9477 4.1738 0.8924
DCW 3 2 0 1175 10 0.9784 0.43697 0.9186 3.2967 1.6873

CovProc-SavGo
Muntons 58 14 Ethanol 9 2 1 13 3 0.9742 3.51739 0.9665 6.7405 -4.9621

SG 10 2 1 11 6 0.9717 0.00441 0.9793 0.0049 -0.0030
OD 1 2 0 1460 10 0.9770 1.54861 0.9851 1.5447 -0.7482
DCW 13 2 0 509 9 0.9691 0.35689 0.9361 0.4802 -0.1192

Grolsch short 52 15 Ethanol 4 2 1 31 2 0.9772 3.55906 0.9914 2.5530 -1.3783
SG 31 2 1 2938 5 0.9725 0.00440 0.9859 0.0037 0.0011
OD 1 2 0 978 5 0.9614 2.39079 0.9710 3.3077 -0.4063
DCW 3 2 0 1389 11 0.9807 0.41358 0.9873 1.6616 1.3651

Grolsch long 52 15 Ethanol 17 2 1 225 12 0.9816 3.23474 0.9855 3.7773 2.1974
SG 23 2 1 184 9 0.9668 0.00484 0.9788 0.0040 0.0016
OD 17 2 0 13 6 0.9647 2.27895 0.9398 4.3464 -0.5153
DCW 32 2 0 899 9 0.9782 0.43904 0.8727 3.8248 1.6478

GA
Muntons 58 14 Ethanol 8 2 1 33 6 0.9880 2.40733 0.9481 7.6944 -5.3049

SG 8 2 1 60 7 0.9833 0.00340 0.9709 0.0061 -0.0035
OD 8 2 0 29 11 0.9849 1.25510 0.9836 1.5901 -0.7141
DCW 8 2 0 50 14 0.9855 0.24367 0.9637 0.3579 -0.0679

Grolsch short 52 15 Ethanol 8 2 1 42 8 0.9938 1.86680 0.9845 2.9653 0.7092
SG 8 2 1 34 6 0.9884 0.00287 0.9849 0.0042 0.0021
OD 8 2 0 27 8 0.9787 1.77644 0.9740 3.1932 1.1441
DCW 8 2 0 40 11 0.9931 0.24842 0.9902 1.9002 1.5070

Grolsch long 52 15 Ethanol 3 2 1 18 8 0.9937 1.87907 0.9405 6.0098 -2.0720
SG 3 2 1 7 7 0.9879 0.00293 0.8034 0.0127 0.0035
OD 3 2 0 7 6 0.9752 1.91258 0.9049 5.9581 -2.2734
DCW 3 2 0 11 11 0.9876 0.33119 0.9847 1.7829 1.3302

2

Table 2. Results of comparison between four variate selection methods prior to PLS regression: 3

ntrain, size of training set; ntest, size of test set; savgo, Savitzky-Golay filter settings; nvars, number 4

of variates used; npls, number of PLS factors used; Q, correlation with cross-validated predictions; 5



3

sep, standard error in prediction; R, correlation with test-set predictions; sev, standard error in 1

validation; bias, mean residual.2
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