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ABSTRACT 

 

Advances in rapid prototyping and machining have resulted in reduced lead times for 

injection moulding tooling.   Comparisons between aluminium and stereolithography 

(SL) tools are made with regard to the ejection forces required to push mouldings 

from the tools, heat transfer through the tools and the surface roughness of the tools. 

The results show that ejection forces for both types of tools are increased 

when a longer cooling time prior to ejection is used.  The ejection forces required 

from a rough aluminium tool are considerably higher than those from a smooth 

aluminium tool.  

 SL tools do not appear to be subjected to any smoothing as a result of 

moulding polypropylene parts, this is explained by the fact that the tool’s surface acts 

in a rubber like manner during part ejection.  The rubber like nature of the tool’s 

surface is as a direct consequence of the low glass transition temperature and low 

thermal conductivity of the tool material.  Further potential benefits of the low 

thermal properties of the tool are discussed. 
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BACKGROUND 

 

The emergence of layer manufacturing technologies as a means of producing injection 

moulding tooling has offered significant benefits particularly with regard to the time 

required to create a tool.  SL provides a good example where a layer manufacturing 

technique may be used to rapidly produce injection moulding tooling.  However SL 

tools have limitations especially in terms of their low thermal and mechanical 

properties.   

The low thermal conductivity of SL resin results in a long cycle time 

especially when the recommended procedure of using “cooling, cooling and more 

cooling” (Decelles, 1996) is adopted.  The low glass transition temperature (Tg) of SL 

resins has also been cited as a reason why SL tools fail prematurely under injection 

pressures or, more commonly due to ejection forces (Jacobs, 1996) (see Figure 1).  

Previous research  into the use of SL tools for injection moulding has assessed the 

effects on final moulding properties (Dawson 1998), the bending and shear strength of 

SL tools (Rahmati and Dickens 1997) and the efficacy of conformal cooling channels 

(Janckzky et al 1997), however no other investigations into the tensile tool failure as 

shown in Figure 1 have been published. 

The research reported in this paper has focussed particularly on the tensile 

mode of SL tool failure during part ejection which is illustrated in Figure 1.  Tensile 

failure during ejection occurs when the moulding freezes onto a core feature causing 

high friction between the core feature and the moulding.  The tool will fail under 

tension during ejection if the friction between the core feature and the moulding is 

greater than the tensile strength of the core feature.  



As layer manufacturing techniques have evolved, traditional machining 

technology has improved with the development of high speed machining processes 

and easier machine tool programming.  These developments have also had the effect 

of reducing lead times for tooling and justify the consideration of aluminium tooling 

when assessing rapidly produced injection moulding tools.  Clearly aluminium 

injection moulding tools have higher thermal and mechanical properties than SL tools 

so a comparison of performance between similarly designed tools made from the 

different materials will help to identify the usefulness of SL tools in some context. 

 

Take in Figure 1 

 

 

METHODOLOGY 

  

When making an assessment of the usefulness of SL as an injection moulding 

material the first job is to identify the parameters of interest.  Figure 1 illustrates the 

typical tensile mode of tool failure often encountered with SL injection moulding 

tools.  This tensile failure is dependent on the ejection force required to push the 

moulding from the mould and the strength of the mould. 

 The ejection force is determined by a number of factors and an equation to 

predict it has been developed (Menges, 1986): 

 

Fe = μ Ρ Α 

  

Where  μ  is the coefficient of friction between the mould and moulding. 



 Ρ  is the contact pressure between the mould and the moulding. 

Α  is the area of contact between the mould and the moulding parallel to 

the line of ejection 

 

This equation indicates that important parameters, other than the tool material, which 

will affect the ejection force are the surface roughness of the mould as this will affect 

μ and the cooling time prior to ejection which will affect Ρ.  By using SL and 

aluminium versions of the same tool design, differences in the contact area between 

the mould and the moulding Α may be neglected. 

 The tool strength is based on the cross sectional area of the core feature 

perpendicular to the line of ejection and the ultimate tensile strength of the tool 

material.  SL resins have been shown to weaken dramatically at elevated temperatures 

(Hague, 1997) and so tool temperatures in the SL tool will prove critical to tool 

performance during ejection. 

 

 

Tools produced 

 

Three core inserts were produced for experimentation; one of these was an SL tool 

produced on an SLA250 machine using SL5170 resin.  In order to maintain 

consistency with other SL tools used in other experiments this core was not subjected 

to any manual finishing other than wiping clean of excess resin prior to post curing.  

Two aluminium cores were used, one of these was machined to a smooth surface 

finish and the other was machined with a rougher surface finish in order to replicate 

as closely as possible the surface roughness on the SL tool. 



 One SL and one aluminium cavity insert were produced to be used with a core 

of the same material for moulding.  Figure 2 shows a picture of the cores and cavities 

used along with a complete moulding. 

 

Take in Figure 2 

 

Injection Moulding cycles 

 

The tooling inserts shown in Figure 2 were housed in a die set which was fixed to a 60 

ton Battenfeld injection moulding machine.  Table I shows the parameters used to 

mould polypropylene parts using the different tooling materials.  These parameters 

were based on previous injection moulding experiments using polypropylene in 

stereolithography tools (Rahmati, 1997).  The cooling time prior to ejection was 

varied from shot to shot to assess its effect on the ejection force. 

 When moulding with the SL core the temperature at the centre of the core was 

allowed to cool to 55oC, which is below the Tg, before the next shot was injected;   

this minimised the possibility of tool failure during injection. 

 

Take in Table I 

 

Measuring Ejection Forces 

  

The die set included three ejector pins and each of these had a load cell housed behind 

it as shown in Figure 3.  This allowed the ejection forces developed through each of 

the three ejector pins to be measured and added together giving the total ejection 

force.  The total ejection force was the tensile force which was applied to the core 



each time a part was ejected.  The readings from the load cells were recorded using a 

data acquisition set up at a frequency of 1000Hz for each load cell.  The ejection force 

was recorded for each part which was ejected. 

 

Take in Figure 3 

 

Surface Roughness Measurements 

 

A surface profilometer was used to measure the surface roughness of the cores’ 

surfaces prior to use.  A total of 12 measurements were made from pre-determined 

positions on each core to ensure that the same points on each core were measured.  

Further measurements were taken from the cores’ surfaces after a number of shots had 

been moulded and ejected in order to show any changes caused by moulding.  

 

 

Measuring Temperature Cycles 

 

In the SL core temperature readings were taken from two thermocouples which were 

located at the edge and centre of the core as shown in Figure 4.  This allowed a rough 

idea of the temperature distribution across the cross section of the core to be inferred;  

it also gave an idea as to how quickly heat was transferred across the low thermal 

conductivity tool.  

 In the smooth aluminium core temperature readings were taken from a 

thermocouple located at the centre of the core as with thermocouple number 1 shown 

in Figure 4.  This allowed a comparisson of the rate at which heat passed through the 



aluminium core to compared with that of the SL core.  No thermocouple was used in 

the rough aluminium core as it was assumed that the heat transfer in both aluminium 

tools would be identical to each other.  All temperature readings were recorded at 1 

second intervals as this was found to be sufficient to accurately record changes in 

temperature. 

 

Take in Figure 4 

 

RESULTS 

 

Over 50 mouldings were produced using each of the three core inserts with no visible 

signs of damage to either the tools or the mouldings.  This indicates that all the tools 

should be able to be used to produce considerably higher quantities of parts so long as 

the same processing parameters are used. 

 

Measured Ejection Force 

  

Figure 5 shows the ejection forces measured from the SL core using different cooling 

times prior to ejection.  As expected longer cooling times resulted in higher ejection 

forces due to the increased contraction of the moulding onto the core.  For any given 

cooling time prior to ejection there was some variation in the measured ejection forces 

of 50 to 180N and the reason for this variation is unclear. 

 

Take in Figure 5 

 



Figure 6 shows the ejection forces measured from both of the aluminium cores using 

different cooling times prior to ejection.  The cooling times used with the aluminium 

cores were shorter than those used with the SL cores due to their higher thermal 

conductivity.  As with the SL core, higher ejection forces were experienced with 

extended cooling times prior to ejection.  One exception to this can be seen with the 

rough aluminium core where the mean ejection forced measured using the longest 

cooling time of 40s was lower than the mean recorded force when a 30s cooling 

period was used.  The reasons for this decrease in ejection forces with an increased 

cooling time prior to ejection are unclear but could be attributed to the inherent 

variation in results noted in these experiments. 

The most striking observation from Figure 6 is the effect of the surface 

roughness of the tool on the ejection force using aluminium tools.  The ejection forces 

from the rough aluminium tool were generally between two and four times the values 

of those from the smooth aluminium core.  It is also worth noting that the effect of 

increased cooling times does not appear to be as marked for the smooth core as for the 

rough core. 

 

Take in Figure 6 

 

 

 

 

 

 

 



 

 

Surface Roughness measurements 

 

Table II shows the mean surface roughness measurements taken from each of the 

cores both prior to and after moulding.  The mean Ra value for the SL core prior to 

moulding is consistent with previous measurements (Reeves, 1997) however the fact 

that there appeared to be no change after moulding was surprising.  It had been 

expected that the SL core surface would be subjected to some smoothing particularly 

as mouldings were ejected. 

 The smooth aluminium tool was shown to have a 2 micron Ra prior to 

moulding which was far lower than that for the SL tool.  There appeared to be no 

change in roughness as a result of moulding 50 parts on the smooth tool. 

 The rough aluminium tool had been machined to replicate the surface 

roughness of the SL tool as closely as possible.  Unfortunately the closest possible 

roughness to be machined was almost two times that of the SL tool.  The lower mean 

surface roughness after moulding suggests that the rough aluminium tool may have 

been subjected to some smoothing as a result of moulding, however the difference 

may be attributed to the inherent variations in measurements given that the 

repeatability of results from the profilometer could only be taken as +/- 1 to 2 

microns. 

  

Take in Table II 

 
 



Measured Temperature Cycles 

 

Figure 7 shows the temperature cycles for a single moulding using the SL tool and a 

number of mouldings using the smooth aluminium tool.  The fact that a number of 

moulding cycles for the aluminium tool were performed in the same time as a single 

moulding cycle with the SL tool highlights the differences in heat transfer between 

the tools. 

 

Take in Table 7 

 

 The temperature cycle at the edge of the SL tool rose quickly to a peak of 

98oC 15 seconds after the start of melt injection.  This sharp rise was as expected as 

the surface of the tool was in direct contact with the polypropylene which was 

injected at 185oC.  The temperature at the edge of the SL tool then fell slowly 

although it is significant to note that the temperature remained above the Tg for over 

120 seconds. 

 The temperature cycle at the centre of the SL core actually fell by 2oC for the 

first 20 seconds after melt injection.  The reason for this fall was due to the thermal 

lag of the material which was still cooling at the start of the moulding cycle.  The low 

thermal conductivity of the SL resin meant that it took over 20 seconds before the 

effect of the hot polypropylene at the edge of the tool was transferred to the centre of 

the 16mm diameter tool.  The temperature then slowly rose to a peak value of 68oC 

120 seconds after injection before slowly cooling until ready for the next shot. 



 The temperature cycle at the centre of the aluminium tool was far shorter than 

that for the SL tool and rose to a peak of only 50oC.  A quicker cycle would probably 

result in higher starting and peak temperatures however this was not investigated. 

 

 

CONCLUSIONS 

  

All three core inserts were used to successfully injection mould over 50 parts in 

polypropylene.  There appeared to be no damage to either the tools or the mouldings 

suggesting that, so long as the moulding parameters remained unchanged, catastrophic 

tensile failure should not occur.  This means that the maximum batch size moulded 

would be limited by the length of the moulding cycle rather than by tensile tool 

failure.  

 

Processing Parameters 

 

In order to successfully injection mould parts with the SL core it was necessary to use 

different processing parameters than those required with the aluminium cores.  In 

general lower processing parameters such as injection speed, temperature and 

pressure were required with the SL core to avoid tool failure during injection.  It is 

worth noting that the low thermal conductivity of the SL tool facilitates injection 

using these lower parameters as the risk of shutting off is reduced. 

 

 



Ejection forces 

 

As expected longer cooling times resulted in higher ejection forces for all the tools 

due to increased contraction and therefore greater contact pressure between the 

moulding and the core.  This suggests that, in order to minimise the risk of tensile 

failure when ejecting parts from SL cores, as short a cooling time prior to ejection as 

possible should be adopted.  The adoption of minimum cooling times prior to ejection 

is in contrast to the current recommended procedures for using these tools. 

 The results from the aluminium tools highlighted the dramatic effect of 

surface roughness on ejection forces.  This suggests that by finishing SL tools to give 

a smooth surface reduced ejection forces may be achieved, this would also have the 

effect of minimising the risk of tensile core failure during part ejection. 

 

 

Surface Roughness 

 

The most surprising result from the surface roughness measurements was the fact that 

there appeared to be no change in the surface roughness of any of the tools as a result 

of moulding over 50 parts.  This suggests that tool wear is not an issue when 

moulding small batches from polypropylene with these types of tools. 

 The fact that the SL tool showed no signs of wear was most surprising given 

the comparatively soft nature of the tool material.  One possible reason why the SL 

tools showed no signs of wear is because the surface of the tool was above its Tg 

during ejection.  This meant that the tool’s surface was rubbery and compliant and 

therefore able to deform elastically as the moulding was pushed over it.  This 



indicates that the low Tg and low thermal conductivity of the SL tool material actually 

work together to ease part ejection. 

 

 

Temperature Cycles 

 

The effects of the different thermal conductivities of the two tool materials were 

evident in the temperature cycle measurements.  The slower heat transfer and 

resultant long time cycles experienced with the SL tool suggest that, even if an SL 

tool may withstand the rigours of large runs, there will be a limit on feasible batch 

sizes due to the time taken to produce a single moulding.  The exact limitations of 

such a batch size will depend on the times and costs required to produce alternative 

tools and is not within the remit of this research.  

 The low thermal conductivity of the SL tool also had the effect of delaying 

thermal weakening of the tool immediately after melt injection.  This suggests that, 

particularly for larger cross sectioned features, a short cooling time prior to ejection 

will minimise the risk of tensile tool failure during ejection.  Once again, this finding 

contradicts the current recommended procedures for a long wait prior to ejection. 

 

 

DISCUSSION 

 

The experimental results highlight a number of differences between aluminium and 

SL tools many of which may have been expected and some which had not been 

anticipated.  Clearly, for some applications and with the correct processing conditions, 



SL tooling may be used produce parts as successfully (if not as quickly in terms of 

cycle times) as aluminium tools.  Given the short lead times and relatively low cost of 

producing SL parts, especially with complex geometries, their use as injection 

moulding tools will prove beneficial in some cases.  The long cycle times associated 

with SL tools limits their effectiveness for longer runs and the use of higher melting 

temperature moulding materials may prove prohibitive. 

 Contrary to conventional thought the low thermal conductivity of SL resin 

may be seen to offer some advantages including the delay of thermal weakening of 

the tool and allowing the tool’s surface to remain above its Tg for an extended period 

to ease ejection.  In addition the low thermal conductivity may allow the successful 

moulding into deep thin slots without cold shutting.  This is particularly beneficial as 

long thin slots may be easily produced by SL but not by conventional milling.  

Furthermore the low thermal conductivity allows low pressure injection which may 

enable large parts to be produced using lower pressures on smaller injection moulding 

machines which would be difficult with metal tools.  An example where this might 

prove beneficial is when producing short run prototype tooling for moulding on a 

small machine generally used for prototyping preventing unwanted downtime on a 

larger machine which is used predominantly for production. 
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Figure 1.  Moulding grips core feature which is pulled off during ejection. 

 

 

Figure 2.  Cores and cavities used along with a complete moulding.  

 



 

 

 

Figure 3.  Load cell located behind ejector pin to measure ejection forces 

 
 
 

 

 

 

 

 

 

 

 

Figure 4.  Location of the thermocouples within the core 
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Figure 5.  Graph showing effect of cooling time on ejection force with SL tool 

Figure 6.  Graph showing effect of cooling time on ejection force with rough and 

smooth aluminium cores. 
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Figure 7.  Graph showing temperature cycles from the start of melt injection in SL 

and aluminium tools 
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Moulding Process / Parameter SL Tool Aluminium Tool 

Mould Closing Pressure (MPa) 5 40 

Melt Temperature (oC) 185 190 

Injection Speed (ms-1) 0.08 0.32 

Injection Pressure (MPa) 10 40 

Follow Up Pressure (MPa) 0 0 

Cooling Time (s) 20 – 480 5 – 45 

Ejection Speed (ms-1) 0.8 0.8 

mould open time (s) 360 5 

 

Table I.  Injection Moulding Process Parameters 

 

 

 Mean Ra prior to 

Moulding (um) 

Mean Ra After Moulding 

(um) 

SL 6 6 

Smooth aluminium 2 2 

Rough aluminium 11 10 

 

Table II.  Surface roughness measurements both prior to and after moulding 

 

 

  



 

 

 


