A Simple Novel Device for Air Sampling by Electrokinetic Capture

2015-11-17T20:25:56Z (GMT) by Jarrad Hampton-Marcell

A variety of different sampling devices are currently available to acquire air samples for study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrode assembly have been re-designed from air cleaning technology to provide an average air flow of 120 liters per minute. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 micron polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by qPCR there was 100% sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard”. Further, analysis bacterial 16S RNA by amplicon sequencing of showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high volume flow rate with no moving parts and collect particles down to the sub-micron range. The performance of the device is substantially equivalent to capture by pumping through a filter for microbiome analysis by quantitative PCR and amplicon sequencing.