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Abstract A second-order and two-scale method is firstly presented in cylindrical coordinates, which is 

inspired by that the periodically laminated composite cylinder shows the periodicity characteristic in 

radial direction. This method is established for predicting mechanical properties of cylindrical 

structure, including stiffness parameters, strains, stresses and elastic limit loads. By defining four 

different operators and introducing an extended fourth-rank tensor, a uniform balance system of 

elasticity in cylindrical coordinates is expressed compactly. For this elastic model, the second-order 

and two-scale analysis formulations in cylindrical coordinates are developed by means of periodical 

material distribution in radial direction. Further, the second-order and two-scale expressions of the 

stains and stresses are derived for the hollow cylinders subject to uniform pressures and linearly 

varying pressures in axial direction, respectively, and the procedure of algorithms is described in detail. 

Finally, the numerical results for both typical structures are given, and compared with the results 

calculated by the software ANSYS. The agreements indicate that the second-order and two-scale 

method is effective and credible. It can be used to predict the mechanical performances of cylindrical 

structures. 

Keywords: Multi-scale modeling; Cylindrical coordinates; Finite element analysis; Mechanical 

properties; Laminated cylinder 

1. Introduction 

Because the composites have complex micro-structures and heterogeneous parameters, it is 

difficult to predict the displacements, strains and stresses by the traditional finite element 

methods, due to the difficulty of generating FE meshes and the large computing capacity. In 

early 1970’s, I.Babuska and J.L.Lions et al. presented the homogenization method for elastic 

structures of composites 
[1, 2]

. And the homogenization method is effective to predict the 

effective parameters of composites, but not enough criterion for the strength of composites 
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since the method doesn’t reflect the local strain and stress field of structures. After that, 

J.L.Lions, O.A.Oleinik, J.Z.Cui and L.Q.Cao et al. presented and developed the multi-scale 

analysis method to predict the physical and mechanical properties of composites 
[3-5]

. The 

multi-scale analysis method reflects not only the global performance of structures and loads, 

but also the local behavior. And it can solve the difficult problem come from composites by 

computing the global structure and the local basic configuration respectively. However, the 

preceding methods were established in rectangular coordinates. Based on preceding works, a 

new multi-scale method in cylindrical coordinates is firstly established and applied to predict 

mechanical performance of composite cylindrical structures. 

With the development of composites, the Laminated Composite Cylindrical Structure 

(LCCS for short) is extensively applied to a variety of engineering and industrial products, 

such as aircraft, aerospace, oil and gas pipeline and pressure vessel, etc, because of its low 

weight, high reliability, safe failure mode and other advantages. Most of LCCSs are made by 

repeatedly arranging a group of laminas with different ply angles and/or materials, which can 

be seen as a periodical arrangement. This kind of composite structure is called periodically 

laminated composite cylinder. This cylinder has a lot of thin laminas, so it is difficult to 

predict the mechanical performances by traditional numerical methods. Moreover, this kind of 

structure shows the periodicity characteristic only in radial direction. Considering above 

reasons, the Second-order and Two-scale Method in Cylindrical Coordinates (STMCC for 

short) is established in this paper based on homogenization theory. 

The rest of this paper is organized as follows: In Section 2, the mathematical models of 

LCCS are presented, including geometrical model and basic equations. The second-order and 

two-scale analysis formulation for mechanical behaviors of composite cylinders is given in 

Section 3. Section 4 is devoted to the expansions on the strain and stress tensors for two kinds 

of typical axis-symmetric cylindrical structures. In Section 5, the procedure of STMCC based 

on FEM is stated. And the numerical results for mechanical behaviors of LCCS in different 

loading conditions are shown, and compared with the results calculated by ANSYS software 

in Section 6. 
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2. Mathematical model 

2.1 Geometrical model 

The geometrical model of LCCS is defined firstly, the inner radius is 0r , the outer radius 

is 1r , and 001  rr . This LCCS is made by repeatedly arranging a group of laminas in 

radial direction. A basic configuration layer is composed by some thin laminas with different 

ply angles and/or materials, its thickness is  , where 01 rr  . In every basic 

configuration of LCCS, the arrangement of laminas is the same, shown in Fig. 1. 

 

Fig. 1. A geometrical model of LCCS 

2.2 Basic equations of elasticity in cylindrical coordinates 

Stress Balance Equation: 
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Geometry Equation: 
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Constitutive Equation: 

jiji c                                  (3) 

where 6,,2,1, ji , ),,,,,(),,,,,(  654321 zrzrzr   , 

),,,,,(),,,,,(  654321 zrzrzr   . 

According to (3) and (2), the equation (1) becomes the following equations with respect to 

the displacement: 
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rc

r

u

r

uu

r
rc

z

u
rc

r

uu

r
rc

r

u
rc

r

r

u

z

u

r

u
rc

u

rz

u
rc

r

u

r

uu

r
rc

z

u
rc

r

uu

r
rc

r

u
rc

z

r

u

z

u

r

u
rc

u

rz

u
rc

r

u

r

uu

r
rc

z

u
rc

r

uu

r
rc

r

u
rc

r

r

u

z

u

r

u
rc

u

rz

u
rc

r

u

r

uu

r
rc

z

u
rc

r

uu

r
rc

r

u
rc

r

















































































































    (6) 
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Define
rzrr

1
,,

1
, 4321 

















, then the above three equations are rewritten 

as follows 

  0)()(  ihkijhkj fura 
                        (7) 

where 2,3,1, hi , 3,4,2,1, kj  and 

321 ,, uuu  represent


ru ,


u and


zu  respectively. 

The coefficient tensors 

ijhka  correspond to the constitutive parameters 



ijc . From (4) to (7), 

the following correspondence is obtained 

 





















































































































0

0

0

0

0

0

0

0

0

0

0

0

       

6462666564666564636261

2422262524262524232221

1412161514161514131211

6462666564666564636261

5452565554565554535251

4442464544464544434241

6462666564666564636261

5452565554565554535251

4442464544464544434241

3432363534363534333231

2422262524262524232221

1412161514161514131211

343434243414341334323421343134233412343334223411

243424242414241324322421243124232412243324222411

143414241414141314321421143114231412143314221411

133413241314131313321321133113231312133313221311

323432243214321332323221323132233212323332223211

213421242114211321322121213121232112213321222111

313431243114311331323121313131233112313331223111

233423242314231323322321233123232312233323222311

123412241214121312321221123112231212123312221211

333433243314331333323321333133233312333333223311

223422242214221322322221223122232212223322222211

113411241114111311321121113111231112113311221111



















































ccccccccccc

ddddddddddd

ddddddddddd

ccccccccccc

ccccccccccc

ccccccccccc

ccccccccccc

ccccccccccc

ccccccccccc

ccccccccccc

ccccccccccc

ccccccccccc

aaaaaaaaaaaa

aaaaaaaaaaaa

aaaaaaaaaaaa

aaaaaaaaaaaa

aaaaaaaaaaaa

aaaaaaaaaaaa

aaaaaaaaaaaa

aaaaaaaaaaaa

aaaaaaaaaaaa

aaaaaaaaaaaa

aaaaaaaaaaaa

aaaaaaaaaaaa

aijhk

(8) 

where )(34 raij


equal to zero and 


mmm ccd 211  ， 

mm cd 42 2 ， ,6,2,1 m . 

3. Second-order and two-scale analysis formulation 
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For the periodically laminated cylindrical structure, the material is homogeneous in 

circumferential and axial direction, but periodical in radial direction. So, for the investigated 

structure  , )t(
t




r
Z

z Q  , where z  and   respectively represent the 

range of   and z  in the whole cylindrical structure, and rQ  is unit cell in radial direction 

and  1,0rQ . 

We consider the following elasticity boundary value problem: 

  

 
 



















2121

2

1

  ,0

),,(                      ),,(),,()()(

),,(                                                                    0),,(

),,(     ),,(),,()(),,(



zrzrpzrurau

zrzr

zrzrfzrurazrA

ihkijhkj

ihkijhkj

i














u

u

      (9) 

It is temporarily supposed that there exist the homogeneous effective coefficient tensors 

 ijhkâ  in global  , where 2,3,1, hi ， 3,4,2,1, kj . Further the vector-valued 

displacement ),,(0 zr u  is defined as the solution of the following homogenization 

problem:  

  

 
 



















2121

2

1

0

0

  ,0

),,(                      ),,(),,(ˆ)(

),,(                                                               0),,(

),,(                            ),,(),,(ˆ



zrzrpzruau

zrzr

zrzrfzrua

ihkijhkj

ihkjijhk









u
      (10) 

We will give the computational formula on  ijhkâ  later. 

Since the periodical basic cell of LCCS has   thickness and there exists the periodicity 

only in radial direction, let 


 0rr 
  represents the local coordinate in rQ . Then,  

)()( 0 



ijhkijhkijhk a

rr
ara 







 
                      (11) 

),,,(),,( zrzr  uu                           (12) 

Suppose that ),,( zr 
u  is expanded into following form: 
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),,,(),,,(),,,(),,,(                

),,,(),,(

3

2

2

10 zrzrzrzr

zrzr





Puuu

uu




     (13) 

Due to 


 0rr 
 , respecting 

















 hhh u

r

u

r

u 1
，












 hh uu
，

z

u

z

u hh








 

               (14) 

The following equality is obtained: 

 

 kijhkj

ijhjkhkihi

i

a

aaaA













































 

)(        

)()()(

0

11

1

11

2















     (15) 

It also can be written as 

iiii AAAA 2

0

1

1

0

2   
                        (16) 

where 

 

 






















































kijhkj

i

ijhjkhki

i

hi

i

aA

aaA

aA

)(

)()(

)(

2

111

110













                 (17) 

Substituting (13) and (16) into (9) one obtains the following equality: 

 


 
   

),,(         

),,,(),,,(),,,(            

),,,(),,,(),,,(         

),,,(),,,(),,,(            

),,,(

021120

0

0110

1

00

2

3

2

2

1

02

0

1

1

0

2

zrf

zrAzrAzrA

zrAzrAzrA

zrzrzr

zrAAAA

i

iii

iii

iiii


























uuu

uuu

Puu

uu

    (18) 

The equality (18) holds for any 0 . Firstly, by comparing the coefficients of 
2  in 

both sides of equality (18), the following equation is obtained: 

0),,,(00 zrAi u                          (19) 

The equation (19) has a special solution as follows 
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),,(),,,( 0

0 zrzr  uu                        (20) 

which only depends on macro-variable. Secondly, by comparing the coefficients of 
1  in 

both sides of equality (18), the following equation is obtained: 

0),,(),,,( 0

110  zrAzrA ii  uu                   (21) 

namely 

 ),,(
)(),,,(

)( 01,1

11 zru
azru

a hk
hkih

hi 
































          (22) 

Let )(
1
N  is the solution of the following problem: 

































rhm

r

mihm

hi

QN

Q
aN

a



















                                             0)(

     
)()(

)(

1

11 1

11
           (23) 

where )(
1
N )4,3,2,1( 1   are matrix valued functions in unit cell rQ . It has the 

following forms 



















)()()(

)()()(

)()()(

)(

332313

232221

311211

111

111

111

1

















NNN

NNN

NNN

N  

In terms of Lax-Milgram lemma, Korn’s inequality and the symmetry and regularity of the 

coefficient matrix  


















666461

464441

161411

11

ccc

ccc

ccc

a hi  obtained from (8), it is easy to prove that above 

problem (23) has the unique solution. Substituting (23) into (22) one obtains  

   0),,()(),,,()( 0

,111 11


















zruNzrua mhmhhi 





         (24) 

The equation (24) has a specific solution with the following form 

 ),,()(),,,( 0

1 11
zrzr   uNu                    (25) 

Inspired by [6, 7], let 
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 













rQ

kph

ijpijhk

r

ijhk d
N

aa
Q

a 





)(
)()(

1
ˆ

1 , rQ            (26) 

Since the right side of the equality (18) is independent on  , let the coefficient of 
0  in 

the left side of (18) equal to ),,( zrfi  , that is 

),,(),,,(),,,(),,,( 0

21120 zrfzrAzrAzrA i

iii   uuu        (27) 

Substituting the expressions of 
iA0 ,

iA1 ,
iA2  and 1u  in (17) and (25), and homogenized 

equation (10) and homogenized coefficient (26) into (27), one obtains the following equality: 

 

 

 

)(ˆ)()(             

)(
)(

)()()()(          

),,()()()(
)(

)(             

)()()(
),,,(

)(

00

0

1

0

1

00

1

0

1

,2

11

1

1

11

1

1

11

hkjijhkhkjijhk

mj

hm

ijhmkhmhki

ihkijhkjm

hm

ijhj

mkhmhki

h

hi

uaua

u
N

auNa

zrfuau
N

a

uNa
zru

a























































































   (28) 

Let )(
21
N  is the solution of the following problem: 

 














































rm

rhmhi

hm

hi

mimi

hm

hi

QN

QNa
N

a

aa
N

a




























                                                            0)(

      )()(
)(

)(      

ˆ
)(

)(

21

21

2

1

2121

21

11

11

       (29) 

where )(
21
N )4,3,2,1,( 21   are matrix valued functions. It has the following forms 



















)()()(

)()()(

)()()(

)(

333213

232221

311211

212121

212121

212121

21

















NNN

NNN

NNN

N  

Similar to (23), it is easy to prove that (29) also has the unique solution )(
21
 mN . 

Substitute (29) into (28), then 

  0)()(),,,()( 0

,211 2121


















mhmhhi uNzrua  





       (30) 
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The equation (30) has a specific solution with the following forms 

 ),,()(),,,( 0

2 2121
zrzr   uNu                 (31) 

Summing up, one acquires the following theorem. 

Theorem 3.1. The mechanical problem (9) of LCCS has the formally approximate solution as 

follows: 

   ),,()(),,()(),,(),,( 0200

212111
zrzrzrzr  


uNuNuu   (32) 

where  3,4,1,2,,, 2121
  are differential operators and 

1
r


 


, 

2

1

r 


 


,

3
z


 


,

4

1

r
  , and ),,(0 zr u  is the solution of the homogenized problem 

(10), called as the homogenization solution, )(
1
N  and )(

21
N  are the solutions of the 

problems (23) and (29), respectively. 

Remark 3.2. From (10), the homogenized equation of plane axis-symmetric problem without 

body force is reduced to 

0)ˆˆ(
1

)ˆˆ(ˆ
2

0

11141414

0

111414112

02

1111 









r

u
aa

r

u

r
aa

r

u
a rrr            (33) 

Suppose that the material is isotropic in each lamina of LCCS. Then from the Green’s 

formula and the equation (23), one obtains 

 

















rQ

r

dNNa
Q

aaa

aaa




 )()()(
1

ˆˆˆ

ˆˆˆ

4111111411111111141414

111414111111

        (34) 

Let 11141411111111
ˆˆˆ aaac   and 1114141422

ˆˆ aac  , then usually 2211 cc  . In other words, 

although the material is isotropic in each lamina, the homogenized parameters of LCCS don’t 

show isotropy under cylindrical coordinate system. Then the equation (33) is rewritten as 

0
1

2

0

22

0

112

02

11 









r

u
c

r

u

r
c

r

u
c rrr                    (35) 

4. Formulation for strains and stresses of two typical problems 
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4.1 Plane axis-symmetric problem of cylinder with uniform pressure 

Considering the LCCS subject to the uniform inner and outer pressures, shown in Fig.2, the 

following loading condition is given 









0    ;     :

0    ;     :









rbr

rar

pbr

par
                    (36) 

 

Fig. 2. A cylindrical structure subject to inner and outer pressures 

The balance equation (35) without body force is obtained from remark 3.2. There exists the 

following solution from elasticity mechanics 

   
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k

b

k

kk

kk
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r
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rpbpa

abckc
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1111 11

22
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1112

11

22

1112

0 


 











  (37) 

where 
11

22

c

c
k  , the homogenized elasticity coefficient of torus is 










2221

1211
C

cc

cc
. 

From (32), the displacement 

ru  has the formally second-order approximate expression as 

follows 

   )()()()()()( 0

11

20

11

02,

212111
ruNruNruru rrrr 

         (38) 

where )(
1
N  and )(

21
N  are the solutions of the problems (23) and (29), respectively. 

In order to unify the symbol in this paper, let  1,4,,, 2121
  ，

rr

1
, 41 




 . 

Substituting (38) into Geometry Equation one obtains the following strain expressions 
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  (39) 

The elasticity coefficient satisfies )()( 
ijij crc   according to (11) and (8). Based on 

Hooke’s law, the stresses are evaluated 
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 (40) 

Substituting (37) and operators 
rr

1
, 41 




  into (39), the strain expressions are 

rewritten as follows in detail 
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 (41) 

where  
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
 0rr 
 . 

Furthermore, by the above strains expressions (41) and Hooke’s law, the stresses can be 

evaluated anywhere in global cross section of structure. Then based on the first-ply failure 

criterion, the elastic limit load of LCCS can be evaluated. 

4.2 Spatially axis-symmetric problem of cylinder with linearly varying pressures 

A LCCS bears linearly varying inner and outer pressures as shown in Fig.3, where the 

inner and outer radiuses of cylinder are a  and b , respectively. And ba pp ,  are the inner 
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and outer pressures at 0z  . lplp ba

 ,  are slopes of the inner and outer pressure 

variation, respectively. And the boundary conditions are satisfied 
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Fig. 3. The zr   section of cylinder subject to linearly varying inner and outer pressures 

From [8, 9], the stress solutions of cylinder made by isotropic materials are found 
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Using constitutive equation (3) and geometry equation (2), the following homogenization 

displacements are gotten 
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where E  is the Young’s modulus,   is the Poisson ratio, and C  is a constant. 

In terms of (32), the displacement 

ru  has the formally second-order approximate 

expression as follows 

)()()()( 02002,

212111 mhmmhmhh uNuNuu 
              (45) 

Substituting (45) into geometry equation (2), we have the strain expressions 
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Then the stress expressions can be also evaluated based on the expressions (46) and Hooke’s 

law. 

Moreover, one finds 4,3,2,1  2,3,,1  ,  ; 0 311334  jiaaa ijijij  from (8) and obtains 
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 0rr 
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Making use of the stress-strain relation, one can evaluate the stresses anywhere inside the 

cylinder. And then according to the yield criterion, the elasticity critical load of cylinder 

subject to linearly varying pressure can be evaluated. It is worthy of note, if the homogenized 

stiffness parameters are not isotropic, the solutions (43) and (44) don’t hold, herewith, each 

formula of (46)-(50) is unsuitable. 
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Similarly, one can obtain the expressions of strain and stress for LCCS subject to other 

loads and constrains. 

5 Finite element computation of the second-order and two-scale method in 

cylindrical coordinates 

5.1 FE approximate formulas 

1. FE solutions for )(
1
 mN  and the approximate stiffness coefficients h

ijhkâ . 

From (26) the approximate elasticity stiffness coefficients  h

ijhkâ  are calculated 

after the approximate solutions )(
1


h

mN  of problem (23) are obtained. 

From the variational principles it follows that the problem (23) is equivalent to the 

following virtual work equation 
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Thus the approximate 1,2,3,4) ,3,2,1(  )( 11
  mh

mN  are determined by solving the 

following FE virtual work equation on FE space  0)(/)()(0  rr
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Actually )(
1


h

mN  are obtained by using general FE programs. Then the approximate 

stiffness coefficients  ˆh

ijhka  are evaluated by below formula 
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2. FE computation of )(
21
 mN . The FE solutions )(

21


h

mN  are obtained by 

solving the following FE virtual work equation on unit cell rQ  corresponding to 

the FE meshes for 
1

 ( ) h

m N . 
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 (54) 

3. Homogenization Solution. From elasticity mechanics the homogenization solution 

0
u  can be exactly obtained for typical cylindrical axis-symmetry problem or 

numerically evaluated by solving the FE virtual work equation corresponding to (10) 

on global  . 

4. Approximate displacement, strain and stresses. The two-scale approximate 

solutions of displacement, strains and stresses anywhere on the structure   are 

evaluated by following formulas 
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 zrzrzrjizrrczr h

jij

h

i ,,,,,)6,5,4,3,2,1(,   ),,,()(),,( ,2,2        (57) 

5.2 Algorithm procedure 

The algorithm procedure of the second-order and two-scale method for predicting the 

mechanical properties of LCCS is stated as follows 

1. To determine the material parameters of each lamina in LCCS and to establish the FE 

model of unit cell. 

2. To solve the FE virtual work equation (52) on unit cell rQ  to obtain )(
1


h

mN , and then 

evaluate the constitutive coefficients  h

ijhkâ  by formula (53). 

3. To evaluate the FE solutions )(
21


h

mN  by solving the FE virtual work equation (54) on 

unit cell rQ , using the same FE meshes in step (2) as well as the stiffness matrix and its 

decomposition form. 

4. To obtain the homogenization displacement ),,(0 zr u  for typical problem, or numerical 

displacement ),,(0, zrh u  for general loads and constraints by using FEM software. 

5. To compute the displacements ),,(,2 zrh u , strains ),,( zrh

j   and stresses ),,( zrh

i   

at arbitrary point ),,( zr   of the structure   by (55), (56) and (57). 

6. To evaluate the elastic limit load of LCCS according to the first-ply failure criterion. 

6 Numerical experiments and results 

In order to verify the feasibility and validity of the second-order and two-scale method in 

cylindrical coordinates for predicting mechanical properties of LCCS, we have developed the 

software about the STMCC, and made some numerical experiments for the mechanical 

parameters of LCCS. Here some numerical results are shown and compared with the results 

calculated by ANSYS software. 

Example 1: 

For the plane axis-symmetry problem of the hollow cylinders subject to uniform pressures, 

which is stated in Section 4.1, the stiffness parameters are computed, the elastic limit load of 
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LCCS is predicted and the strains and stresses are solved by STMCC. And then by analyzing 

the numerical results, the relation between the limit inner pressure and the size of the structure 

is obtained. The material of single lamina is made from carbon fiber-reinforced epoxy. The 

thickness of single lamina is 0.125mm and the rule of arrangement is [45°/0°/-45°/90°]10. The 

global thickness of LCCS is 5mm and the inner radius is 50mm. The inner pressure is 20Mpa 

and the outer pressure is zero. Table 1 summarizes the stiffness and strength parameters of 

single composite lamina. One can obtains the equivalent stiffness properties of every lamina 

with different ply-angles by coordinate transformation 
[10, 11]

, shown in Table 2. 

Table 1. Material properties of T300/5208 graphite-epoxy composite material 

Mechanical properties Values Strength properties Values 

E1 (GPa) 181 Xt (MPa) 1500.0 

E2 = E3 (GPa) 10.3 Xc (MPa) 1340.0 

G12 = G13 (GPa) 7.17 Yt = Zt (MPa) 57.0 

ν12 = ν13 0.28 Yc= Zc (MPa) 212.0 

ν23 0.49 S (MPa) 68.0 

 

Table 2. Mechanical parameters of cylindrical uni-directional ply with different ply angles 

Fiber Stiffness Parameters 

Orientation E1(GPa) E2(GPa) E3(GPa) G12(GPa) G23(GPa) G13(GPa) ν12 ν23 ν13 

90° 10.3 181 10.3 7.17 7.17 3.46 0.016 0.28 0.49 

±45° 12.98 25.05 25.05 4.66 46.61 4.66 0.060 0.747 0.060 

0° 10.3 10.3 181 3.46 7.17 7.17 0.49 0.016 0.016 

 

Fig. 4 shows the variation of strain r  and   in radial direction, respectively. In Fig. 

4(a), the smooth curve is homogenization solution of r  and fold line is the solution of r  

by STMCC. The homogenization solution represents the macroscopic trend, but the 

second-order and two-scale solution describes the local oscillation beside the macroscopic 

trend, by reason that the material parameters are different in every lamina of LCCS. However, 

the coincidence of the homogenization solution and the second-order and two-scale solution 

of   is found in Fig. 4(b), which indicates that the strain in   direction is independent of 

the variation of material parameters. 
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As a result, a relationship between the stress and the coordinate r  is obtained by numerical 

prediction as illustrated in Fig. 5, where the smooth curve is homogenization solution and fold 

curve is second-order and two-scale solution. From Fig. 5(a) the numerical value of stress r  

decreases as r  increases, where the minus sign only denotes the direction of stress. And the 

second-order and two-scale solution of stress r  is oscillating with the difference of 

material parameters. Similarly, the circumferential stress   also has an oscillating 

decrease. But differently, most of the tensile stresses in circumferential direction, which are 

born by the laminas with 90° ply-angles, are much larger than other stresses in the LCCS. 

 

 

(a) r  in radial direction (b)   in radial direction 

Fig.5. the stresses of cylinder subject to uniform pressure 

Fig.4. the strains of cylinder subject to uniform pressure 

(a) r  in radial direction (b)   in radial direction 
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Because the 90° (in circumferential direction) laminas bear the maximum stresses of the 

global structure, the circumferential stress in a 90° lamina will be firstly up to the maximum 

tensile strength of composite lamina as the inner pressure gradually increases. Then the 

first-ply failure of LCCS will happen. At that time, the inner pressure born by the LCCS is the 

elastic limit load of structure. By numerical examples, we found that the maximum inner 

pressure P  of LCCS is inversely proportional to the ratio   of the inner radius innerR  to 

the wall thickness thicknessH  of cylindrical structure. And CP , where C is a constant 

which is only determined by homogenized stiffness parameters when the strength parameters 

of composites keep invariable. Table 3 shows the homogenized stiffness parameters of 

LCCSs made by 5 different arrangements. From the table we can see that different 

arrangements lead to different equivalent stiffnesses, but both arrangements including 

[45
o
/0

o
/-45

o
/90

o
] and [45

o
/90

o
/-45

o
/0

o
] have the same homogenized parameters. As a result, 

some relationships between P  and   with different arrangements are obtained as illustrated 

in Fig. 6. Also, as   increases, P  decreases. However, because the constants C determined 

by the homogenized parameters are different, those curves have similar shapes but not 

coincide each other except [45
o
/0

o
/-45

o
/90

o
] and [45

o
/90

o
/-45

o
/0

o
] with the same homogenized 

parameters. Furthermore, it is worth to pay attention that when   is small ( 5 ) there are 

very small differences between both preceding curves. In fact, the more the number of 

arrangement periods is, namely the smaller   relative to the size of the global structure is, 

the nearer both curves are. 

Table 3. Equivalent homogenized mechanical parameters of cylinder in different ply arrangements 

Material Homogenized Stiffness Parameters 

T300/5208 E1(GPa) E2(GPa) E3(GPa) G12(GPa) G23(GPa) G13(GPa) ν12 ν23 ν13 

[45
o
/ 0

o
/-45

o
/90

o
] 12.98 69.68 69.68 4.66 26.89 4.66 0.060 0.296 0.060 

[45
o
/90

o
/-45

o
/ 0

o
] 12.98 69.68 69.68 4.66 26.89 4.66 0.060 0.296 0.060 

[45
o
/90

o
/-45

o
/90

o
] 12.54 103.98 29.22 5.65 26.89 3.97 0.014 0.675 0.169 

[45
o
/ 0

o
/-45

o
/ 0

o
] 12.54 29.22 103.98 3.97 26.89 5.65 0.169 0.190 0.014 

[45
o
/-45

o
/45

o
/-45

o
] 12.98 25.05 25.05 4.66 46.61 4.66 0.060 0.747 0.060 
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Example 2: 

For the hollow cylinders subject to linearly varying pressures shown in Section 4.2, the 

mechanical properties of LCCS are predicted. The structure of cylinder is the same as that in 

the example 1. In order to reveal results expediently, the length of the cylinder for calculation 

is 10mm. And the inner pressures are 15MPaPa  , 15MPaPa*  , where the symbols 

*Pa,Pa are shown in figure 3, the outer pressures are zero. In this example, the strain 

distributions of cylinder are calculated and the contour plots of stain are displayed. These 

results predicted by STMCC are compared with other results computed by ANSYS software. 

The contour plots of r ,  , z  and rz  in r-z section are shown from the figure 7 to the 

figure 10. In each figure, the right plot comes from ANSYS, and the left one is obtained by 

STMCC. From these figures we can see that the left strain results are very close to the right 

ones. Furthermore, the stress results also can be obtained by Hooke’s Law. 

It is worth mentioning that with the number of thin laminas increasing the computing 

capacity and time of ANSYS software increase sharply, while the STMCC save much of the 

calculation and computing time in ensuring the precision of results.  

Fig.6. Correlation of the maximum inner pressure with the ratio of the inner 

radius to the wall thickness of cylinder with different arrangements 
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Fig.9. Contour plots of stress z  in r-z section 

 

Fig.8. Contour plots of stress   in r-z section 

Fig.7. Contour plots of strain r  in r-z section 
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7 Conclusions and Discussion 

In this paper, an elasticity system in cylindrical coordinates is derived by defining four 

different operators and introducing an extended fourth-rank tensor. And then, the 

Second-order and Two-scale Method in Cylindrical Coordinates (STMCC) is presented for 

predicting the mechanical properties, including stiffness parameters, strains and stresses and 

elastic limit loads. For an example of the periodically laminated composite cylindrical 

structure, its material is homogeneous in circumferential and axial distribution, but periodical 

in radial direction. So the cell’s equation is reduced to one-dimension problem in r  

direction. Furthermore, by analyzing the numerical results of STMCC, the elastic limit load of 

LCCS subject to uniform pressure is determined, and is inversely proportional to the ratio of 

the inner radius to the wall thickness of cylindrical structure, which is instructive for 

composite structure design.  

The numerical examples are only the typical mechanics problems of cylinder with 

axis-symmetric loads, which often rise in the analysis of pressure vessel or pipeline, etc. But 

they have shown that the second-order and two-scale method in cylindrical coordinates in this 

paper is effective for mechanical property prediction of periodically laminated composite 

cylindrical structures, and the more the composite layers are, the more efficient the 

second-order and two-scale method is. 
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