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Abstract A second-order and two-scale method is firstly presented in cylindrical coordinates, which is
inspired by that the periodically laminated composite cylinder shows the periodicity characteristic in
radial direction. This method is established for predicting mechanical properties of cylindrical
structure, including stiffness parameters, strains, stresses and elastic limit loads. By defining four
different operators and introducing an extended fourth-rank tensor, a uniform balance system of
elasticity in cylindrical coordinates is expressed compactly. For this elastic model, the second-order
and two-scale analysis formulations in cylindrical coordinates are developed by means of periodical
material distribution in radial direction. Further, the second-order and two-scale expressions of the
stains and stresses are derived for the hollow cylinders subject to uniform pressures and linearly
varying pressures in axial direction, respectively, and the procedure of algorithms is described in detail.
Finally, the numerical results for both typical structures are given, and compared with the results
calculated by the software ANSYS. The agreements indicate that the second-order and two-scale
method is effective and credible. It can be used to predict the mechanical performances of cylindrical
structures.
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1. Introduction

Because the composites have complex micro-structures and heterogeneous parameters, it is
difficult to predict the displacements, strains and stresses by the traditional finite element
methods, due to the difficulty of generating FE meshes and the large computing capacity. In
early 1970’s, 1.Babuska and J.L.Lions et al. presented the homogenization method for elastic
structures of composites ™ 2. And the homogenization method is effective to predict the

effective parameters of composites, but not enough criterion for the strength of composites
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since the method doesn’t reflect the local strain and stress field of structures. After that,
J.L.Lions, O.A.Oleinik, J.Z.Cui and L.Q.Cao et al. presented and developed the multi-scale
analysis method to predict the physical and mechanical properties of composites ¥, The
multi-scale analysis method reflects not only the global performance of structures and loads,
but also the local behavior. And it can solve the difficult problem come from composites by
computing the global structure and the local basic configuration respectively. However, the
preceding methods were established in rectangular coordinates. Based on preceding works, a
new multi-scale method in cylindrical coordinates is firstly established and applied to predict
mechanical performance of composite cylindrical structures.

With the development of composites, the Laminated Composite Cylindrical Structure
(LCCS for short) is extensively applied to a variety of engineering and industrial products,
such as aircraft, aerospace, oil and gas pipeline and pressure vessel, etc, because of its low
weight, high reliability, safe failure mode and other advantages. Most of LCCSs are made by
repeatedly arranging a group of laminas with different ply angles and/or materials, which can
be seen as a periodical arrangement. This kind of composite structure is called periodically
laminated composite cylinder. This cylinder has a lot of thin laminas, so it is difficult to
predict the mechanical performances by traditional numerical methods. Moreover, this kind of
structure shows the periodicity characteristic only in radial direction. Considering above
reasons, the Second-order and Two-scale Method in Cylindrical Coordinates (STMCC for
short) is established in this paper based on homogenization theory.

The rest of this paper is organized as follows: In Section 2, the mathematical models of
LCCS are presented, including geometrical model and basic equations. The second-order and
two-scale analysis formulation for mechanical behaviors of composite cylinders is given in
Section 3. Section 4 is devoted to the expansions on the strain and stress tensors for two kinds
of typical axis-symmetric cylindrical structures. In Section 5, the procedure of STMCC based
on FEM is stated. And the numerical results for mechanical behaviors of LCCS in different
loading conditions are shown, and compared with the results calculated by ANSYS software

in Section 6.



2. Mathematical model
2.1 Geometrical model

The geometrical model of LCCS is defined firstly, the inner radius is r,, the outer radius
is I, andr,>r,>0. This LCCS is made by repeatedly arranging a group of laminas in
radial direction. A basic configuration layer is composed by some thin laminas with different
ply angles and/or materials, its thickness is &, where & <<|r1— r0| . In every basic

configuration of LCCS, the arrangement of laminas is the same, shown in Fig. 1.

Fig. 1. A geometrical model of LCCS

2.2 Basic equations of elasticity in cylindrical coordinates

Stress Balance Equation:
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According to (3) and (2), the equation (1) becomes the following equations with respect to

the displacement:
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Define ¥, = g,\P2 = li\lfs = E,‘ﬂ = 1 , then the above three equations are rewritten
or roo oz r
as follows
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where i,h=123, jk=1234 and u;,u,,u; representu, ,u,andu; respectively.
The coefficient tensors ai‘jhk correspond to the constitutive parameters Cl‘j From (4) to (7),

the following correspondence is obtained
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where aj,,(r) equal to zeroand dj =cy —c5,, dj =2c;, m=12.---6.

3. Second-order and two-scale analysis formulation



For the periodically laminated cylindrical structure, the material is homogeneous in

circumferential and axial direction, but periodical in radial direction. So, for the investigated

structure Q, Q=0Q,xQ,x U &(Q, +t), where Q, and Q, respectively represent the
tez

range of @ and z in the whole cylindrical structure, and Q, is unit cell in radial direction
and Q, =[01].
We consider the following elasticity boundary value problem:
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It is temporarily supposed that there exist the homogeneous effective coefficient tensors

{éijhk} in global Q, where i,h=123, jk=1234 . Further the vector-valued

displacement u°(r,0,z) is defined as the solution of the following homogenization

problem:
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We will give the computational formula on {éijhk} later.
Since the periodical basic cell of LCCS has ¢ thickness and there exists the periodicity
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only in radial direction, let & = 0

represents the local coordinate in Q, . Then,
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Suppose that u®(r,#,z) is expanded into following form:
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The following equality is obtained:
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It also can be written as
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Substituting (13) and (16) into (9) one obtains the following equality:
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The equality (18) holds for any & >0. Firstly, by comparing the coefficients of £ in

both sides of equality (18), the following equation is obtained:

Au,(r,£,0,2)=0 (19)

The equation (19) has a special solution as follows



Uy(r,&,0,2) =u’(r,0,2) (20)

which only depends on macro-variable. Secondly, by comparing the coefficients of & in

both sides of equality (18), the following equation is obtained:

Au,(r,&,6,7) + Au’(r,6,z) =0 (21)
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Let N, (&) isthe solution of the following problem:
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where N, (£) (o =1,23,4) are matrix valued functions in unit cell Q,. It has the

following forms
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In terms of Lax-Milgram lemma, Korn’s inequality and the symmetry and regularity of the
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problem (23) has the unique solution. Substituting (23) into (22) one obtains
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The equation (24) has a specific solution with the following form

u,(r,£,6,2) =N, (¥, (u°(r,6,2)) (25)

Inspired by [6, 7], let
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Since the right side of the equality (18) is independent on &, let the coefficient of &° in

the left side of (18) equal to f,(r,8,z), that is

AU, (r,&,0,2) + Au,(r,£,0,2)+ AU°(r,£,0,2) = f.(r,6,2) (27)
Substituting the expressions of Al, A', Al and u, in (17) and (25), and homogenized

equation (10) and homogenized coefficient (26) into (27), one obtains the following equality:
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Let N, (&) isthe solution of the following problem:
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Similar to (23), it is easy to prove that (29) also has the unique solution NW (&).
Substitute (29) into (28), then
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The equation (30) has a specific solution with the following forms

u,(r.£,0,0) =N, ()%, ¥, (°(r.0,2)) (31)
Summing up, one acquires the following theorem.

Theorem 3.1. The mechanical problem (9) of LCCS has the formally approximate solution as

follows:

U (r,6,2) =U0(r,0,2) + N, (W, (L°(r,6,2))+ &N, (O, P, (U°(r,6,2)) (32)

where ¥ ¥ ,(o,a,=1234) are differential operators and ¥, =§ ,
1 2 r
10 0 1 0 . . .
Y, = —% Wy = E W, = F and u"(r,8,2) is the solution of the homogenized problem

(10), called as the homogenization solution, N, ($) and N, (&) are the solutions of the

problems (23) and (29), respectively.
Remark 3.2. From (10), the homogenized equation of plane axis-symmetric problem without
body force is reduced to
. oY . L \lou . T
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Suppose that the material is isotropic in each lamina of LCCS. Then from the Green’s

formula and the equation (23), one obtains
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Let C,=4&,,,,=8,,,+8,,, and C,, =8,,,,—&,,,, thenusually C, #C,,. In other words,

although the material is isotropic in each lamina, the homogenized parameters of LCCS don’t

show isotropy under cylindrical coordinate system. Then the equation (33) is rewritten as

_ o _ lou! _ oul
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4. Formulation for strains and stresses of two typical problems
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4.1 Plane axis-symmetric problem of cylinder with uniform pressure
Considering the LCCS subject to the uniform inner and outer pressures, shown in Fig.2, the

following loading condition is given

(36)

r=a: o,=-p,; 7,=0
r=b: o, =-p,; 7,=0

Fig. 2. A cylindrical structure subject to inner and outer pressures

The balance equation (35) without body force is obtained from remark 3.2. There exists the

following solution from elasticity mechanics

1 ak+1bk+l
~ ~ 2k 2k
C,—kc, b™—-a

u = 1 1 _ (ak+1pa _bk+1pb)rk n

1
— . akfl _ bkfl Bl 37
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I |NOI

where k =

(¢
Ol

) . - - = |Gy Cp

, the homogenized elasticity coefficient of torusis C=| ° :
C

11 21 22

From (32), the displacement u; has the formally second-order approximate expression as
follows
U2 () = U0 + N, (@, (W0)+ &N, P, Y, (M) @)
where N, (§) and N, (&) are the solutions of the problems (23) and (29), respectively.
9y 1
r r

In order to unify the symbol in this paper, let ‘P%,‘Paz,(al,az :1,4) , ¥ = Y, =

Substituting (38) into Geometry Equation one obtains the following strain expressions
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The elasticity coefficient satisfies c(r)=c;(&) according to (11) and (8). Based on

Hooke’s law, the stresses are evaluated
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- 1 . . i
Substituting (37) and operators ‘Plzg,‘ﬂ:— into (39), the strain expressions are
r r

rewritten as follows in detail
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where
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Furthermore, by the above strains expressions (41) and Hooke’s law, the stresses can be

evaluated anywhere in global cross section of structure. Then based on the first-ply failure

criterion, the elastic limit load of LCCS can be evaluated.

4.2 Spatially axis-symmetric problem of cylinder with linearly varying pressures

A LCCS bears linearly varying inner and outer pressures as shown in Fig.3, where the

inner and outer radiuses of cylinder are a and b, respectively. And p,, p, are the inner
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and outer pressures at z=0. p:/I,p;/l are slopes of the inner and outer pressure

variation, respectively. And the boundary conditions are satisfied

a a,=p;(|5j+pa; f_b. a,=p;§[|5]+pb; z=00rl,{?i (42)
7,,=0 T, = "
A
T TTT T
L
(e SRR EEERRREI AN
g —— — aw X X Tz
e e L
» N AN W '
LI T g

Fig. 3. The r—z section of cylinder subject to linearly varying inner and outer pressures

From [8, 9], the stress solutions of cylinder made by isotropic materials are found

z ab?* | (1 1 1 1
T o Pl ) e
a’h? 1 1 1 1
Tormar| Pl )Rl T
z a? | (1 1 1 1
Ga_l_'bz_az[pb(g"'ﬁj_pa(?"’?j} (43)
a’b? 1 1 1 1
"o Pla )T T
o,=0
/Z-I’Z:/Z-ZI’:0

Using constitutive equation (3) and geometry equation (2), the following homogenization

displacements are gotten
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*p. 2 * 02 2102 * *
ur=1_v pbbz— paza gpgitvab (Zpb—zpa)g
E I(b?-a?) E I(b"°-a%) r
1 v pb’ - p 2-I’ 1+v a’*(p, - P) 1
J— 2_
E* 2 > a - 2 e r (44)
U = Lpbb - p.a’ .72 ZVM
' E I(b*-a% E b*-a’
. N2 ka2 2152 * Nt
_l 14 pbb2 paza .1r2_1+va b (zpb zpa).lnr_l_c
E I(b°-a) 2 E I(b°-2a%

where E isthe Young’s modulus, v is the Poisson ratio, and C is a constant.
In terms of (32), the displacement u; has the formally second-order approximate
expression as follows
Up® =y + &N (8, (Un) + "Ny i ()P, P, (U) (45)

Substituting (45) into geometry equation (2), we have the strain expressions

6 (r,2)= 202 aN“gg(f) ®, [0, D) N, ()2, (01, 2))

aN oa,1lm (5) N
g

(1, =S N O T, (00120 67N, (T, 7, (031, 2)

¥, U (1 2)+ 27N, (OB (¥, 2, 3(r,2))

+&

£ )= YD L w0 D) N, O, ¥, (22) @O
. (r’z)zauzé:,z)+aNag;(@\Pm(u&(r,z))+sNa13m(§)LP1(*Pa1(u&(r,z)))
re o=y 100 2)s N @, 2, 0502)
BT @, (02 N, @9, ¥, 120, 0)

Then the stress expressions can be also evaluated based on the expressions (46) and Hooke’s

law.

Moreover, one finds a;,, = 0; Q13 = Qa1 i1=123, j=12,34 from (8) and obtains

Ny =0, N ans =03 Nypg =Ny, Npps =N, 50, h=123, ¢ =1234 from (23)

=0,vk>2, £=0, VI>3,

k |
. . u u
and (29). At the same time, one obtains oY, 0 |
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am+n

=0,vm>1n>1 from (44). And then inserting the homogenization displacement

1. . . .
— into (46), the detailed strain expressions
-

armaz
(44) and the operators ‘Y, _° ¥ _0 vy -
ol et
are obtained
e (r,z)=||1+ aNlll(é)Jr@'\'m(ﬁf) 1-v 28N313(§) v
- 0g o& E o0&

E

1+v (B'z+B)

|

+&

2

E
1-v

}(A 7+ A)
"
9 aN3313("§) v

|

3
E o0 E

1-v

+&

+&

|

_2N411(98)_2

_26N4313(§)K (A'z+A)
ot E r

8N1411(§)
¢
1+v (B'z+B)

E

o PE

(

([ MNal®) |, MNoal©)
o5

ONg11(8) — ON314(S)

E rs

|

1+VB_*

_[1+ Ny, (£) _ ONyy()
aN3111(§) + 6N3411(§)
O o
S
2 Nlll(é) + 2 8I\Illll(‘f)
_ 0N4111(§) + 8N4411(§)
o¢ o¢
o¢ 0s j

sz(zmm@é (N.uud )+ Nuanl )2 Vj

+e& (6N1411(§) 6N1111(§)+3N4111(§) 3N4411(§)/

)1+V B

£°(2Nyp54(&) — 2N,14(8)

2

E r

(A'z+A)

r.2

\1+v (B'z+B)
r4

(47)
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1+v (B'z+B)

2

gg(r,z):l_—V(A*z+A)+ :

(A'z+A)
r

(( 111(§)+N411(§)) —2Ng,(8) — j

\l+v (B"z+B)

3

+ (N s (€) = Nypy (&)

r
( 4111(§)+N4411(§) —2N,514(8) = J(A er A) (48)
(AN )~ PNy ) N () Ny ) B2 H )
(N + Mo - 2 |2
+ 2 (Nyy () - Nm(i))“EVf
ez(r,z)=—é(A*z+A)
o (No6) N5 - 2N 1
+e(N(&) - Nm(«:))“vf (“9)

(( 4131(§)+N4431(§)) — 2N, 555($) jAr

1+v B’

+é& (2N1131(§)+N4431(§) 2Ny, () - N4131(§)) E °
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o0& PE E of E

s ( N (8) 5N131(§)jl+ v (B'2+B)
o& o& E r?

+g[(Nm(§) + N,y (&) + 6N3§§(§) . 5N353§l(§)j1—Ev

ON3355()
( 213(&) + PY: jE}A
+8K8N4131(68) +8N4431(98)J1_V _28N4333(98) L} (Az+A)
o0& o0& E o E r
ON, 5, (8) 5Ny (8)
+5[2N131(§)+ZT 2N, (8) -2 PY:
0N, (8) +8N4431(§)j1+‘/ (B'z+B)
o0& o0& E r

_ 6N3431(‘§)_6N3131(§) 1+VB_*
+8(N4“(§) Nurle)+ 5 o¢ j E 12

7,.(1,2) :|:£6N131(§) +6N431(§)J1_V 28N333(§) V}(A 7+ A)

Nass (&) £ ~(N N1 (&) Ny ()12 VJ(A i2+A)

1+v (B'z+B)

E r
(50)

4411(5) + N4111(§)) —2N35($) j Ar

2

(2
+ &% (= 6N, 135(£) + 6N, 45y (£) +3N, 15, (£) = 3N, 5, (£))——
(2

+é& 3131(5)_2N3@1(§)+2N1111(§)_2N1411(§)
1+v B
=N,y (6) + N4411(§))
Ao B’ —pa® oo a®h’(p - pi)
where (b ~a%) I(b” ~a%) and &= %,
A= pbb2 - paa2 - B= azbz(pb B pa) €
- b2 _aZ ’ - b2 _a2

Making use of the stress-strain relation, one can evaluate the stresses anywhere inside the
cylinder. And then according to the yield criterion, the elasticity critical load of cylinder
subject to linearly varying pressure can be evaluated. It is worthy of note, if the homogenized
stiffness parameters are not isotropic, the solutions (43) and (44) don’t hold, herewith, each

formula of (46)-(50) is unsuitable.

19



Similarly, one can obtain the expressions of strain and stress for LCCS subject to other

loads and constrains.

5 Finite element computation of the second-order and two-scale method in
cylindrical coordinates
5.1 FE approximate formulas

1. FE solutions for N, (&) and the approximate stiffness coefﬂuents{ Uhk}
From (26) the approximate elasticity stiffness coefficients {éi'j‘hk} are calculated

after the approximate solutions Nzlm (&) of problem (23) are obtained.

From the variational principles it follows that the problem (23) is equivalent to the

following virtual work equation

I 6‘V (f) 1h1 (5) alhm(é:)

FF 220 = an, @0 weHQ) 6

Thus the approximate N:Hm(f) (m=123, & =1,2,3,4) are determined by solving the

following FE virtual work equation on FE space S!(Q,) = {v esS"(Q)/v(Q) = 0}

Zjav(ﬁ) o (@) aé?(f)dea:_zjam(g)avé_if)dg W, eS5Q) (52

Actually Nglm(cf) are obtained by using general FE programs. Then the approximate

stiffness coefficients {éi';hk} are evaluated by below formula

N}
é‘i?hk = -[Qr (aijhk(é:) +8;,,(S) ap—g(gg)jdf (53)

2. FE computation of N (£). The FE solutions N" (&) are obtained by

aja,m oM

solving the following FE virtual work equation on unit cell Q, corresponding to

the FE meshes for N:ﬁm &) .
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v, (‘f) alazhm(g) h _ _ aNo;hzhm(g)
Q 65 |lh1 (g) 5 d§ - I {( igma, aialmaz aialhl (g) ag ]Vi (g) (54)

* Qithe, () Nazhm 9 mé—if)}df vV, € SS Q)

3. Homogenization Solution. From elasticity mechanics the homogenization solution

u’ can be exactly obtained for typical cylindrical axis-symmetry problem or

numerically evaluated by solving the FE virtual work equation corresponding to (10)
on global Q.

4. Approximate displacement, strain and stresses. The two-scale approximate
solutions of displacement, strains and stresses anywhere on the structure €2 are

evaluated by following formulas

U(r,6,2) =ul(r,0,2) + N (), (US(r,6,2))+ &N (W, P, (U(r,6,2)) (55)

20 = SLOD o @, (ir0.2)

+ D (P, P, (A (r.0,2))
i <2002 WE0D |y (%, N @9 Y, (0.0.0)]
&2 (ND (), + N ()PP, ¥, (US(r.0.2)))
s 200D o, (10r,0.0)
+é& Nsazlm(é:)\ys( al a2< (r,0, Z)))
on _ 10U/ (r,6,2) N ouy(r.6,z) uy(r.6,z)

“ r 80 or r
+g[(ND L (W, + N, (%, - N, (&%, N, [W(r.6,2)))
+ &2[(ND L (), + NI ()%, —N! ()W, N, W, (u5(r,6,2)))
2h aua(r 0,2) 1 6u’ (r,0,2)

ron = S DT R [N (0% + Ny (N, (00,0,

+&2(ND, ()%, + N2 ()W, ¥, ¥, (00(r.0,2)))]
P auz(g,re, 7) , au’ (5;9’ 2) . [( NS (€)%, + N ( 5)\{,3)(\1,&1 (u;:(r,e, Z)))] (56)

+é [( a13m(§)lP + Nhlm(g)LPX 061 052( '?W(r’g'z)))]
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ot"(r,0,2) =ci(Ne"(r,0,2), i,j=0123456)=(r0,2,r0,0,2r)  (57)

5.2 Algorithm procedure

The algorithm procedure of the second-order and two-scale method for predicting the
mechanical properties of LCCS is stated as follows
1. To determine the material parameters of each lamina in LCCS and to establish the FE

model of unit cell.

2. To solve the FE virtual work equation (52) on unit cell Q, to obtain Nzlm (&), and then
evaluate the constitutive coefficients {éi?hk} by formula (53).

3. To evaluate the FE solutions N" (&) by solving the FE virtual work equation (54) on

a;a,m
unit cell Q,, using the same FE meshes in step (2) as well as the stiffness matrix and its
decomposition form.

4. To obtain the homogenization displacement u’(r,é,z) for typical problem, or numerical
displacement u®"(r,8,z) for general loads and constraints by using FEM software.
5. To compute the displacementsuz’h(r,e, Z), strains «9;‘(r,6’, z) and stresses aih(r,ﬁ, Z)

at arbitrary point (r,8,z) of the structure Q by (55), (56) and (57).

6. To evaluate the elastic limit load of LCCS according to the first-ply failure criterion.

6 Numerical experiments and results

In order to verify the feasibility and validity of the second-order and two-scale method in
cylindrical coordinates for predicting mechanical properties of LCCS, we have developed the
software about the STMCC, and made some numerical experiments for the mechanical
parameters of LCCS. Here some numerical results are shown and compared with the results
calculated by ANSYS software.

Example 1:
For the plane axis-symmetry problem of the hollow cylinders subject to uniform pressures,

which is stated in Section 4.1, the stiffness parameters are computed, the elastic limit load of
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LCCS is predicted and the strains and stresses are solved by STMCC. And then by analyzing
the numerical results, the relation between the limit inner pressure and the size of the structure
is obtained. The material of single lamina is made from carbon fiber-reinforced epoxy. The
thickness of single lamina is 0.125mm and the rule of arrangement is [45707-457909,,. The
global thickness of LCCS is 5mm and the inner radius is 50mm. The inner pressure is 20Mpa
and the outer pressure is zero. Table 1 summarizes the stiffness and strength parameters of
single composite lamina. One can obtains the equivalent stiffness properties of every lamina

with different ply-angles by coordinate transformation ™% *1, shown in Table 2.

Table 1. Material properties of T300/5208 graphite-epoxy composite material

Mechanical properties Values Strength properties Values
E; (GPa) 181 Xi (MPa) 1500.0
E, = E; (GPa) 10.3 X (MPa) 1340.0
Gio= Gy3 (GPa) 7.17 Yi=Z; (MPa) 57.0
V12 = Vi3 0.28 Y=2.(MPa) 212.0
Vo3 0.49 S (MPa) 68.0

Table 2. Mechanical parameters of cylindrical uni-directional ply with different ply angles

Fiber Stiffness Parameters

Orientation E;(GPa) Ex(GPa) E3(GPa) Gi(GPa) Gp3(GPa) G13(GPa) V12 Va3 V13

90° 10.3 181 10.3 7.17 7.17 346 0016 0.28 0.49
#5° 1298 2505  25.05 4.66 46.61 466  0.060 0.747 0.060
0< 10.3 10.3 181 3.46 7.17 7.17 049 0.016 0.016

Fig. 4 shows the variation of strain ¢, and ¢, in radial direction, respectively. In Fig.

4(a), the smooth curve is homogenization solution of &, and fold line is the solution of &,

by STMCC. The homogenization solution represents the macroscopic trend, but the
second-order and two-scale solution describes the local oscillation beside the macroscopic
trend, by reason that the material parameters are different in every lamina of LCCS. However,

the coincidence of the homogenization solution and the second-order and two-scale solution

of ¢, isfound in Fig. 4(b), which indicates that the strain in & direction is independent of

the variation of material parameters.
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As aresult, a relationship between the stress and the coordinate r is obtained by numerical

prediction as illustrated in Fig. 5, where the smooth curve is homogenization solution and fold

curve is second-order and two-scale solution. From Fig. 5(a) the numerical value of stress o,

decreases as r increases, where the minus sign only denotes the direction of stress. And the

second-order and two-scale solution of stress o, is oscillating with the difference of

material parameters. Similarly, the circumferential stress o, also has an oscillating

decrease. But differently, most of the tensile stresses in circumferential direction, which are

born by the laminas with 90 “ply-angles, are much larger than other stresses in the LCCS.
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Because the 90°(in circumferential direction) laminas bear the maximum stresses of the
global structure, the circumferential stress in a 90 <lamina will be firstly up to the maximum
tensile strength of composite lamina as the inner pressure gradually increases. Then the
first-ply failure of LCCS will happen. At that time, the inner pressure born by the LCCS is the

elastic limit load of structure. By numerical examples, we found that the maximum inner

pressure P of LCCS is inversely proportional to the ratio 7 of the inner radius R to

inner

the wall thickness H of cylindrical structure. And P =C/n, where C is a constant

thickness
which is only determined by homogenized stiffness parameters when the strength parameters
of composites keep invariable. Table 3 shows the homogenized stiffness parameters of
LCCSs made by 5 different arrangements. From the table we can see that different
arrangements lead to different equivalent stiffnesses, but both arrangements including
[45°/0°/-45°/90°] and [45°/90°/-45°/0°] have the same homogenized parameters. As a result,

some relationships between P and 7 with different arrangements are obtained as illustrated
in Fig. 6. Also, as 7 increases, P decreases. However, because the constants C determined
by the homogenized parameters are different, those curves have similar shapes but not
coincide each other except [45°/0°/-45°/90°] and [45°/90°/-45°/0°] with the same homogenized
parameters. Furthermore, it is worth to pay attention that when 7 is small (77 <5) there are

very small differences between both preceding curves. In fact, the more the number of
arrangement periods is, namely the smaller ¢ relative to the size of the global structure is,
the nearer both curves are.

Table 3. Equivalent homogenized mechanical parameters of cylinder in different ply arrangements

Material Homogenized Stiffness Parameters

T300/5208 El(GPa) EQ(GPB.) E3(GP3.) G12(GPa) ng(GPa) Gl3(GPa) Vi2 V23 V13

[45°70°-45°/90°]  12.98  69.68  69.68 4.66 26.89 466  0.060 0.296 0.060
[45°/90°/-45°70°] 12.98  69.68  69.68 4.66 26.89 466  0.060 0.296 0.060
[45°/90°/-45°/90°]  12.54  103.98  29.22 5.65 26.89 397 0014 0.675 0.169
[45°70°/-45°70°] 1254  29.22 103.98  3.97 26.89 565  0.169 0.190 0.014
[45°/-45°/45°-45"]  12.98  25.05  25.05 4.66 46.61 466  0.060 0.747 0.060
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Fig.6. Correlation of the maximum inner pressure with the ratio of the inner
radius to the wall thickness of cylinder with different arrangements

Example 2:
For the hollow cylinders subject to linearly varying pressures shown in Section 4.2, the
mechanical properties of LCCS are predicted. The structure of cylinder is the same as that in

the example 1. In order to reveal results expediently, the length of the cylinder for calculation
is 10mm. And the inner pressures are Pa=15MPa,Pa” =15MPa, where the symbols
Pa,Pa“are shown in figure 3, the outer pressures are zero. In this example, the strain

distributions of cylinder are calculated and the contour plots of stain are displayed. These

results predicted by STMCC are compared with other results computed by ANSYS software.

The contour plots of ¢,,¢,,¢, and y,, inr-z section are shown from the figure 7 to the

figure 10. In each figure, the right plot comes from ANSYS, and the left one is obtained by
STMCC. From these figures we can see that the left strain results are very close to the right
ones. Furthermore, the stress results also can be obtained by Hooke’s Law.

It is worth mentioning that with the number of thin laminas increasing the computing
capacity and time of ANSY'S software increase sharply, while the STMCC save much of the

calculation and computing time in ensuring the precision of results.
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7 Conclusions and Discussion

In this paper, an elasticity system in cylindrical coordinates is derived by defining four
different operators and introducing an extended fourth-rank tensor. And then, the
Second-order and Two-scale Method in Cylindrical Coordinates (STMCC) is presented for
predicting the mechanical properties, including stiffness parameters, strains and stresses and
elastic limit loads. For an example of the periodically laminated composite cylindrical
structure, its material is homogeneous in circumferential and axial distribution, but periodical
in radial direction. So the cell’s equation is reduced to one-dimension problem in r
direction. Furthermore, by analyzing the numerical results of STMCC, the elastic limit load of
LCCS subject to uniform pressure is determined, and is inversely proportional to the ratio of
the inner radius to the wall thickness of cylindrical structure, which is instructive for
composite structure design.

The numerical examples are only the typical mechanics problems of cylinder with
axis-symmetric loads, which often rise in the analysis of pressure vessel or pipeline, etc. But
they have shown that the second-order and two-scale method in cylindrical coordinates in this
paper is effective for mechanical property prediction of periodically laminated composite
cylindrical structures, and the more the composite layers are, the more efficient the

second-order and two-scale method is.
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