Supporting Informations

A Multifaceted Cage Cluster, $[Co^{II}_{6}O_{12} \supset X]^{-}(X = Cl^{-} \text{ or } F^{-})$: Halide Template Effect and Frustrated Magnetism

Qing Chen, [†] Ming-Hua Zeng, $*^{\dagger}$ Lian-Qiang Wei, [†] and Mohamedally Kurmoo $*^{\ddagger}$

[†] Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Northwest

University, Xi'an, 710069; School of Chemistry & Chemical Engineering of Guangxi Normal University, Guilin

541004, P. R. China and [‡]Laboratoire de Chimie de Coordination Organique, CNRS-UMR7140, Université de

Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg Cedex, France.

E-mail: zmh@mailbox.gxnu.edu.cn; kurmoo@chimie.u-strasbg.fr

1					
Co1-N1	2.142(5)	O1A-Co1-N1	97.97(2)	O3B-Co1-N2	98.63(2)
Co1-N2	2.149(4)	O1A-Co1-N2	99.05(2)	O3B-Co1-O1	87.22(1)
Co1-O1	2.387(3)	O1A-Co1-O3B	157.01(1)	01A-Co1-O1	86.92(2)
Co1-O3	2.400(3)	O1-Co1-N1	69.17(1)	O1-Co1-N2	144.44(2)
Co1-O1A	2.054(4)	O3B-Co1-O3	86.59(5)	O1A-Co1-O3	86.17(14)
Co1-O3B	2.059(4)	O1A-Co1-Cl	78.41(9)	O1-Co1-Cl	73.31(9)
Co1-Cl	2.7023(8)	N1-Co1-N2	75.27(2)	O3-Co1-Cl	73.33(9)
N1-Co1-O3	144.16(1)	O3B-Co1-N1	100.65(2)	N1-Co1-Cl	142.46(1)
N2-Co1-O3	68.93(2)	O3B-Co1-Cl	78.61(9)	N2-Co1-Cl	142.26(1)
2					
Co1-N1	2.1403(9)	O3D-Co1-O1C	155.93(3)	O1C-Co1-O3	86.75(2)
Co1-N2	2.1470(7)	O3D-Co1-N2	98.71(3)	N2-Co1-O3	70.03(3)
Co1-O1	2.3498(6)	O1C-Co1-N2	100.94(3)	N1-Co1-O3	144.25(2)
Co1-O3	2.3483(7)	O1C-Co1-N1	99.17(2)	O3D-Co1-O1	86.04(2)
Co1-O1C	2.0424(6)	N2-Co1-N1	74.24(3)	01C-Co1-O1	86.281(1)
Co1-O3D	2.0229(7)	O3D-Co1-O3	87.04(2)	N2-Co1-O1	143.77(3)
N1-Co1-O1	69.56(3)	O3-Co1-O1	146.19(2)		
1′					
Co1-N1	2.122(2)	O3E-Co1-N2	97.3(8)	01-Co1-N1	70.7(8)
Co1-N2	2.101(2)	O1F-Co1-N2	99.4(6)	O3E-Co1-Cl	78.3(6)
Co1-O1	2.376(1)	O3E-Co1-N1	100.3(6)	O1F-Co1-Cl	79.0(4)
Co1-O3E	1.989(3)	O1F-Co1-N1	98.9(5)	N2-Co1-Cl	140.8(6)
Co1-O1F	2.019(1)	N2-Co1-N1	75.1(9)	N1-Co1-Cl	144.1(8)
Co1-Cl	2.700(3)	O3E-Co1-O1	86.9(7)	O1-Co1-Cl	73.5(3)

Table S1. Selected bond lengths (Å) and angles (°) for 1, 2 and 1'.

O3E-Co1-O1F	157.2(7)	01F-Co1-O1	87.97(3)	N2-Co1-O1	145.7(7)
Co1-N1	2.122(2)	O3E-Co1-N2	97.3(8)	O1-Co1-N1	70.7(8)

Symmetry codes: (A) 1-y, 2+x-y, z; (B) 1-x+y, 1-x, z; (D) -1+y, -x+y, -z;

(E) 1+x-y, 1+x, -z; (F) y-1, -x+y, -z.

Synthesis of ligand:

1,10-phenanthroline-2,9-dicarbaldehyde^[1]

A mixture of neocuproine hemihydrate (2,9-dimethyl-1,10-phenanthroline, 3.0 g, 13.8 mmol) and selenium dioxide (7.5 g) in dioxane containing 4% water (200 ml) was heated under reflux for 2 hours and then filtered through Celite while hot. The dialdehyde (2.8 g, 82%) separated from the cold filtrate as yellow crystals, m.p. 231.5-232.3 $^{\circ}$ C (231-232 $^{\circ}$ C^[1]).

1,10-phenanthroline-2,9-dicarbaldehyde Dioxime (H₂phenox)^[2]

A suspension of dialdehyde (2 g, 8.5 mmol.) in 200 mL of absolute ethanol was stirred at 60 °C for 10 min. NH₂OH · HCl (3.4 g, 44 mmol) was then progressively added within a few minutes, after the addition of pyridine (5 mL, 6.2 mmol), the mixture was stirred at reflux (95 °C) for 2 hours, and then was allowed to cool at room temperature. The precipitate was washed with 100 mL of water to eliminate the excess of NH₂OH · HCl, recrystallized from water/DMSO (55:45, v/v) and dried under vacuum (1.6 g, yield 70%), m.p. 265.5-266.3 °C (267 °C ^[2]).

Scheme S1 Synthesis of ligand H₂phenox.

Elemental analysis and IR data for 1: Elemental analysis (%): calcd (found) for **1** (Co₆C₉₁H₆₂O₂₈N₁₃Cl): C, 50.26 (49.01); H, 2.87 (2.35); N, 8.37 (8.85). Selected IR data (KBr pellet, cm⁻¹): 3392(s), 1651(s), 1628(s), 1575(m), 1367(m), 1312(w), 1172(w), 1095(w), 810(w), 714(w).

Elemental analysis and IR data for 2: Elemental analysis (%): calcd (found) for 1 (Co₆C₉₁H₆₂O₂₈N₁₃F): C, 49.40 (49.20); H, 3.10 (3.07); N, 8.23 (8.71). Selected IR data (KBr pellet, cm⁻¹): 3417(s), 1652(s), 1575(m), 1375(m), 1313(w), 1174(w), 809(w), 715(w).

Figure S1 Polar scattergram of the shortest Co-Cl (a) and Co-F (b) bonded distances as retrieved from the CSD. This

scattergram was generated by using VISTA. The scattergrams were obtained from a fragment search from of the CSD.^[5]

For compound **3**, 173(2) K, Triclinic P_1^{-} , a = 10.680(2) Å, b = 11.343(3) Å, c = 12.629(3) Å, $a = 73.756(4)^\circ$, $\beta = 77.772(3)^\circ$, $\gamma = 85.484(4)^\circ$, V = 1435.3(5) Å³, Z = 2, $D_c = 1.565$ g cm⁻³, final $R_1 = 0.0729$ ($I \ge 2\sigma$), $wR_2 = 0.2123$ (all 5046 data), S = 1.032. Single crystal X-ray analysis reveals the presence of Co^{III} ion in **3** not only testified by the crystal colour, but also the average distance of Co–N bond is 1.964 Å, which is consistent with those for the Co^{III}-based structure.^[3] Most importantly, the oxime group have been oxidized partly to carboxyl group, the C–O distance (1.240 Å) and C–O–C angles (125.4°) are quite in agreement with the general carboxylic values.^[4]

Figure S2 A) The monnuclear structure of **3**, hydrogen atoms and guest molecules have been omitted for clarity; B) photo of the crystals of **3**.

Scheme S2 Proposed course for the transformation from H₂phenox into phendc²⁻.

Figure S3. TG curve of 1 and 2 in N₂ atmosphere at a heating rate of 10 °C/min.

The TGA curves show that the weight losses of the samples of **1** at about 120 $^{\circ}$ C are 8.5%, indicating that the guest molecules and counter ion escape from the crystals (ca. 8.5%), the decomposition of the frameworks began at 394 $^{\circ}$ C. In the TGA curves of compound **2**, the weight losses at near 182 $^{\circ}$ C corresponds to the loss of the guest molecules and counter ions (found: 7.6%, ca. 8.6%), complex **2** starts to decompose at 370 $^{\circ}$ C.

Figure S4. Py-GC/MS measures of 1 at 80 °C.(H₂O m/z: 18, MeOH m/z: 31, NEt₃ m/z:86)

Figure S5a Temperature-dependent X-ray power diffraction for **1**, and the simulated powder X-ray diffraction patterns of **1** and **1'**. The heating rate between the diffraction measurements was 5 °C/min, and the temperature was kept for 10 min for each diffraction measurement.

Figure S5b XRD and the simulated patterns of 2.

Figure S6 EIS-MS spectra of 2 in acetonitrile.

Figure S7. Plots of χ_m^{-1} vs. T and the fit of Curie-Weiss law (solid curve) of 1, 2 and 1'.

Figure S8. Plots FCM/ZFCM curves of 1, 2 and 1'.

Figure S9. Plots of *Mvs. H* and the hysteresis loop (insert) curves of 1, 2 and 1' and 2 K.

References

- [1] Chandler, C. J.; Deady, L. W.; Reiss. J. A. J. Heterocyclic Chem. 1981, 18, 599.
- [2] Angeloff, A.; Daran, J.-C.; Bernadou, J.; Meunier. B. Eur. J. Inorg. Chem. 2000, 1985.
- [3] Tao, J.; Maruyama, H.; Sato. O. J. Am. Chem. Soc. 2006, 128, 1790.
- [4] "From the Molecular to the Nanoscale": Synthesis, Structure, and Properties, Vol. 7 (Eds.: Fujita, M.; Powell, A.; Creutz, C. Elsevier, Oxford, 2004.
- [5] Allen, F. H.; Kennard, O. Chem. Des. Automat. News, 1993, 8, 31 (version 5.31, Feb 2010).